Mathematical Methods II
 Coursework 1

Hand in the complete solutions to all three questions in the general office by Thursday 01/11/2007 at 17:00

1) (20 marks)
i) Determine the linear fractional transformation in the form

$$
T(z)=\frac{a z+b}{c z+d} \quad \text { for } a d-b c \neq 0 ; a, b, c, d \in \mathbb{C}
$$

which maps the points $z_{1}=-1, z_{2}=-4, z_{3}=-3$ in the z-plane onto the points $w_{1} \rightarrow \infty, w_{2}=0, w_{3}=-1 / 2$ in the w-plane (image plane). Is this map unique?
ii) Compute all fixed points of the map $T(z)$ in i).
iii) Consider a circle in the complex plane with centre on the imaginary axis passing through all fixed points computed in ii). Show that $T(z)$ from i) maps any of these type of circles into itself, i.e. that the image is identical to the circle in the z-plane.
iv) New linear fractional transformation can be constructed from successive actions of $T(z)$ as

$$
T_{2}(z):=T \circ T(z), \quad T_{3}(z):=T \circ T_{2}(z), \ldots \quad T_{n}(z)=T \circ T_{n-1}(z) .
$$

Since $T(z)$ maps a circle passing through the fixed points onto itself, also $T_{n}(z)$ maps points on this circle onto points of the original circle, when one identifies the z-plane with the image plane. For $n \rightarrow \infty$ all points will be mapped into one of the fixed points. Convince yourself of this fact by computing $T_{n}(z)$ for $n=1,2,3,4,5,6$. Subsequently trace the points $z_{1}=-3 / 2+i 3 / 2$ and $z_{2}=$ $-1 / 2+i 3 / 2$ along their circles through the fixed points under the action of $T_{2}(z)$, $T_{4}(z)$ and $T_{6}(z)$. Illustrate your result with a picture and indicate the direction in which the points move under the action of $T_{n}(z)$ by an arrow. Draw several more of such circles, which you may guess without explicit calculation. The resulting picture should resembles a dipole.
2) (10 marks) Use Euler's formula to show that

$$
\arcsin (z)=-i \ln \left(i z+\sqrt{1-z^{2}}\right)
$$

Subsequently use the principal branch of the logarithmic function to determine the domain of analyticity for $\arcsin (z)$.
3) (20 marks)
i) A group (\mathbf{g}, \circ) is a set of elements equipped with a binary operation \circ, satisfying the follwing axioms:
a) Closure: For any two elements $a, b \in \mathbf{g}$ also $a \circ b \in \mathbf{g}$.
b) Existence of the identity: For all elements $a \in \mathbf{g}$ there exists an elements $e \in \mathbf{g}$, such that $e \circ a=a \circ e=a$.
c) Existence of the inverse: For each elements $a \in \mathbf{g}$ there exists an element $a^{-1} \in \mathbf{g}$, such that $a^{-1} \circ a=a \circ a^{-1}=e$.
d) Associativity: For any three elements $a, b, c \in \mathbf{g}$ the relation $(a \circ b) \circ c=a \circ(b \circ c)$ is satisfied.
Verify the statement that the set of all linear fractional transformations is a group.
ii) The group obtained in this way can be represented by 2×2-matrices

$$
T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Taking now the binary operation to be a matrix multiplication verify that the product of two matrices

$$
T_{1} T_{2}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)
$$

can be identified with the composition $T_{1} \circ T_{2}(z)$. Verify that the set of 2×2 matrices form a group as defined in i).

