
MA3603 , Andreas Fring, Mathematical Methods II

Mathematical Methods II

Coursework 1

Hand in the complete solutions to all five questions to the SEMS general office (C109).

��������: Tuesday 12/03/2013 at 16:00

1) [15 marks] Prove that the most general linear fractional transformation,

w = T (z) =
az + b

cz + d
for ad− bc �= 0;a, b, c, d ∈ C

which maps a circle of radius one into a circle of radius one for a �= 0 is given by

T (z) = eiθ
z − γ
γ̄z − 1 for θ ∈ R, γ ∈ C.

Determine a, b, c, d as functions of θ, γ. Fix θ and γ in such a way that T (z) leaves

the unit circle invariant and maps the line passing through the points z1 = 0, z2 =

(
√
3 + i)/2 to the line passing through w1 = 2(

√
3 + i), w2 = (−4

√
3 + i11)/13.

2) [5 marks] Use the definition The function f(z) is said to possess the limit w0 as z

tends to z0, i.e. limz→z0 f(z) = w0, iff for every ǫ > 0 there exists a δ > 0, such that

|f(z)−w0| < ǫ for all values of z for which |z − z0| < δ, z �= z0 to prove that

lim
z→1+i

(2 + i)z = 1 + 3i.

3) [10 marks] Verify that the functions

f(x, y) = ex
2
−y2 cos(2xy) and g(x, y) = arctan

�
−y
x

�

are harmonic functions. Compute for each function their conjugate harmonic function

and subsequently construct two analytic functions with real parts f(x, y) and g(x, y),

respectively.

4) [10 marks] Determine the image of the semi-unit disk in the upper half plane when

mapped by the function

p(z) = e−iπ/2
z2 + 2iz + 1

z2 − 2iz + 1 .

5) [10 marks] Find a domain on which the function

q(z) = z
�
1− 1/z

is single valued and analytic.
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Mathematical Methods II

Solutions for coursework 1

.

��������: Friday 15/03/2013 at 16:00, returned Monday 25/03/2013

1) For the unit circle in the image plane we have [8]

|T (z)| =
����
az + b

cz + d

���� = 1,

which means

|az + b| = |cz + d| ⇒ (az + b)(āz̄ + b̄) = (c̄z̄ + d̄)(cz + d).

Therefore

aāzz̄ + ab̄z + ābz̄ + bb̄ = cc̄zz̄ + cd̄z + c̄dz̄ + dd̄.

Using the fact that zz̄ = 1 this becomes

|a|2 + |b|2 + ab̄z + ābz̄ = |c|2 + |d|2 + cd̄z + c̄dz̄

Comparing coefficients yields

|a|2 + |b|2 = |c|2 + |d|2 , ab̄ = cd̄, and āb = c̄d.

Since the constants a, b, c and d are only fixed up to an overall constant we can choose

d = −1 without loss of generality. Multiplying also the last two equations gives

|a|2 + |b|2 = |c|2 + 1
|a|2 |b|2 = |c|2

�

⇒ |a|2
�
1− |b|2

�
=
�
1− |b|2

�
⇒ |a|2 = 1 ⇒ a = eiθ

Therefore

āb = c̄d ⇒ be−iθ = −c̄ ⇒ b = −c̄eiθ = −γeiθ with c̄ = γ,

such that

T (z) =
eiθz − eiθγ

γ̄z − 1 = eiθ
z − γ

γ̄z − 1 .

T (z) leaves the unit circle invariant. Next we fix θ and γ such it also maps the [7]
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line passing through the points z1 = 0, z2 = (
√
3 + i)/2 to the line passing through

w1 = 2(
√
3 + i), w2 = (−4

√
3 + i11)/13. We have the constraints

T (z1) = w1 and T (z2) = w2

Parameterizing γ = reiφ and noting that w1 = 2(
√
3+ i) = 4eiπ/6 the first constraint

becomes

eiθγ = rei(θ+φ) = 2(
√
3 + i) = 4eiπ/6 ⇒ r = 4, θ + φ =

π

6
.

