Mathematical Methods II

Coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

DEADLINE: Monday 12/03/2012 at 13:00

1) i) Given a general linear fractional transformation

$$
w=T(z)=\frac{a z+b}{c z+d} \quad a, b, c, d \in \mathbb{C}
$$

with $a d-b c \neq 0$, derive the formula

$$
\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}
$$

that defines the map which maps three distinct points z_{1}, z_{2}, z_{3} uniquely into three distinct points w_{1}, w_{2}, w_{3}.
ii) Find the linear fractional transformation $T(z)$ that maps the three points $z_{1}=0$, $z_{2}=i, z_{3}=-1$ uniquely into the three points $w_{1}=i, w_{2}=-1, w_{3}=0$.
2) Use the Schwarz-Christoffel transformation to construct an analytic function that [10 marks] maps the upper half plane $\operatorname{Im} z>0$ into the polygonial region

$$
\mathcal{D}=\{u, v: u<0, v>0 ; u \geq 0, v>-i\}
$$

as depicted in the figure:

Hint: Choose $x_{1}=-1, x_{2}=1, w_{1}=0$ and $w_{2}=-i$.
3) Determine the equation of the curve in the w-plane which is obtained when the line [5 marks] $x+y=1$ in the z-plane is transformed with i) $w=z^{2}$ and $\left.i i\right) w=1 / z$.
4) Use the Schwarz-Christoffel transformation to construct an analytic function that maps the upper half plane $\operatorname{Im} z>0$ into the first quadrant bounded by the coordinate axis and the rays $x \geq 0, y=1$ and $y \geq 1, x=1$ as indicated in the figure:

Hint: Choose $x_{1}=-1, x_{2}=0, x_{3}=1, w_{1}=0, w_{2}=\alpha$ and $w_{3}=1+i$. Then take the limit $\alpha \rightarrow \infty$ in order to obtain the desired region in the w-plane.
5) Find a domain on which the function

$$
g(z)=\ln \left(\frac{z^{2}-9}{z-1}\right)
$$

is single valued and analytic. Provide two alternative constructions: i) Take the principal branch cut for $\ln (z)$ and ii) take the branch cut for $\ln (z)$ to be \mathbb{R}^{+}.

Mathematical Methods II

Solutions coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

DEADLINE: Monday 12/03/2012 at 13:00

1) i) Compute

$$
w-w_{i}=\frac{a z+b}{c z+d}-\frac{a z_{i}+b}{c z_{i}+d}=\frac{(a d-b c)\left(z-z_{i}\right)}{(d+c z)\left(d+c z_{i}\right)},
$$

such that

$$
\begin{gathered}
w-w_{1}=\frac{(a d-b c)\left(z-z_{1}\right)}{(d+c z)\left(d+c z_{1}\right)}, \quad w-w_{3}=\frac{(a d-b c)\left(z-z_{3}\right)}{(d+c z)\left(d+c z_{3}\right)}, \\
w_{2}-w_{1}=\frac{(a d-b c)\left(z_{2}-z_{1}\right)}{\left(d+c z_{2}\right)\left(d+c z_{1}\right)}, \quad w_{2}-w_{3}=\frac{(a d-b c)\left(z_{2}-z_{3}\right)}{\left(d+c z_{2}\right)\left(d+c z_{3}\right)} .
\end{gathered}
$$

Since $a d-b c \neq 0$ we obtain

$$
\begin{aligned}
& \frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)} .
\end{aligned}
$$

ii) Substituting the three points $z_{1}=0, z_{2}=i, z_{3}=-1$ and $w_{1}=i, w_{2}=-1$, $w_{3}=0$ into the formula yields

$$
\frac{(w-i)(-1-0)}{(w-0)(-1-i)}=\frac{(z-0)(i--1)}{(z--1)(i-0)} .
$$

Solving this equation for w leads to the linear fractional transformation

$$
T(z)=\frac{i z+i}{1-z}
$$

2) First we identify the angles needed in the Schwarz-Christoffel transformation. Tracing [10 marks] along the boundary from the left to the right the vector is first turned by $-\pi / 2$ and then by $\pi / 2$. Therefore we have $\mu_{1}=-1 / 2$ and $\mu_{2}=1 / 2$, such that

$$
f^{\prime}(z)=c(z+1)^{1 / 2}(z+1)^{1 / 2}=c \frac{1+z}{\sqrt{z^{2}-1}} .
$$

Integrating we find

$$
\begin{aligned}
f(z) & =c \int \frac{1}{\sqrt{z^{2}-1}} d z+c \int \frac{z}{\sqrt{z^{2}-1}} d z \\
& =c \ln \left[z+\sqrt{z^{2}-1}\right]+c \sqrt{z^{2}-1}+\tilde{c} \\
& =c \sqrt{z^{2}-1}-i c \arcsin z+\tilde{c} .
\end{aligned}
$$