Solutions Cw, (2007)

$$
z_{1}=-1, z_{2}=-4, z_{3}=-3 \quad \overrightarrow{T(2)} \quad w_{1} \rightarrow \infty, w_{2}=0, w_{3}=-\frac{1}{2}
$$

The mas can be determined from:

$$
\begin{aligned}
& & \frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)} & =\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)} \\
\Rightarrow & & \frac{0+\frac{1}{2}}{w+\frac{1}{2}} & =\frac{(z+1)(-4+3)}{(z+3)(-4+1)} \Rightarrow \frac{2 w+1}{1} \\
\Rightarrow & & 2 w & =\frac{3 z+9}{z+1}-1=\frac{3 z+9-z-1}{z+1} \\
\Rightarrow & & w & =T(2)=\frac{z+4}{z+1}
\end{aligned}
$$

She may is unique by theorem 5.
Ste fixed paints tare to satisfy

$$
T(2)=z=\frac{z+4}{z+1} \quad \Rightarrow z^{2}+z=z+4
$$

$\Rightarrow z= \pm 2$ are the two fiscal points. (l

$$
\Rightarrow \quad r^{2}=k^{2}+2^{2}
$$

\Rightarrow Ste equation describing the circle is!

$$
\begin{aligned}
& x^{2}+(y-k)^{2}=4+\pi^{2} \\
& \Leftrightarrow x^{2}+y^{2}+\pi^{2}-2 k y=4+k^{2} \\
& \Rightarrow
\end{aligned}
$$

For the points to be mapped into the same circle we nee

$$
\begin{aligned}
& |T(2)-i k|^{2}=r^{2}=k^{2}+4 \\
& \left|\frac{z+4}{z+1}-i k\right|^{2}=\left(\frac{z+4}{z+1}-i k\right)\left(\frac{z^{*}+4}{z^{*}+1}+i k\right)
\end{aligned}
$$

$$
\begin{align*}
& \frac{z+4}{z+1} \frac{z^{*}+4}{z^{*}+1}+i k\left(\frac{z+4}{z+1}-\frac{z^{*}+4}{z^{*}+1}\right)+k^{2} \\
& =\frac{z z^{*}+4\left(z+z^{*}\right)+16+i \pi\left(z z^{*}+4 z^{*}+z+k-z z^{*}-4 z^{*}-z^{*}-k\right.}{z z^{*}+\left(z+z^{*}\right)+1}+k^{2} \\
& =\frac{z z^{*}+4\left(z+z^{*}\right)+16+i \pi 3\left(z^{*}-z\right)}{z z^{*}+\left(z+z^{*}\right)+1}+k^{2} \\
& =\frac{z z^{*}+4\left(z+z^{*}\right)+16+6 k y}{z z^{*}+\left(z+z^{*}\right)+1}+k^{2} \\
& =\frac{z^{*} z^{*}+4\left(z+z^{*}\right)+16-12+3 z z^{*}}{z^{2} z^{*}+\left(z+z^{*}\right)+1}+\pi^{2} \quad \because \underbrace{\underbrace{2}+y^{2}-4}_{z z^{*}}=2 \text { ky } \\
& =4+k^{2}=|T(2)-i k|^{2} \tag{7}\\
& \because \quad\left(z^{*}-z\right)=-2 i y \\
& 1 \\
& T_{2}=T \cdot T(2)=\frac{\frac{z+4}{z+1}+4}{\frac{z+4}{z+1}+1}=\frac{z+4+4 z+4}{z+4+z+1}=\frac{5 z+8}{2 z+5} \\
& T_{3}=T 0 T_{2}(2)=\frac{\frac{5 z+8}{2 z+5}+4}{\frac{5 z+8}{2 z+5}+1}=\frac{5 z+8+8 z+20}{5 z+8+2 z+5}=\frac{13 z+28}{7 z+13} \\
& \underline{T_{4}}=T 0 T_{3}(2)=\frac{\frac{13 z+28}{7 z+13}+4}{\frac{13 z+28}{7 z+13}+1}=\frac{13 z+28+28 z+52}{13 z+28+7 z+13}=\frac{41 z+80}{20 z+41} \\
& T_{5}=T \cdot T_{4}(2)=\frac{\frac{41 z+80}{20 z+41}+4}{\frac{41 z+80}{20 z+41}+1}=\frac{41 z+80+80 z+164}{41 z+80+20 z+41}=\frac{121 z+244}{61 z+121} \\
& T_{6}=T \cdot T_{5}(2)=\frac{\frac{121 z+244}{61 z+121}+4}{\frac{121 z+244}{61 z+121}+1}=\frac{121 z+244+244 z+484}{121 z+244+61 z+121}=\frac{365 z+728}{182 z+365}
\end{align*}
$$

