Mathematical Methods II

Coursework 2

Hand in the complete solutions to all three questions in the general office (room C123)

DEADLINE: Friday $12 / 12 / 2008$ at 16:00

1) Given are the two identical functions

$$
u(x)=v(x)= \begin{cases}1 & \text { for }|x|<\lambda \\ 0 & \text { for }|x|>\lambda\end{cases}
$$

i) Compute the convolution

$$
(u \star v)(x) .
$$

ii) Sketch the graphs of $u(x), v(x)$ and $(u \star v)(x)$.
2) Using the Laplace transformation method solve the following ordinary differential equation

$$
\frac{d^{2} u(x)}{d x^{2}}-\kappa^{2} u(x)=e^{-\lambda x} \quad \text { with } \kappa>0, \lambda>0, \kappa \neq \lambda
$$

The boundary conditions are $u(0)=\alpha$ and $u^{\prime}(0)=\beta$.
(You do not have to compute inverse Laplace transforms from first principles using the Bromwich integral formula, but may instead use results from the lecture.)
3) Using the Fourier transformation method solve the Schrödinger equation

$$
i \frac{\partial \psi(x, t)}{\partial t}+\frac{\partial^{2} \psi(x, t)}{\partial x^{2}}=0
$$

The initial condition is $\psi(x, 0)=\delta(x)$, where $\delta(x)$ denotes the Dirac delta function.

Station CM 2 (Amos)

1) By definition me tare

$$
u * v(x)=\int_{-\infty}^{+\infty} a(s) v(x-s) d s
$$

we has
\Rightarrow

$$
a * v(x)= \begin{cases}0 & \text { for }+<-2 \lambda \\ x+2 \lambda & \text { for }-2 \lambda<t<0 \\ 2 \lambda-x & \text { for } 0 \lll<2 \lambda \\ 0 & \text { for } x>2 \lambda\end{cases}
$$

ii)

2)

$$
\begin{align*}
& a^{\prime \prime}-k^{2} u=e^{-\lambda x} \\
& B C: \quad u(0)=\alpha, u^{\prime}(a)=\beta \\
& \Rightarrow \quad L u^{\prime \prime}-\pi^{2} \mathscr{L} u=\mathcal{L}\left(e^{-\lambda}+\right) \tag{*}
\end{align*}
$$

$$
k>0, \lambda>0 \quad \pi \neq \lambda
$$

vise fromila from the lecture

$$
\begin{aligned}
\mathscr{L} u^{\prime \prime} & =x \mathscr{L} u^{\prime}(x)-u^{\prime}(0)=x(x \mathscr{L} u(x)-u(0))-u^{\prime}(0) \\
& =x^{2}-\mathcal{L} u(x)-x u(0)-u^{\prime}(0)=x^{2} \mathcal{L} u(x)-\alpha x-\beta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
\Rightarrow u(5) v(x-5)=1 \text { for } x-5<\lambda & \Rightarrow x<\lambda+5<25 \\
-\lambda<x-5 & \Rightarrow 5-\lambda<x \Rightarrow-2 \lambda<x
\end{array}\right\} \Rightarrow|x|<2 \\
& \text { when } 0<x<2 \lambda \text {, } \\
& x-5<\lambda \quad \Rightarrow \quad x-\lambda<5<\lambda \\
& \text { when }-2 \lambda<x<0 \text { : } \\
& -\lambda<x-5 \quad \Rightarrow \quad-\lambda<5<++\lambda
\end{aligned}
$$

we alser faund in the lectare $\mathcal{L}\left(e^{\beta+1}=\frac{1}{x-\beta} \quad f+\beta\right.$

$$
\begin{aligned}
(x) & \Rightarrow x^{2} \mathscr{L} u(x)-\alpha x-\beta-\pi^{2} \mathcal{L} u(x)=\mathscr{L}\left(e^{-\lambda x}\right)=\frac{1}{x+\lambda} \\
& \Rightarrow \operatorname{Lu}(x)\left(x^{2}-\pi^{2}\right)-\alpha x-\beta=\frac{1}{x+\lambda} \\
& \Rightarrow \operatorname{Lu}(x)=\frac{1}{(x+\lambda)\left(x^{2}-\pi^{2}\right)}+\frac{\alpha x}{\left(x^{2}-\pi^{2}\right)}+\frac{\beta}{x^{2}-\pi^{2}}
\end{aligned}
$$

