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Mathematical Methods II

Coursework 1 (Solutions)

��������: Tuesday 11/03/2014 at 13:00

1) i) We first map the plait at the origin to the second plait in the vertical braid by 4

T1(z) = λz + ib,

where λ > 1 is a scaling factor intruduced because the plaits are getting larger

when we move up the braid. Continuing this process to the 35th braid we obtain

T 341 (z) = λ34z + ib
�n−1

k=0
λk

= λ34z + ib

�
λ34 − 1

λ− 1

�
.

Next we need to rotate the vertical braid by an angle −π/2. Notice also that

the plaits are getting smaller when moving away from the vertical braid. We

incorporate this by a scaling factor κ < 1. Finally we notice that there is a

horizontal displacement for each braid away from the origin, say by a distance

ρ. Assembling this we can map the plait at the origin to the last plait in the

last braid by

κe−iπ/2T 341 (z) + ρ = κe
−iπ/2

�
λ34z + ib

�
λ34 − 1

λ− 1

��
+ ρ.

ii) By a similar reasoning we obtain the 20th plait in the 5th braid by 1

κe−iπ4/24
�
λ19z + ib

�
λ19 − 1

λ− 1

��
+ ρ̃.

2) The cross ration is a linear fractional transformation. Recall from the lecture that

one can decompose the linear fractional transformation 5

T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C

into

T c=0(z) = f
b/d
T ◦ f

a/d
R (z),

T c �=0(z) = f
a/c
T ◦ f

(bc−ad)/c
R ◦ fI ◦ f

d
T ◦ f

c
R(z).

where fT , fR, fI are the translation, rotation and inversion maps.
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- The difference (zi − zj) is an invariant of f∆T :

f∆T (zi − zj) = zi +∆− zj −∆ = zi − zj

Since the cross ratio is a product and ratio of such differences it is also an

invariant of the translation map

f∆T (Tc) = Tc.

- The ratio (zi − zj)/(zk − zl) is an invariant of fλR :

fλR

�
zi − zj
zk − zl

�
=
λzi − λzj
λzk − λzl

=
zi − zj
zk − zl

Since the cross ratio is a product of two such ratios it is also an invariant of the

rotation map

fλR(Tc) = Tc.

- Tc is an invariant of fI :

fI (Tc) =
(z−14 − z−11 )(z−12 − z−13 )

(z−14 − z−13 )(z−12 − z−11 )
=
z4z1(z

−1
4 − z−11 )(z

−1
2 − z−13 )z2z3

z4z3(z
−1
4 − z−13 )(z

−1
2 − z−11 )z2z1

= Tc

Since T (z) is composed of fT , fR, fI and Tc is an invariant of all individual

transformations, it must also be an invariant of T (z).

3) First we map the exterior of the unit circle in the first quadrant onto the exterior of 15

the unit circle in the first and second quadrant by means of

w̃ = f̃(z) = z2.

Next we map the exterior of the unit circle in the first and second quadrant onto the

upper half plane

ŵ = f̂(w̃) = w̃+
1

w̃
.

Therefore the map of the exterior of the unit circle in the first quadrant onto the

upper half plane is

f(z) = f̂ ◦ f̃(z) = z2 +
1

z2
.

Let us verify this in detail and see where the boundary of the exterior of the unit

circle in the first quadrant is mapped to:

f(iy) = −

�
y2 +

1

y2

�
∈ (−∞,−2] for 1 ≤ y <∞,

f(eiθ) = 2 cos 2θ ∈ [−2, 2] for 0 ≤ θ ≤
π

2
,

f(x) =

�
x2 +

1

x2

�
∈ [2,∞) for 1 ≤ x <∞,
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This means the boundary is mapped onto the real axis. We could still have the

situation that the exterior of the unit circle is mapped to the lower half plane. It

suffices to check for one point. For instance z = 2eiπ/4

f(2eiπ/4) = 4eiπ/2 +
1

4eiπ/2
= 4i+

1

4i
=
−16 + 1

4i
=
15

4
i,

which is in the upper half plane. The Riemann mapping theorem guarantees the

existence of this map and in addition that it is one-to-one.

4) The exterior angles at w1, w2, w3 are 3π/4, π/2 and 3π/4. According to the Schwarz- 10

Christoffel theorem the map is therefore given as

f ′(z) = c(z + 1)−3/4(z − 1)−1/2.

Therefore

f(z) = c

� z

1
dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2 + c̃.

We have

f(1) = w2 = 0 ⇒ c̃ = 0.

We also have

f(−1) = c

� −1

1
dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2

= c(−1)

� 1

−1
dẑ(ẑ + 1)−3/4(1− ẑ)−1/2(−1)−1/2

= icα = w1 = ia

and therefore

c = a/α.

This means the transformation which maps the upper half plane onto the specified

isosceles right triangle is

f(z) =
a

α

� z

1
dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2.

The Schwarz-Christoffel theorem guarantees the existence of this map.

In addition one may verify that

w3 =
a

α

� ∞

1
dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2 = a.

However, this was not asked.

5) First we express the arccot(z) in terms of logarithmic functions. We have 15

z = cotw =
cosw

sinw
= i
eiw + e−iw

eiw − e−iw
= i
λ+ λ−1

λ− λ−1
,
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where λ = eiw. Solving this equation for λ we obtain

z(λ2 − 1) = i(λ2 + 1) ⇒ λ =

�
z + i

z − i
= eiw,

and therefore

w = −i ln

�
z + i

z − i
.

Hence

arccot(z) =
1

2i
ln

�
z + i

z − i

�
.

Next we write

z ± i = |z ± i| eiθ1,2 ,

such that

arccot(z) =
1

2i

�
ln

����
z + i

z − i

����+ i(θ1 − θ2)
�
.

This function has branch points at ±i. This makes it convenient to introduce vertical

branch cuts using the conventions

i) −
3π

2
< θ1,2 <

π

2
or ii) −

π

2
< θ1,2 <

3π

2
.

Let us discuss convention i) in more detail. There are three region we need to consider

separately:

• (−i∞,−i): In this region both of the functions are continuous and therefore we

do not need a branch cut.

• (−i, i): On the right of the imaginary axis we have

θ1 = −
π

2
, θ2 =

π

2
⇒ θ1 − θ2 = −π.

On the left of the imaginary axis we have

θ1 =
π

2
, θ2 = −

3π

2
⇒ θ1 − θ2 = 2π.

This means the function arccot(z) is discontinuous across the line segment (−i, i)

and we require a branch cut to make it analytic.

• (i, i∞): On the right of the imaginary axis we have

θ1 =
π

2
, θ2 =

π

2
⇒ θ1 − θ2 = 0.

On the left of the imaginary axis we have

θ1 = −
3π

2
, θ2 = −

3π

2
⇒ θ1 − θ2 = 0.

This means the function arccot(z) is continuous across the halfline (i,∞) and

we do not require any branch cut here.

Thus overall we need a branch cut on the line segment (−i, i) to make the the function

arccot(z) analytic.

The same conclusion is reached by a similar argument for the convention ii).
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