Mathematical Methods II

Coursework 1

Hand in the complete solutions to all five questions in the general office(room C123).
deadline: Tuesday 3/11/2009 at 16:00

1) Find all values for the expressions

$$
z_{1}=(1+i)^{i} \quad \text { and } \quad z_{2}=1^{\sqrt{2}}
$$

in the form $z=x+i y$ with $x, y \in \mathbb{R}$.
2) Verify that the function

$$
w=\frac{\alpha}{2}\left(z+\frac{1}{z}\right) \quad \text { for } \alpha \in \mathbb{C}
$$

maps the exterior of a semicircle with radius one centered at the origin onto the upper half plane.
3) Prove that the most general linear fractional transformation,

$$
w=T(z)=\frac{a z+b}{c z+d} \quad \text { for } a d-b c \neq 0 ; a, b, c, d \in \mathbb{C}
$$

which maps a circle of radius one into a circle of radius one for $a \neq 0$ is given by

$$
T(z)=e^{i \theta} \frac{z-\gamma}{\bar{\gamma} z-1} \quad \text { for } \theta \in \mathbb{R}, \gamma \in \mathbb{C} .
$$

Determine a, b, c, d as functions of θ, γ. Depending on the value of $|\gamma|$ find the region to which the interior of the unit circle, i.e $|z|<1$, is mapped to by the function you constructed. Find the corresponding expressions for the case $a=0$.
4) Find a transformation that maps the parabola

$$
y= \pm \sqrt{4 \alpha(\alpha-x)} \quad \text { for } \alpha \in \mathbb{R}
$$

to a straight line.
5) Find an analytic function that maps the exterior of the unit circle into the interior of a regular hexagon.

Solution CW I OM
1)

$$
\begin{aligned}
& z_{1}=(1+i)^{i}=\operatorname{esp}\left[\ln (1+i)^{i}\right]=\operatorname{eng}[i \ln (1+i)] \\
& =\operatorname{en}[i(\ln \sqrt{2}+i \arctan 1+2 \pi i n)] \quad \because \ln z=\ln |z|+i \operatorname{tr} 6 z+2 \pi i n \\
& =\operatorname{esp}\left(\frac{i}{2} \ln 2\right) e^{-\frac{\pi}{4}-2 \pi n} \\
& z_{1}=e^{-\frac{\pi}{4}+2 \pi n} \cos \left(\frac{1}{2} \ln 2\right)+i e^{-\frac{\pi}{2}+2 \pi n} \sin \left(\frac{1}{2} \ln 2\right) \\
& z_{2}=1^{\sqrt{2}}=\operatorname{esp}\left(\operatorname{len}^{\prime}, \sqrt{2}\right)=\operatorname{erp}\left(\sqrt{2} \ln _{2}\right)=\operatorname{erp}\left[\sqrt{2}\left(\operatorname{en}_{1} 1+2 \pi i n\right)\right] \\
& =\operatorname{egn}\left(2 \frac{3}{2} i \pi n\right) \\
& =\cos \left(2^{\frac{3}{2}} n \pi\right)+i \sin \left(2^{\frac{3}{2}} \pi \pi\right)
\end{aligned}
$$

2)

$$
\overrightarrow{f(z)}
$$

$$
f(z)=\frac{2}{2}\left(z+\frac{1}{z}\right)
$$

First verify that the mane is consed for the boundary:

$$
\begin{aligned}
\text {-semicircle } & \equiv \widehat{A B C} \quad \quad z=e^{i \theta} \quad \text { for } \quad 0 \leq \theta \leq \pi \\
\Rightarrow f(z) & =\frac{\alpha}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\alpha \cos \theta
\end{aligned}
$$

\Rightarrow for $\alpha \in \mathbb{R} f(z)$ sups the semicircle to $[-\alpha, \alpha]$ on the seal lin

$$
\begin{array}{rlrl}
-(r, \infty) & \equiv \overline{C D}: & z=r e^{i \theta} & \text { mirth } \theta=0, r \in(1, \infty) \\
& \Rightarrow f(z)=\frac{\alpha}{2}\left(r+\frac{1}{r}\right) \in(\alpha, \infty) & \text { for } r \in(1, \infty) \\
-(-\infty, 1) & \equiv \overline{E A}: & z=r e^{i \theta} \text { with } \theta=\pi, r \in(-\infty,-1) \\
& \Rightarrow f(z)=\frac{\alpha}{2}\left(r+\frac{1}{r}\right) \in(-\infty,-\alpha) \quad \text { for } r \in(-\infty, r)
\end{array}
$$