The second constraint gives

T (z2) = T (eiπ/6) = ei(π/6−φ)
eiπ/6 − 4eiφ
4e−iφeiπ/6 − 1 =

eiπ/3e−iφ − 4eiπ/6
4e−iφeiπ/6 − 1 = w2

Solving this for e−iφ and subsequent simplification gives

e−iφ =
4eiπ/6 −w2

eiπ/3 − 4eiπ/6w2
=

2(
√
3 + i)− (−4

√
3 + i11)/13

1/2 + i
√
3/2− 2(

√
3 + i)(−4

√
3 + i11)/13

=
30
13

√
3 + 15

13i
105
26 − 15

26 i
√
3
=
60
√
3 + 30i

105− 15i
√
3
=
4
√
3 + 2i

7− i
√
3
=
(4
√
3 + 2i)(7 + i

√
3)

(7− i
√
3)(7 + i

√
3)

=
26
√
3 + 26i

52
=
1

2

√
3 +

1

2
i = eiπ/6.

Therefore φ = −π/6 such that θ = π/3 and γ = 4e−iπ/6.

2) We need to show that for ǫ > 0 there exists a δ > 0, such that [5]

|(2 + i)z − (1 + 3i)| < ǫ when |z − (1 + i)| < δ. (ǫδ)

So we start with

|(2 + i)z − (1 + 3i)| < ǫ.

Using |wz| = |w| |z| we obtain

|2 + i|
����z −

1 + 3i

2 + i

���� =
√
5 |z − (1 + i)| < ǫ,

and therefore

|z − (1 + i)| < ǫ√
5
=: δ, (*)

where we introduced the constant δ by means of the last equation. Therefore working

backwards, we deduce that whenever (*) holds we derive the first inequality in (ǫδ).

Since for every ǫ the δ exists we have established the limit

lim
z→1+i

(2 + i)z = 1 + 3i.

— 2 —
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3) First we verify that f(x, y) and g(x, y) are harmonic functions. We compute [4]

∂xf(x, y) = 2e
x2−y2 (x cos 2xy − y sin 2xy)

∂2xf(x, y) = 2e
x2−y2

�
cos 2xy + 2x2 cos 2xy − 2y2 cos 2xy − 4xy sin 2xy

�

∂yf(x, y) = −2ex
2
−y2 (y cos 2xy + x sin 2xy)

∂2yf(x, y) = −2ex
2
−y2

�
cos 2xy + 2x2 cos 2xy − 2y2 cos 2xy − 4xy sin 2xy

�

such that ∆f(x, y) = ∂2xf(x, y) + ∂2yf(x, y) = 0. Next compute

∂xg(x, y) =
y

x2 + y2

∂2xg(x, y) = − 2xy

(x2 + y2)2

∂yg(x, y) = − x

x2 + y2

∂2yg(x, y) =
2xy

(x2 + y2)2

such that ∆g(x, y) = ∂2xg(x, y) + ∂2yg(x, y) = 0. Hence f(x, y) and g(x, y) are indeed

harmonic functions.

The conjugate harmonic functions f̃(x, y) and g̃(x, y) are obtained by solving the

Cauchy-Riemann equations

∂f

∂x
=
∂f̃

∂y
,

∂f

∂y
= −∂f̃

∂x
and

∂g

∂x
=
∂g̃

∂y
,

∂g

∂y
= −∂g̃

∂x
.

Thus [3]

∂xf(x, y) = 2ex
2
−y2 (x cos 2xy − y sin 2xy) = ∂yf̃(x, y)

⇒ f̃(x, y) = ex
2
−y2 sin 2xy + h(x)

and

∂yf(x, y) = −2ex2−y2 (y cos 2xy + x sin 2xy) = −∂xf̃(x, y)
⇒ f̃(x, y) = ex

2
−y2 sin 2xy + h̃(y).

Comparing both results yields

f̃(x, y) = ex
2
−y2 sin 2xy + c with c ∈ C.

An analytic functions with f(x, y) as real part is therefore

F (x, y) = f(x, y) + if̃(x, y) = ex
2
−y2 cos(2xy) + i

�
ex

2
−y2 sin 2xy + c

�
.

Likewise we compute [3]
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∂xg(x, y) =
y

x2 + y2
= ∂yg̃(x, y)

⇒ g̃(x, y) =
1

2
ln(x2 + y2) + h(x)

and

∂yg(x, y) = − x

x2 + y2
= −∂xg̃(x, y)

⇒ g̃(x, y) =
1

2
ln(x2 + y2) + h̃(y).

