

Mathematical Methods II

Coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

DEADLINE: Monday 12/03/2012 at 13:00

1) i) Given a general linear fractional transformation

[10 marks]

$$w = T(z) = \frac{az+b}{cz+d}$$
 $a,b,c,d \in \mathbb{C}$

with $ad - bc \neq 0$, derive the formula

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)},$$

that defines the map which maps three distinct points z_1 , z_2 , z_3 uniquely into three distinct points w_1 , w_2 , w_3 .

- ii) Find the linear fractional transformation T(z) that maps the three points $z_1 = 0$, $z_2 = i$, $z_3 = -1$ uniquely into the three points $w_1 = i$, $w_2 = -1$, $w_3 = 0$.
- 2) Use the Schwarz-Christoffel transformation to construct an analytic function that [10 marks] maps the upper half plane Im z > 0 into the polygonial region

w-plane

$$\mathcal{D} = \{u, v : u < 0, v > 0; u > 0, v > -i\}$$

as depicted in the figure:

Hint: Choose $x_1 = -1$, $x_2 = 1$, $w_1 = 0$ and $w_2 = -i$.

- 3) Determine the equation of the curve in the w-plane which is obtained when the line [5 marks] x + y = 1 in the z-plane is transformed with i) $w = z^2$ and ii) w = 1/z.
- 4) Use the Schwarz-Christoffel transformation to construct an analytic function that [15 marks] maps the upper half plane Im z > 0 into the first quadrant bounded by the coordinate axis and the rays $x \ge 0$, y = 1 and $y \ge 1$, x = 1 as indicated in the figure:

Hint: Choose $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, $w_1 = 0$, $w_2 = \alpha$ and $w_3 = 1 + i$. Then take the limit $\alpha \to \infty$ in order to obtain the desired region in the w-plane.

5) Find a domain on which the function

[10 marks]

$$g(z) = \ln\left(\frac{z^2 - 9}{z - 1}\right)$$

is single valued and analytic. Provide two alternative constructions: i) Take the principal branch cut for $\ln(z)$ and ii) take the branch cut for $\ln(z)$ to be \mathbb{R}^+ .

Mathematical Methods II

Solutions coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

DEADLINE: Monday 12/03/2012 at 13:00

1) i) Compute

$$w - w_i = \frac{az + b}{cz + d} - \frac{az_i + b}{cz_i + d} = \frac{(ad - bc)(z - z_i)}{(d + cz)(d + cz_i)},$$

such that

$$w - w_1 = \frac{(ad - bc)(z - z_1)}{(d + cz)(d + cz_1)}, \quad w - w_3 = \frac{(ad - bc)(z - z_3)}{(d + cz)(d + cz_3)},$$

$$w_2 - w_1 = \frac{(ad - bc)(z_2 - z_1)}{(d + cz_2)(d + cz_1)}, \quad w_2 - w_3 = \frac{(ad - bc)(z_2 - z_3)}{(d + cz_2)(d + cz_3)}.$$

Since $ad - bc \neq 0$ we obtain

$$\begin{split} &\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} \\ &= \frac{(\psi \mathcal{N}///////(c-z_1))}{(d+cz)(d+cz_1)} \frac{(\psi \mathcal{N}//////(c-z_3))}{(d+cz_2)(d+cz_3)} \frac{(d+cz)(d+cz_3)}{(\psi \mathcal{N}//////(c-z_3))} \frac{(d+cz_2)(d+cz_1)}{(\psi \mathcal{N}//////(c-z_3))} \\ &= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}. \end{split}$$

[5]

