Mathematical Methods II

Coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

DEADLINE: Friday $25 / 02 / 2011$ at 12:00

1) Determine the constant λ such that the function

$$
u(x, y)=x^{4}+\lambda x^{2} y^{2}+y^{4}
$$

becomes a harmonic function. Compute its conjugate harmonic function $v(x, y)$ and thereafter construct an analytic function using $u(x, y)$ and $v(x, y)$.
2) In the definition of the general linear fractional transformation

$$
w=T(z)=\frac{a z+b}{c z+d} \quad a, b, c, d \in \mathbb{C}
$$

one assumes $a d-b c \neq 0$. Provide a reason why this constraint is needed.
3) Construct a conformal transformation that maps a circle centered at $z=2+2 i$ with [10 marks] radius $r=2$ to the line passing through the points $w=i$ and $w=-1$.
4) i) For the line segment \mathcal{L}_{z} and the semi-circle \mathcal{C}_{z}

$$
\mathcal{L}_{z}=\{x, y: x=\ln r, 0<y<\pi\} \quad \mathcal{C}_{z}=\left\{r, \theta: r \in \mathbb{R}^{+}, 0<\theta<\pi\right\},
$$

show that the function

$$
f_{1}(z)=e^{z}
$$

maps \mathcal{L}_{z} onto \mathcal{C}_{z}.
ii) Determine the length of the major and minor axis of the ellipse onto which the function

$$
f_{2}(z)=z+\frac{1}{z}
$$

maps the semi-circle \mathcal{C}_{z}.
iii) Construct a conformal map that maps the line segment $\mathcal{L}_{z}^{\prime}=\{x, y: x=$ $\pi / 4,0<y<\pi\}$ onto an ellipse centered at the origin with major axis length $a=4 \cosh \pi / 4$ and minor axis length $b=4 \sinh \pi / 4$.
5) i) Find a domain on which the function

$$
g_{1}(z)=\ln \left(\frac{z-4}{z^{2}-4}\right)
$$

is single valued and analytic. Provide two alternative constructions: a) Take the principal branch cut for $\ln (z)$ and $b)$ take the branch cut for $\ln (z)$ to be \mathbb{R}^{+}.
ii) Find a domain on which the function

$$
g_{2}(z)=\operatorname{arcsinh} z
$$

is single valued and analytic. Use the principal branch cut for $\ln (z)$.

Mathematical Methods II

Coursework 1

Solutions and marking scheme

DEADLINE: Friday 25/02/2011 at 12:00

1) Compute

$$
\frac{d^{2} u}{d x^{2}}=2\left(6 x^{2}+\lambda y^{2}\right) \quad \text { and } \quad \frac{d^{2} u}{d y^{2}}=2\left(6 y^{2}+\lambda x^{2}\right)
$$

Therefore

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=2\left(x^{2}+y^{2}\right)(6+\lambda)
$$

such that $u(x, y)$ becomes a harmonic function when

$$
\lambda=-6
$$

Using the Cauchy Riemann equations

$$
\begin{aligned}
& \partial_{x} u(x, y)=4 x^{3}-12 x y^{2}=\partial_{y} v(x, y) \\
& \partial_{y} u(x, y)=-12 x^{2} y+4 y^{3}=-\partial_{x} v(x, y)
\end{aligned}
$$

gives after integration

$$
\begin{aligned}
& v(x, y)=4 x^{3}\left(y+f_{1}(x)\right)-12 x\left(\frac{y^{3}}{3}+f_{2}(x)\right)=4 y x^{3}+4 f_{1}(x) x^{3}-4 y^{3} x-12 f_{2}(x) x \\
& v(x, y)=12 y\left(\frac{x^{3}}{3}+g_{1}(y)\right)-4 y^{3}\left(x+g_{2}(y)\right)=4 y x^{3}-4 y^{3} x+12 y g_{1}(y)-4 y^{3} g_{2}(y)
\end{aligned}
$$

Comparing these two equations yields the conjugate harmonic function of $u(x, y)$

$$
v(x, y)=4 x^{3} y-4 x y^{3}
$$

This means the function

$$
\begin{aligned}
f(x, y) & =u(x, y)+i v(x, y) \\
& =x^{4}-6 x^{2} y^{2}+y^{4}+i\left(4 x^{3} y-4 x y^{3}\right)
\end{aligned}
$$

is analytic.
2) The restriction is needed as otherwise $T^{\prime}(z)=\frac{a d-b c}{(d+c z)^{2}}=0$, i.e. the map would just [2 marks] be a constant.
3) We constuct a linear fractional transformation by selecting three points z_{1}, z_{2}, z_{3} on [10 marks] the circle and three points on the line w_{1}, w_{2}, w_{3}

$$
\begin{aligned}
z_{1} & =2 i, \quad z_{2}=2, \quad z_{3}=4+2 i \\
w_{1} & =-1, \quad w_{2}=i, \quad w_{3}=1+2 i .
\end{aligned}
$$