She circle passing through ± 2 and $z_{1}=-\frac{3}{2}+\frac{3}{2} i$
has its centre of $\left(0, \frac{\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}-4}{2 \cdot \frac{3}{2}}\right)=(0,1 / 6) \Rightarrow r=4$ She cinch passing through ± 2 and $z_{2}=-\frac{1}{2}+\frac{3}{2} i$

Las its centre ot $\left(0, \frac{\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}-4}{2 \cdot \frac{3}{2}}\right)=\left(0,-\frac{1}{2}\right) \Rightarrow r=4 \frac{1}{4}$

$$
\begin{aligned}
& T_{2}\left(z_{1}\right)=\frac{47}{26}+\frac{27 i}{26}=1.81+1.04 i \\
& T_{4}\left(z_{1}\right)=\frac{4097+243 i}{2042}=2.01+0.12 i \\
& T_{6}\left(z_{1}\right)=\frac{332147+2187 i}{165986}=2.00+0.01 i \\
& T_{2}\left(z_{2}\right)=\frac{89+27 i}{50}=1.78+0.54 i \\
& T_{4}\left(z_{2}\right)=\frac{7379+243 i}{3722}=1.98+0.07 i \\
& T_{6}\left(z_{2}\right)=\frac{597869+2187 i}{299210}=1.998+0.01 i
\end{aligned}
$$

$$
\Sigma=20
$$

2)

$\sin z=: w=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) \quad$ difin $y=e^{i z}$.

$$
w=\frac{1}{2} \cdot\left(x-y^{-1}\right)
$$

$\Leftrightarrow \quad 2 i w y=y^{2}-1$

$$
\begin{aligned}
& \Rightarrow \quad y^{2}-2 i w \gamma-1=0 \\
& \Rightarrow \quad y_{ \pm}=i w \pm \sqrt{(w)^{2}+1} \\
&=i w \pm \sqrt{1-w^{2}}
\end{aligned}
$$

$$
\Rightarrow \quad i z=\log \left(i w \pm \sqrt{1-w^{2}}\right)
$$

$\Rightarrow \underset{\arcsin z=-i \log \left(i z+\sqrt{1-z^{2}}\right)}{\operatorname{arcs}}$
We can write $\arcsin z=-i \log \left[i z+\operatorname{erp}\left(\frac{1}{2} \log \left(1-z^{2}\right)\right)\right]$
She princisle brand thas acet of $(-\infty, 0) \equiv \mathbb{1}^{-}$. Thens we need to ensuse Atat i) $1-z^{2} \not \ell^{\prime} \mathbb{R}^{-}$and $\left.i i\right) i z+\operatorname{erp}\left(\frac{1}{2} \log \left(1-z^{2}\right) \notin \mathbb{R}^{-}\right.$
i) Serpore thot $\left(-z^{2} \in \mathbb{M} \Rightarrow\left(1-z^{2}\right)^{*}=1-z^{2}\right.$

$$
\begin{aligned}
& \Leftrightarrow \quad z^{* 2}=z^{2} \quad \Rightarrow \quad z= \pm z^{*} \\
& \Rightarrow \quad z=x \text { or } z=i y \quad x, y \in \mathbb{M}
\end{aligned}
$$

for $z=x$ for $|x|>1 \Rightarrow x^{2} \in \mathbb{R}^{-}$eacluale $(-\infty,-1)$ and $(1, \infty)$
for $z=i\rangle \quad 1+y^{2} \in \mathbb{I}^{+} \Rightarrow$ ro sestiction reguavied
ii) Lerpon thet

$$
\begin{aligned}
& i z+\operatorname{enc}\left[\frac{1}{2} \log \left(1-z^{2}\right)\right]=r \in \mathbb{R} \\
& \Leftrightarrow \quad 1-z^{2}=(r-i z)^{2} \\
& 1-z^{2}=r^{2}-2 i r z-z^{2} \\
& z=i \frac{1-r^{2}}{2 r} \notin \mathbb{R}
\end{aligned}
$$