[10 marks]

ii) Substituting the three points $z_1 = 0$, $z_2 = i$, $z_3 = -1$ and $w_1 = i$, $w_2 = -1$, $w_3 = 0$ into the formula yields

$$\frac{(w-i)(-1-0)}{(w-0)(-1-i)} = \frac{(z-0)(i-1)}{(z-1)(i-0)}.$$

Solving this equation for w leads to the linear fractional transformation

$$T(z) = \frac{iz+i}{1-z}.$$

2) First we identify the angles needed in the Schwarz-Christoffel transformation. Tracing [10 marks along the boundary from the left to the right the vector is first turned by $-\pi/2$ and then by $\pi/2$. Therefore we have $\mu_1 = -1/2$ and $\mu_2 = 1/2$, such that

$$f'(z) = c(z+1)^{1/2}(z+1)^{1/2} = c\frac{1+z}{\sqrt{z^2-1}}.$$

Integrating we find

$$f(z) = c \int \frac{1}{\sqrt{z^2 - 1}} dz + c \int \frac{z}{\sqrt{z^2 - 1}} dz$$
$$= c \ln \left[z + \sqrt{z^2 - 1} \right] + c \sqrt{z^2 - 1} + \tilde{c}$$
$$= c \sqrt{z^2 - 1} - ic \arcsin z + \tilde{c}.$$

Next we fix the constants. We have

$$f(-1) = 0 - ic \arcsin(-1) + \tilde{c} = i\frac{c\pi}{2} + \tilde{c} = 0,$$

$$f(1) = 0 - ic \arcsin(1) + \tilde{c} = -i\frac{c\pi}{2} + \tilde{c} = -i,$$

such that

$$\tilde{c} = -\frac{i}{2}$$
 and $c = \frac{1}{\pi}$.

This means

$$f(z) = \frac{1}{\pi} \sqrt{z^2 - 1} - \frac{i}{\pi} \arcsin z - \frac{i}{2}.$$

3) *i*) We compute

[5 marks]

$$w = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy \Rightarrow u = x^2 - y^2, \quad v = 2xy,$$

with y = 1 - x follows

$$u = x^{2} - (1 - x)^{2} = 2x - 1.$$

$$v = 2x - 2x^{2}.$$

Eliminating x gives

$$v = 1 + u - \frac{2(1+u)^2}{4} = \frac{1}{2}(1-u^2)$$
 or $u^2 + 2v = 1$

ii) We compute

$$w = \frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} \Rightarrow u = \frac{x}{x^2 + y^2}, \quad v = \frac{-y}{x^2 + y^2}$$

Solving these equation for x and y gives

$$x = \frac{u}{u^2 + v^2}$$
, and $y = \frac{-v}{u^2 + v^2}$,

such that

$$x + y = 1 \qquad \Rightarrow \qquad u^2 + v^2 = u - v.$$

4) First we identify the angles needed in the Schwarz-Christoffel transformation. Tracing [15 marks] along the boundary from the top to the right the vector is first turned by $\pi/2$, then by ϕ and finally by $\pi/2 - \phi$. As α tends to infinity the angles become

$$\theta_1 = \frac{\pi}{2}, \quad \theta_2 = \pi, \quad \text{and} \quad \theta_3 = -\frac{\pi}{2}.$$

Therefore we have $\mu_1=1/2,\,\mu_2=1$ and $\mu_3=-1/2,\,{\rm such}$ that

$$f'(z) = c(z+1)^{-1/2}z^{-1}(z-1)^{1/2} = c\frac{1}{z}\sqrt{\frac{z-1}{1+z}}$$
$$= c\frac{1}{z}\frac{z-1}{\sqrt{z^2-1}}$$

Integrating we find

$$f(z) = c \int \frac{1}{\sqrt{z^2 - 1}} dz - c \int \frac{1}{z\sqrt{z^2 - 1}} dz$$
$$= -ic \int \frac{1}{\sqrt{1 - z^2}} dz - c \int \frac{1}{z\sqrt{z^2 - 1}} dz$$
$$= -ic \arcsin z + c \arcsin 1/z + \tilde{c}.$$

Next we fix the constants. We have

$$f(-1) = i\frac{c\pi}{2} - \frac{c\pi}{2} + \tilde{c} = 0,$$

$$f(1) = -i\frac{c\pi}{2} + \frac{c\pi}{2} + \tilde{c} = 1 + i,$$

such that

$$\tilde{c} = \frac{i+1}{2}$$
 and $c = \frac{i}{\pi}$.