(Different choices for the points are possible.) Substituting this into

$$
\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}
$$

and solving for w gives the linear fractional transformation

$$
w=\frac{z+2}{z-(2+4 i)} \text {. }
$$

4) i) Substituting $z=\ln r+i y$ with $0<y<\pi$ into $f_{1}(z)$

$$
f_{1}(z)=e^{z}=e^{\ln r+i y}=r e^{i y}
$$

gives precisely the semicircle when $\mathcal{C}_{z}=\left\{r, \theta: r \in \mathbb{R}^{+}, 0<\theta<\pi\right\}$.
ii) We have

$$
\begin{aligned}
w & =f_{2}(z)=z+\frac{1}{z}=u+i v=\frac{z^{2}+1}{z}=\frac{z^{2} \bar{z}+\bar{z}}{z \bar{z}} \\
& =\frac{(x+i y)\left(x^{2}+y^{2}\right)+(x-i y)}{\left(x^{2}+y^{2}\right)} \\
& =\left(1+\frac{1}{r^{2}}\right) x+i\left(1-\frac{1}{r^{2}}\right) y \quad \text { with } x^{2}+y^{2}=r^{2} .
\end{aligned}
$$

Using polar coordinates $x=r \cos \theta, y=r \sin \theta$ gives

$$
\begin{aligned}
& u(x, y)=\left(1+\frac{1}{r^{2}}\right) x=\left(r+\frac{1}{r}\right) \cos \theta \\
& v(x, y)=\left(1-\frac{1}{r^{2}}\right) y=\left(r-\frac{1}{r}\right) \sin \theta
\end{aligned}
$$

Therefore

$$
x(u, v)=\frac{u}{\left(1+\frac{1}{r^{2}}\right)} \quad \text { and } \quad y(u, v)=\frac{v}{\left(1-\frac{1}{r^{2}}\right)} .
$$

This means

$$
r^{2}=x^{2}+y^{2}=\frac{u^{2}}{\left(1+\frac{1}{r^{2}}\right)^{2}}+\frac{v^{2}}{\left(1-\frac{1}{r^{2}}\right)^{2}}
$$

such that the equation for the ellipse in normal form becomes

$$
\frac{u^{2}}{\left(r+\frac{1}{r}\right)^{2}}+\frac{v^{2}}{\left(r-\frac{1}{r}\right)^{2}}=1
$$

Therefore

$$
\text { length of the major axis }=2\left(r+\frac{1}{r}\right)
$$

$$
\text { length of the minor axis }=2\left(r-\frac{1}{r}\right) \text {. }
$$

iii) We have $f_{1}: \mathcal{L}_{z} \rightarrow \mathcal{C}_{z}$ and $f_{2}: \mathcal{C}_{z} \rightarrow$ ellipse. Therefore

$$
f(z)=f_{2} \circ f_{1}(z)=2\left(e^{z}+e^{-z}\right)=2 \cosh z
$$

$\operatorname{maps} \mathcal{L}_{z}^{\prime}=\{x, y: x=\pi / 4,0<y<\pi\}$ onto an ellipse centered when $\ln r=\pi / 4$. With the result from ii)

$$
\begin{aligned}
& \text { length of the major axis }=2\left(e^{\pi / 4}+e^{-\pi / 4}\right)=4 \cosh \frac{\pi}{4} \\
& \text { length of the minor axis }=2\left(e^{\pi / 4}-e^{-\pi / 4}\right)=4 \sinh \frac{\pi}{4}
\end{aligned}
$$

5) (i) The function $g_{1}(z)$ has three branch points at $z=4$ and at $z= \pm 2$. For the arguments of the logarithm we can write

$$
z-4=|z-4| e^{i \theta_{1}} \quad \text { and } \quad z \pm 2=|z \pm 2| e^{i \theta_{2 / 3}}
$$

such that
$g_{1}(z)=\ln \left(\frac{z-4}{z^{2}-4}\right)=\ln (z-4)-\ln (z-2)-\ln (z+2)=\ln \left|\frac{z-4}{z^{2}-4}\right|+i\left(\theta_{1}-\theta_{2}-\theta_{3}\right)$
We have now various choices for the restriction on θ_{1}, θ_{2} and θ_{3} :
a) Assume the principal values for the logarithms:

$$
-\pi<\theta_{1}, \theta_{2}, \theta_{3} \leq \pi
$$

Let us now consider the different regions on the real axis:

- $z \in(4, \infty):$ On this part of the axis there is no problem as θ_{1}, θ_{2} and θ_{3} are all continuous when crossing the axis.
- $z \in(2,4):$ On this line segment θ_{3} and θ_{2} are continuous, but θ_{1} jumps and therefore we require a cut.
- $z \in(-2,2)$: When crossing this part of the axis both θ_{1} and θ_{2} are discontinuous. However, the relevant quantity, which is the difference $\theta_{1}-\theta_{2}-\theta_{3}$ is continuous. Above the axis we have $\theta_{3}=0, \theta_{1}=\theta_{2}=\pi$, such that $\theta_{1}-\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{3}=0, \theta_{1}=\theta_{2}=-\pi$ and therefore also $\theta_{1}-\theta_{2}-\theta_{3}=0$. This means no cut is required on this segment.
- $z \in(-\infty,-2):$ On this line segment we have above the axis $\theta_{1}=\theta_{2}=\theta_{3}=$ π such that $\theta_{1}-\theta_{2}-\theta_{3}=-\pi$ and below the axis we have $\theta_{1}=\theta_{2}=\theta_{3}=-\pi$ such that $\theta_{1}-\theta_{2}-\theta_{3}=\pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
Overall we only need therefore branch cuts at the line segment $(-\infty,-2)$ and $(2,4)$ in order to make the function $g_{1}(z)$ single valued and analytic.
b) Next we assume the cut for the logarithms to be at:

$$
0<\theta_{1}, \theta_{2}, \theta_{3} \leq 2 \pi
$$

Again we consider the different regions on the real axis:

- $z \in(4, \infty)$: On this line segment we have above the axis $\theta_{1}=\theta_{2}=\theta_{3}=0$ such that $\theta_{1}-\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{1}=\theta_{2}=\theta_{3}=2 \pi$ such that $\theta_{1}-\theta_{2}-\theta_{3}=-2 \pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in(2,4)$: On this line segment we have above the axis $\theta_{1}=\pi, \theta_{3}=\theta_{2}=0$, such that $\theta_{1}-\theta_{2}-\theta_{3}=\pi$ and below the axis we have $\theta_{1}=\pi, \theta_{2}=\theta_{3}=$ 2π and therefore also $\theta_{1}-\theta_{2}-\theta_{3}=-3 \pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in(-2,2)$: On this line segment we have above the axis $\theta_{3}=0, \theta_{1}=$ $\theta_{2}=\pi$, such that $\theta_{1}-\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{3}=2 \pi$, $\theta_{1}=\theta_{2}=\pi$ and therefore also $\theta_{1}-\theta_{2}-\theta_{3}=-2 \pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in(-\infty,-2)$: On this part of the axis there is no problem as θ_{1}, θ_{2} and θ_{3} are all continuous when crossing the axis.
Overall we need therefore a branch cut at the line segment $(-2, \infty)$ in order to make the function $g_{1}(z)$ single valued and analytic.
(ii) First express the arcsinh in terms of \ln

$$
w=\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)=\frac{1}{2}\left(y-y^{-1}\right) \quad \text { with } y=e^{z} .
$$

Therefore

$$
y^{2}-2 w y-1=0
$$

which is solved by

$$
y_{1 / 2}=w \pm \sqrt{w^{2}+1} .
$$

Therefore taking the positive square root

$$
\operatorname{arcsinh}(z)=\ln \left(z+\sqrt{z^{2}+1}\right)
$$

The principal branch of \ln has the negative real axis, i.e. $(-\infty, 0) \equiv \mathbb{R}^{-}$, as branch cut. Thus we need to guarantee that
a) $z^{2}+1 \notin \mathbb{R}^{-}$
and
b) $z+\exp \left[\frac{1}{2} \ln \left(z^{2}+1\right)\right] \notin \mathbb{R}^{-}$
a) Suppose that $z^{2}+1 \in \mathbb{R}$

$$
\Rightarrow\left(z^{2}+1\right)^{*}=z^{2}+1 \quad \Leftrightarrow \quad\left(z^{*}\right)^{2}=z^{2} \quad \Rightarrow \quad z= \pm z^{*} \quad \Rightarrow z=x, z=i y
$$

for $z=x: x^{2}+1 \in \mathbb{R}^{+} \Rightarrow$ no restrictions arises from this possibility.
for $z=i y$: $-y^{2}+1 \in \mathbb{R}^{-}$for $|y|>1 \Rightarrow$ we need to cut out $\{(-i \infty,-i),(i, i \infty)\}$.
b) Assume that

$$
z+\exp \left[\frac{1}{2} \ln \left(z^{2}+1\right)\right]=r \in \mathbb{R}^{-}
$$

Therefore

$$
\left(1+z^{2}\right)=(r-z)^{2} \quad \Leftrightarrow \quad 1+z^{2}=r^{2}+z^{2}-2 r z \quad \Rightarrow z=\frac{r^{2}-1}{2 r} .
$$

This means $z \in \mathbb{R}^{-}$only for $r \in \mathbb{R}^{-}$and no further restriction results from this possibility.
The principal branch cuts of $\operatorname{arcsinh}(z)$ are therefore at $(-i \infty,-i)$ and $(i, i \infty)$.