Next we fix the constants. We have

$$
\begin{aligned}
f(-1) & =0-i c \arcsin (-1)+\tilde{c}=i \frac{c \pi}{2}+\tilde{c}=0, \\
f(1) & =0-i c \arcsin (1)+\tilde{c}=-i \frac{c \pi}{2}+\tilde{c}=-i,
\end{aligned}
$$

such that

$$
\tilde{c}=-\frac{i}{2} \quad \text { and } \quad c=\frac{1}{\pi} .
$$

This means

$$
f(z)=\frac{1}{\pi} \sqrt{z^{2}-1}-\frac{i}{\pi} \arcsin z-\frac{i}{2} .
$$

3) i) We compute

$$
w=z^{2}=(x+i y)^{2}=x^{2}-y^{2}+2 i x y \Rightarrow u=x^{2}-y^{2}, \quad v=2 x y,
$$

with $y=1-x$ follows

$$
\begin{aligned}
& u=x^{2}-(1-x)^{2}=2 x-1 . \\
& v=2 x-2 x^{2} .
\end{aligned}
$$

Eliminating x gives

$$
v=1+u-\frac{2(1+u)^{2}}{4}=\frac{1}{2}\left(1-u^{2}\right) \text { or } u^{2}+2 v=1
$$

ii) We compute

$$
w=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}} \Rightarrow u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}}
$$

Solving these equation for x and y gives

$$
x=\frac{u}{u^{2}+v^{2}}, \quad \text { and } \quad y=\frac{-v}{u^{2}+v^{2}},
$$

such that

$$
x+y=1 \quad \Rightarrow \quad u^{2}+v^{2}=u-v .
$$

4) First we identify the angles needed in the Schwarz-Christoffel transformation. Tracing [15 marks] along the boundary from the top to the right the vector is first turned by $\pi / 2$, then by ϕ and finally by $\pi / 2-\phi$. As α tends to infinity the angles become

$$
\theta_{1}=\frac{\pi}{2}, \quad \theta_{2}=\pi, \quad \text { and } \quad \theta_{3}=-\frac{\pi}{2}
$$

Therefore we have $\mu_{1}=1 / 2, \mu_{2}=1$ and $\mu_{3}=-1 / 2$, such that

$$
\begin{aligned}
f^{\prime}(z) & =c(z+1)^{-1 / 2} z^{-1}(z-1)^{1 / 2}=c \frac{1}{z} \sqrt{\frac{z-1}{1+z}} \\
& =c \frac{1}{z} \frac{z-1}{\sqrt{z^{2}-1}}
\end{aligned}
$$

Integrating we find

$$
\begin{aligned}
f(z) & =c \int \frac{1}{\sqrt{z^{2}-1}} d z-c \int \frac{1}{z \sqrt{z^{2}-1}} d z \\
& =-i c \int \frac{1}{\sqrt{1-z^{2}}} d z-c \int \frac{1}{z \sqrt{z^{2}-1}} d z \\
& =-i c \arcsin z+c \arcsin 1 / z+\tilde{c} .
\end{aligned}
$$