Comparing both results yields

g̃(x, y) =
1

2
ln(x2 + y2) + c with c ∈ C.

An analytic functions with g(x, y) as real part is therefore

G(x, y) = g(x, y) + ig̃(x, y) = arctan
�
−y
x

�
+ i

	
1

2
ln(x2 + y2) + c



.

4) We parameterize the boundary of the semi-unit disk in the upper half plane by [4]

eiθ for 0 ≤ θ ≤ π and r for − 1 ≤ r ≤ 1.

Computing

���p(eiθ)
��� =

����−i
ei2θ + 2ieiθ + 1

ei2θ − 2ieiθ + 1

���� =
����
eiθ + 2i+ e−iθ

eiθ − 2i+ e−iθ

���� =
����
cos θ + i

cos θ − i

���� = 1

we see that the semi-circle in the upper half plane is mapped onto the unit circle.

Evaluating a few specific points on the semi-circle in the upper half plane, including

the end points

p(1) = 1, p(eiπ/6) =
1

7
(4
√
3 + i), p(eiπ/4) =

1

3
(2
√
2 + i), p(eiπ/3) =

1

5
(4 + 3i),

p(i) = i, p(−1) = −1,

we conclude that the semi-circle in the upper half plane is mapped onto the unit semi- [4]

circle in the upper half plane. Next we find the image of the line segment −1 ≤ r ≤ 1.
We find

|p(r)| =
����
r2 + 2ir + 1

r2 − 2ir + 1

���� =
�
r2 + 1

�2
+ (2r)2

(r2 + 1)2 + (2r)2
= 1,

such that we deduce that also the line segment is mapped onto the unit circle. Eval-

uating a few specific points on the segment, including the end points

p(−1) = −1, p(−1/2) = −40 + 9i
41

, p(0) = −i, p(1/2) =
40− 9i
41

, p(1) = 1,

we conclude that the segment is mapped onto the unit semi-circle in the lower half

plane.

— 4 —
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Finally we need to establish where the semi-disk is mapped to. Since the area is [2]

connected there are only two possibilities wither to the exterior or the interior of the

unit circle. In order to clarify which case occurs we just need to check where one

sample point is mapped to, e.g.

p(i/2) =
i

7
.

Since the image point lies within the unit circle, we conclude that the semi-unit disk

in the upper half plane is mapped to the unit disk by p(z).

5) We rewrite the function as [10]

q(z) = z
�
1− 1/z =

√
z
√
z − 1

and notice that it has two branch points at z = 0 and at z = 1. Parameterizing now

√
z = r1e

iθ1/2 and
√
z − 1 = r2e

iθ2 , for1 − π < θ1, θ2 < π

we write q(z) as

q(z) = exp
�
ln
�√

z
√
z − 1

�

= exp

�
ln
�
r1e

iθ1/2
�
+ ln

�
r2e

iθ2/2
��

= exp

	
ln (r1) + ln (r2) + i

θ1 + θ2
2

+ 2πi(n+m)



with n,m ∈ Z

The multivaluedness is taken care off by chosing n = m = 0. Next we have to study

how the function behaves across the branch cut in order to make it analytic. For this

purpose we consider different regions on the real axis:

• z ∈ (−∞, 0): When crossing this part of the axis both θ1 and θ2 are discon-

tinuous. However, the relevant quantity, which is the difference θ1 + θ2 make

e(θ1+θ2)/2 a continuous function. Above the axis we have θ1 = θ2 = π, such

that θ1 + θ2 = 2π and below the axis we have θ1 = θ2 = −π and therefore

θ1 + θ2 = −2π. This means e(θ1+θ2)/2 takes the value −1 above and below the

axis, such that no cut is required on this segment.

• z ∈ (0, 1): On this line segment θ1 is discontinuous and θ2 is, therefore we

require a cut.

• z ∈ (1,∞): On this part of the axis there is no problem as θ1 and θ2 are all

continuous when crossing the axis.

Overall we only need therefore branch cuts at the line segment (0, 1) in order to make

q(z) single valued and analytic.
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