\Rightarrow ro rectiction impored fram pin parsibilig
\Rightarrow She domain of aralytiaity of oresin z is $\mathbb{C} \mid\{(-\infty,-1),(1, \infty)$,

$$
E=10
$$

i) Edoruan:

$$
\begin{align*}
T \circ T^{\prime} & =\frac{a\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+b}{c\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+d} \\
& =\frac{a\left(a^{\prime} z+b^{\prime}\right)+b\left(c^{\prime} z+d^{\prime}\right)}{c\left(a^{\prime} z+b^{\prime}\right)+d\left(c^{\prime} z+d^{\prime}\right)} \\
& =\left(\frac{\left(a a^{\prime}+b c^{\prime}\right) z+\left(a b^{\prime}+b d^{\prime}\right)}{\left(c a^{\prime}+d c^{\prime}\right) z+\left(c b^{\prime}+d d^{\prime}\right)}\right)=\frac{a^{\prime \prime} z+b^{\prime \prime}}{c^{\prime \prime} z+d^{\prime \prime}} \tag{4}
\end{align*}
$$

Enctac of Dectig:

$$
\begin{align*}
& I=T(z)=z \\
& I \cdot T(2)=\frac{a z+b}{c z+a}=T(2) \cdot I \tag{4}
\end{align*}
$$

Eivitue of the Prone:

$$
\begin{aligned}
& T_{(2)}^{-1} \otimes T_{(2)}= T_{(2)} \sigma T_{(2)}^{-1}=F=z^{2} \\
& \frac{a T^{-1}(2)+b}{c T^{-1}(2)+d}=z \\
& a T^{-1}(2)+b=c z T^{-1}(2)+d z \\
& T^{-1}(2)(a-c z)=d z-b \\
& \Rightarrow \quad T^{-1}(z)=\frac{d z-b}{-c z+a}
\end{aligned}
$$

heok T^{-1} or $(2)=z$

$$
\frac{d\left(\frac{a z+b}{c z+d}\right)-b}{-c\left(\frac{a z+b}{c z+d}\right)+a}=\frac{d a z+d b-b d-b c z}{-c d z-c b+d c z+1 a}=z
$$

sroviting:

$$
\begin{aligned}
& T \circ\left(T^{\prime} \circ T^{\prime \prime}\right)=\left(T \circ T^{\prime}\right) \circ T^{\prime \prime} \\
& T \circ\left(\frac{\left(a^{\prime} a^{\prime \prime}+b^{\prime} c^{\prime \prime}\right) z+\left(a^{\prime} b^{\prime \prime}+b^{\prime} \alpha^{\prime \prime}\right)}{\left(c^{\prime} a^{\prime \prime}+d^{\prime} c^{\prime \prime}\right) 2+c^{\prime} b^{\prime \prime}+d^{\prime} d^{\prime \prime}}\right)
\end{aligned}
$$

$$
\frac{e \operatorname{lom}}{T \cdot T^{\prime}}=\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right)
$$

exitur firkiz:

$$
\left.\begin{array}{ll}
T^{-1} \text { enit if } & \operatorname{det} T \neq 0 \\
\frac{\text { ieni }}{T\left(21^{-1}\right.} \equiv T^{-1} & I=(1,0 \\
0, \tag{4}
\end{array}\right)
$$

$$
\sum=20
$$