Next we fix the constants. We have

$$
\begin{aligned}
f(-1) & =i \frac{c \pi}{2}-\frac{c \pi}{2}+\tilde{c}=0 \\
f(1) & =-i \frac{c \pi}{2}+\frac{c \pi}{2}+\tilde{c}=1+i
\end{aligned}
$$

such that

$$
\tilde{c}=\frac{i+1}{2} \quad \text { and } \quad c=\frac{i}{\pi} .
$$

This means

$$
f(z)=\frac{1}{\pi} \arcsin z+\frac{i}{\pi} \arcsin 1 / z+\frac{i+1}{2} .
$$

5) The function $g(z)$ has three branch points at $z=1$ and at $z= \pm 3$. For the arguments [10 marks] of the logarithm we can write

$$
z \pm 3=|z \pm 3| e^{i \theta_{1 / 2}} \quad \text { and } \quad z-1=|z-1| e^{i \theta_{3}}
$$

such that
$g(z)=\ln \left(\frac{z^{2}-9}{z-1}\right)=\ln (z+3)+\ln (z-3)-\ln (z-1)=\ln \left|\frac{z^{2}-9}{z-1}\right|+i\left(\theta_{1}+\theta_{2}-\theta_{3}\right)$
We have now various choices for the restriction on θ_{1}, θ_{2} and θ_{3} :
i) Assume the principal values for the logarithms:

$$
-\pi<\theta_{1}, \theta_{2}, \theta_{3} \leq \pi
$$

Let us now consider the different regions on the real axis:

- $z \in(3, \infty)$: On this part of the axis there is no problem as θ_{1}, θ_{2} and θ_{3} are all continuous when crossing the axis.
- $z \in(1,3)$: On this line segment θ_{2} and θ_{3} are continuous, but θ_{1} jumps and therefore we require a cut.
- $z \in(-3,1)$: When crossing this part of the axis both θ_{1} and θ_{3} are discontinuous. However, the relevant quantity, which is the difference $\theta_{1}+\theta_{2}-\theta_{3}$ is continuous. Above the axis we have $\theta_{2}=0, \theta_{1}=\theta_{3}=\pi$, such that $\theta_{1}+\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{2}=0, \theta_{1}=\theta_{3}=-\pi$ and therefore also $\theta_{1}+\theta_{2}-\theta_{3}=0$. This means no cut is required on this segment.
- $z \in(-\infty,-3)$: On this line segment we have above the axis $\theta_{1}=\theta_{2}=\theta_{3}=\pi$ such that $\theta_{1}+\theta_{2}-\theta_{3}=\pi$ and below the axis we have $\theta_{1}=\theta_{2}=\theta_{3}=-\pi$ such that $\theta_{1}+\theta_{2}-\theta_{3}=-\pi$. This means the function is discontinuous and we need a branch cut to make it analytic.

Overall we only need therefore branch cuts at the line segment $(-\infty,-3)$ and $(1,3)$ in order to make the function $g(z)$ single valued and analytic.
ii) Next we assume the cuts for the logarithms to be at:

$$
\begin{equation*}
0<\theta_{1}, \theta_{2}, \theta_{3} \leq 2 \pi \tag{5}
\end{equation*}
$$

Again we consider the different regions on the real axis:

- $z \in(3, \infty)$: On this line segment we have above the axis $\theta_{1}=\theta_{2}=\theta_{3}=0$ such that $\theta_{1}+\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{1}=\theta_{2}=\theta_{3}=2 \pi$ such that $\theta_{1}+\theta_{2}-\theta_{3}=2 \pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in(1,3):$ On this line segment we have above the axis $\theta_{1}=\pi, \theta_{3}=\theta_{2}=0$, such that $\theta_{1}+\theta_{2}-\theta_{3}=\pi$ and below the axis we have $\theta_{1}=\pi, \theta_{2}=\theta_{3}=2 \pi$ and therefore also $\theta_{1}+\theta_{2}-\theta_{3}=\pi$. This means the function is continuous and we do not need a branch cut to make it analytic.
- $z \in(-3,1):$ On this line segment we have above the axis $\theta_{2}=0, \theta_{1}=\theta_{3}=\pi$, such that $\theta_{1}+\theta_{2}-\theta_{3}=0$ and below the axis we have $\theta_{2}=2 \pi, \theta_{1}=\theta_{3}=\pi$ and therefore we have $\theta_{1}+\theta_{2}-\theta_{3}=2 \pi$. This means the function is discontinuous and we need a branch cut to make it analytic.
- $z \in(-\infty,-3):$ On this part of the axis there is no problem as θ_{1}, θ_{2} and θ_{3} are all continuous when crossing the axis.

Overall we need therefore a branch cut at the line segment $(-3,1)$ and $(3, \infty)$ in order to make the function $g(z)$ single valued and analytic.