from the lectum

$$
\begin{aligned}
& \mathcal{L}(\sin \lambda x)=\frac{\lambda}{x^{2}+\lambda^{2}} \\
& \lambda \rightarrow i \lambda \\
& \Rightarrow \quad \mathcal{L}(\sinh \lambda x)=\frac{\lambda}{x^{2}-\lambda^{2}} \\
& \mathcal{L}(\cos \lambda x)=\frac{x}{x^{2}+\lambda^{2}} \\
& \Rightarrow \quad L(\cosh x)=\frac{x}{x^{2}-\lambda^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(x+\lambda)\left(x^{2}-k^{2}\right)}=\frac{1}{\left(k^{2}-\lambda^{2}\right)(x+\lambda)}+\frac{1}{2 \pi(k+\lambda)} \frac{1}{x-\pi}+\frac{1}{2 \pi(k-\lambda)} \frac{1}{x+\pi} \\
& =\frac{1}{\pi^{2}-\lambda^{2}} \mathcal{L}\left(e^{-\lambda x}\right)+\frac{1}{2 \pi(\pi+\lambda)} \mathscr{L}\left(e^{-k x}\right)+\frac{1}{2 \pi(\pi-\lambda)} \mathcal{L}\left(e^{k}\right. \\
& \Rightarrow \quad \mathcal{L}(x)=\frac{1}{\pi^{2}-\lambda^{2}} \mathcal{L}\left(e^{-\lambda x}\right)+\frac{1}{2 \pi(k+\lambda)} \mathcal{L}\left(e^{-k x}\right)+\frac{1}{2 k(k-\lambda)} \mathcal{L}\left(e^{k x}\right)+\mathcal{L}(\cosh k) \\
& +L(\sinh k x) \\
& \Rightarrow u(x)=\alpha \cosh k x+\frac{\beta}{\pi} \sinh k x+\frac{e^{-\lambda x}}{k^{2}-\lambda^{2}}+\frac{1}{2 k(k+1)} e^{-k x}+\frac{1}{2 k(k-\lambda)} e^{k} \\
& \frac{\cosh k x+\frac{1}{k} \sinh (k x)}{k^{2}-\lambda^{2}} \\
& \sum=20
\end{aligned}
$$

3) Solve $i \psi_{t}(t, t)+\psi_{x}(t, t)=0$ (1) with $\psi(x, 0)=\delta(x)$

Fourier transform: $\tilde{\psi}(t, t)=\int_{-\infty}^{+\infty} \psi(s, t) e^{-i s t} d s$

$$
\begin{aligned}
\Rightarrow i \partial_{t} \tilde{\psi}(x, t) & =i \int_{-\infty}^{+\infty} \partial_{t} \psi(s, t) e^{-i s x} d s=-\int_{-\infty}^{+\infty} \psi_{s s}(s, t) e^{-i s t} d s \\
& =-\left.\psi_{s}(s, t) e^{-i s x}\right|_{-\infty} ^{+\infty}-i x \int_{-\infty}^{\int_{-\infty}^{\infty}} \psi_{s} e^{-i s x} d s \quad \text { (int. by parts } \\
& =\underbrace{-\left.\psi_{s}(s, t) e^{-i s x}\right|_{-\infty} ^{+\infty}-\underbrace{\left.i x \psi(s, t) e^{-i s x}\right|_{-\infty} ^{+\infty}}_{0}+x^{2} \int_{-\infty}^{+\infty} \psi(s, t) e^{-i s x} d s}_{0} .
\end{aligned}
$$

with $\lim _{x \rightarrow \pm \infty} \psi(t, t)=\lim _{x \rightarrow \pm \infty} \psi_{x}(x, t)=0 \begin{aligned} & \text { physical } \\ & \text { laundry }\end{aligned} \infty$

$$
\begin{aligned}
& \Rightarrow \quad i \partial_{t} \hat{\psi}(x, t)=x^{2} \hat{\psi}(x, t) \quad \text { with initial condition } \hat{\psi}(x, 0)=\hat{\delta}(x) \\
& \Rightarrow \text { solution } \hat{\mathscr{F}}(x, t)=e^{-i t x^{2}} \hat{\delta}(x) \\
& \text { recall } F(u(t))=\sqrt{\pi} e^{-\frac{x^{2}}{4}} \quad \text { fo } u(x)=e^{-x^{2}} \quad(E x 5 \mathrm{sec} \\
& F(v(x))=2 \sqrt{\pi t} e^{-t x^{2}} \quad \text { Fr } v(t)=e^{-\frac{x^{2}}{4 t}} \text { (sec. 3.1 } \\
& \Rightarrow F(w(x))=e^{-i t x^{2}} \quad \text { fr } w(x)=\frac{1}{2 \sqrt{i \pi t}} e^{\frac{i x^{2}}{4 t}} \\
& \Rightarrow \quad \hat{\psi}(x, y)=\hat{w}(x, y) \hat{\jmath}(x) \\
& \Leftrightarrow F_{x} \psi(x, t)=F_{x} w\left(x_{1}+\right) F_{x} \delta(x)=F_{x}(w(x,+) * \delta(x)) \\
& \Rightarrow \quad \underline{\psi(x, y)}=W(x, t) * \delta(A)=\int_{-\infty}^{+\infty} d y \delta(y) \frac{1}{2 \sqrt{i \pi t}} e^{\frac{i}{4 t}(x-y)^{2}}
\end{aligned}
$$

$$
\sum=20
$$