This means

$$f(z) = \frac{1}{\pi} \arcsin z + \frac{i}{\pi} \arcsin 1/z + \frac{i+1}{2}.$$

5) The function g(z) has three branch points at z=1 and at $z=\pm 3$. For the arguments [10 marks] of the logarithm we can write

$$z \pm 3 = |z \pm 3| e^{i\theta_{1/2}}$$
 and $z - 1 = |z - 1| e^{i\theta_3}$

such that

$$g(z) = \ln\left(\frac{z^2 - 9}{z - 1}\right) = \ln(z + 3) + \ln(z - 3) - \ln(z - 1) = \ln\left|\frac{z^2 - 9}{z - 1}\right| + i(\theta_1 + \theta_2 - \theta_3)$$

We have now various choices for the restriction on θ_1, θ_2 and θ_3 :

i) Assume the principal values for the logarithms:

$$-\pi < \theta_1, \theta_2, \theta_3 < \pi$$

[5]

Let us now consider the different regions on the real axis:

- $z \in (3, \infty)$: On this part of the axis there is no problem as θ_1, θ_2 and θ_3 are all continuous when crossing the axis.
- $z \in (1,3)$: On this line segment θ_2 and θ_3 are continuous, but θ_1 jumps and therefore we require a cut.
- $z \in (-3,1)$: When crossing this part of the axis both θ_1 and θ_3 are discontinuous. However, the relevant quantity, which is the difference $\theta_1 + \theta_2 \theta_3$ is continuous. Above the axis we have $\theta_2 = 0$, $\theta_1 = \theta_3 = \pi$, such that $\theta_1 + \theta_2 \theta_3 = 0$ and below the axis we have $\theta_2 = 0$, $\theta_1 = \theta_3 = -\pi$ and therefore also $\theta_1 + \theta_2 \theta_3 = 0$. This means no cut is required on this segment.
- $z \in (-\infty, -3)$: On this line segment we have above the axis $\theta_1 = \theta_2 = \theta_3 = \pi$ such that $\theta_1 + \theta_2 \theta_3 = \pi$ and below the axis we have $\theta_1 = \theta_2 = \theta_3 = -\pi$ such that $\theta_1 + \theta_2 \theta_3 = -\pi$. This means the function is discontinuous and we need a branch cut to make it analytic.

Overall we only need therefore branch cuts at the line segment $(-\infty, -3)$ and (1, 3) in order to make the function g(z) single valued and analytic.

ii) Next we assume the cuts for the logarithms to be at:

$$0 < \theta_1, \theta_2, \theta_3 < 2\pi$$

[5]

Again we consider the different regions on the real axis:

- $z \in (3, \infty)$: On this line segment we have above the axis $\theta_1 = \theta_2 = \theta_3 = 0$ such that $\theta_1 + \theta_2 \theta_3 = 0$ and below the axis we have $\theta_1 = \theta_2 = \theta_3 = 2\pi$ such that $\theta_1 + \theta_2 \theta_3 = 2\pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in (1,3)$: On this line segment we have above the axis $\theta_1 = \pi$, $\theta_3 = \theta_2 = 0$, such that $\theta_1 + \theta_2 \theta_3 = \pi$ and below the axis we have $\theta_1 = \pi$, $\theta_2 = \theta_3 = 2\pi$ and therefore also $\theta_1 + \theta_2 \theta_3 = \pi$. This means the function is continuous and we do not need a branch cut to make it analytic.
- $z \in (-3, 1)$: On this line segment we have above the axis $\theta_2 = 0$, $\theta_1 = \theta_3 = \pi$, such that $\theta_1 + \theta_2 \theta_3 = 0$ and below the axis we have $\theta_2 = 2\pi$, $\theta_1 = \theta_3 = \pi$ and therefore we have $\theta_1 + \theta_2 \theta_3 = 2\pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in (-\infty, -3)$: On this part of the axis there is no problem as θ_1, θ_2 and θ_3 are all continuous when crossing the axis.

Overall we need therefore a branch cut at the line segment (-3,1) and $(3,\infty)$ in order to make the function g(z) single valued and analytic.