\Rightarrow The boundaries are manged correctly.
From the Riemann mapping theorem follows that we cavell hare all points from the exterior of the semicirch in the upper Leif plane mapped either to the upper tall plane or it
the lawer half ylare. Ne won deciole sutioh scenario acurses by checkig one point. Itis is enough since the segine is simply comnested.
Sohe $z=2 i$:

$$
\begin{equation*}
f(2 i)=\frac{\alpha}{2}\left(2 i+\frac{1}{2 i}\right)=\frac{i \alpha}{2}\left(2-\frac{1}{2}\right)=\frac{i \alpha}{4} t \text { upper half rlane } \tag{+}
\end{equation*}
$$

\Rightarrow Ihis prover that the extestior of the semicioce in the ugyer (3)
3)

$$
\begin{align*}
& T(z)=\frac{a z+b}{c z+d} a d-b c \neq 0 \\
&|T(z)|=\left|=\left|\frac{a z+b}{c z+d}\right| \Rightarrow \quad(a z+b)(\bar{a} \bar{z}+\bar{b})=(c z+d)(\bar{c} \bar{z}+\bar{d}\right. \\
& \Rightarrow \quad a \bar{a} z \bar{z}+b \bar{a} \bar{z}+a \bar{b} z+b \bar{b}=c \bar{c} z \bar{z}+\bar{d} c z+d \bar{c} \bar{z}+d \bar{d} \\
& \Rightarrow \quad|a|^{2}+|b|^{2}+a \bar{b} z+b \bar{a} \bar{z}=|c|^{2}+|d|^{2}+c \bar{d} z+d \bar{c} \bar{z} \\
& \Rightarrow \quad|a|^{2}+|b|^{2}=|d|^{2}+|d|^{2} \tag{1}\\
& \Rightarrow \bar{b}=c \bar{d} \tag{21}\\
& b \bar{a}=d \bar{c} \tag{3}
\end{align*}
$$

u. e.g. hate $d=-1$:

$$
\begin{aligned}
& \left.\begin{array}{lr}
\text { (1): : } & |a|^{2}+|b|^{2}=|c|^{2}+1 \\
\text { (2) (3): } & |a|^{2}|b|^{2}=|c|^{2}
\end{array}\right\} \Rightarrow \quad|a|^{2}\left(1-|b|^{2}\right)=\left(1-|b|^{2}\right) \Rightarrow|a|^{2}=1 \\
& \Rightarrow \quad \underline{a}=e^{i \theta} \\
& 3 \Rightarrow \quad b e^{-i \theta}=-\bar{c} \quad \Rightarrow \quad b=-e^{i \theta} \bar{c} \\
& \Rightarrow T(z)=\frac{e^{i \theta} z-e^{i \theta} \bar{c}}{c z-1}=e^{i \theta} \frac{z-\bar{c}}{c z-1} \\
& T(z)=e^{i \theta} \frac{z-2}{\frac{z-1}{c}} \text { with } c=j \\
& \text { i.e. } a=e^{i \theta}, b=-e^{i \theta} \gamma, \quad c=\bar{\gamma}, d=-1
\end{aligned}
$$

Whore is the eatesior mapped to?

$$
|T(z)|^{2}=\left|\frac{z-\gamma}{\gamma z-1}\right|^{2}<1
$$

$\Leftrightarrow \quad \frac{(z-\gamma)(\bar{z}-\bar{\gamma})}{(\bar{\gamma}-1)(\gamma \bar{z}-1)}=\frac{z \bar{z}-\bar{\gamma} z-\gamma z+\left(\gamma^{2}\right.}{(\gamma)^{2}(z)^{2}-\bar{\gamma}-\gamma \bar{z}+1}<1$
$\left.\left.\Leftrightarrow \quad(z)^{2}+\mid 2\right)^{2}<\mid \gamma\right)^{2}(z)^{2}+1$
$\Leftrightarrow \quad|x|^{2}\left(1-|z|^{2}\right)<\left(1-|z|^{2}\right)$
$\Rightarrow \quad$ for $|r|<1 \quad \Rightarrow \quad|z|<1$
for $|r|>1 \quad \Rightarrow \quad|z|>1$
\Rightarrow When $|\alpha|<1$ the interior of the unit circle is mapeat it the interior of th unit circle and when ($1 /$) (thestericris moped to th interior
Now $a=0$: $\quad T(z)=\frac{b}{z c+d}$

$$
\left.|T| z|=1 \Rightarrow \quad| b\right|^{2}=(c z+d)\left(\bar{a} \bar{z}+\left.\bar{d}\left|=|c|^{2}\right| z\right|^{2}+c \bar{d} z+d \bar{c} z+|d|\right.
$$

$c=0$ is excluded since $a d-b c \neq 0$

$$
\begin{align*}
& \Rightarrow d=0 \quad \Rightarrow \quad|b|^{2}=\left(\left.c\right|^{2} \quad \Rightarrow \quad b=e^{i \theta} c\right. \\
& \Rightarrow T(z)=\frac{e^{i \theta}{ }_{c}}{c z}=\frac{e^{i \theta}}{z}=f_{R}^{e^{i \theta}} \circ f_{I}(z) \tag{2}
\end{align*}
$$

\Rightarrow It interior is always magoo th the exterior and vice verse
4) Suppose a curve in the z - glare is parameterival ξ :

$$
\begin{aligned}
& x=F(t) \quad y=G(t) \\
& \Rightarrow \quad z=x+i \gamma=F(u+i v)+i G(u+i v) \\
&=F(a)+i G(u)
\end{aligned}
$$

tate $V=0$, ie. the u-axis become th. Cine me ax lading for
\Rightarrow Ste curse is mopped to the seal line in the w-plane
A parametrisation for $y^{2}=4 \alpha(\alpha-x)$ is

$$
\begin{array}{ll}
y=2 \alpha t=6(t) & \text { and } \\
\Rightarrow & x=\alpha\left(1-t^{2}\right)=F(t) \\
\Rightarrow & w=u=\alpha w^{2}+2 \alpha i w
\end{array} \text { with } w=u
$$

check: $w=i \pm i \sqrt{\frac{ \pm}{2}+i \frac{\lambda}{\lambda}}=i \pm i \sqrt{1-t^{2}+2 \alpha i}=i \pm i(1+i t)$
\Rightarrow the "" sign gives the real aseis
5) Th Lhovars - ehvistoffel havifarmation for
(2)

(w)

is

$$
f_{s c}(z)=w=c \int^{z}\left(z^{\prime}-x_{1}\right)^{-\frac{1}{3}}\left(z^{\prime}-x_{2}\right)^{-\frac{1}{3}} \cdots\left(z^{\prime}-x_{0}\right)^{-\frac{1}{3}} d z^{\prime}+\bar{c}
$$

Fin $E \times 3\left(\begin{array}{ll}Q & 2\end{array}\right)$ we know:
[

\Longrightarrow
$f(z)=\frac{z-1}{z+1}$
w
\Rightarrow
$y(z)$

$$
g(z)=f 0 f_{R}^{-i=e^{-\frac{i \pi}{2}}(z)=f(-i z)=\frac{-i z-1}{-i z+1}=\frac{z-i}{z+i}, \frac{1}{z+i}}
$$

\Rightarrow
\Rightarrow
$h(z)$

$$
h(z)=f_{I} \circ g(z)=\frac{z+i}{z-i}
$$

$$
\begin{aligned}
& \Rightarrow \\
& K^{-1}(1=
\end{aligned}
$$

$$
h^{-1}(\tilde{n})=i \frac{\tilde{w}+1}{\tilde{n}-1}=z
$$

$$
\Rightarrow \quad \frac{d z}{d \tilde{w}}=-\frac{2 i}{(\bar{w}-1)^{2}}
$$

$$
\Rightarrow\left(z-x_{i}\right)=i\left(\frac{1+\bar{w}}{\bar{w}-1}\right)-i \frac{\tilde{w}_{i}+1}{\tilde{w}_{i}-1}=2 i \frac{\tilde{w}_{i}-\tilde{u}}{(\tilde{w}-1)\left(\bar{w}_{i}-1\right)}
$$

$$
\Rightarrow w=c \int^{\hbar(z)} \prod_{i=1}^{6}\left(\frac{2 i\left(\tilde{w}_{i}-\bar{w}\right)}{(\tilde{w}-1)\left(\tilde{w}_{i}-1\right)}\right)^{-\frac{1}{3}} \frac{-2 i}{(\tilde{w}-1)^{2}} d \bar{w}+\bar{c}
$$

$$
=\underbrace{c \frac{-2 i}{(2 i)^{2}} \prod_{i=1}^{\frac{6}{1}}\left(\tilde{w}_{i}-1\right)^{\frac{1}{3}}}_{c^{\prime}} \int^{h(z)} \frac{\prod_{i=1}^{6}\left(\overline{w_{i}}-\tilde{w}\right)^{-\frac{1}{3}}}{(\bar{w}-1)^{2}}(\tilde{w}-1)^{2} d \bar{w}+
$$

$$
w=c^{\prime} \int^{k(z)} \prod_{i=1}^{6}\left(\tilde{w}_{i}-\bar{w}\right)^{-\frac{1}{3}} d \bar{w}+\bar{c}
$$

