Mathematical Methods II

Coursework 2

Hand in the complete solutions to all three questions in the general office(room C123).

DEADLINE: Tuesday 8/12/2009 at 16:00

1) The Laguerre polynomials $L_{n}(x)$ are generated from

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right)
$$

Compute the Fourier transform for the function

$$
u(x)=6 L_{3}(x) e^{-x^{2}}
$$

2) i Compute the Laplace transformation for the function

$$
u(x)=e^{-x} \sin (\alpha x) \quad \text { for } \alpha \in \mathbb{R}
$$

ii) Use the Laplace transformation method to solve the following ordinary differential equation

$$
\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=3 e^{-x} \sin (x)
$$

The boundary conditions are $y(0)=0$ and $d y / d x(0)=3$.
(You do not have to compute inverse Laplace transforms from first principles using the Bromwich integral formula, but may instead use the result from i).)
iii) By substitution verify that your solution is correct.
3) Use the Laplace transformation method to solve the integral equation

$$
y(x)=x^{3}+\int_{0}^{x} \sin (x-t) y(t) d t
$$

CW II Mothematical Mathal, II (Solution)

1) Consute th taguesse volynomile $L_{3}(t)$:

$$
\begin{aligned}
L_{3}(x) & =\frac{e^{x}}{3!} \frac{d^{3}}{d x 3}\left(e^{-x} x^{3}\right)=\frac{e^{x}}{6} \frac{d^{2}}{d x^{2}}\left(-e^{-x} x^{3}+e^{-x} 3 x^{2}\right) \\
& =\frac{e^{x}}{6} \frac{d}{d x}\left(-e^{-x}\left(3 x^{2}-x^{3}\right)+e^{-x}\left(6 x-3 x^{2}\right)\right) \\
& =\frac{e^{x}}{6} \frac{d}{d x}\left[e^{-x}\left(x^{3}-6 x^{2}+6 x\right)\right]=\frac{e^{x}}{6}\left(-e^{-x}\left(x^{3}-6 x^{2}+6 x\right)+e^{-x}\left(3 x^{2}-12 x+6\right)\right) \\
L_{3}(x) & =\frac{1}{6}\left(6-18 x+9 x^{2}-x^{3}\right) \Rightarrow u(x)=\left(6-18 x+9 x^{2}-x^{3}\right) e^{-x^{2}} \\
V(x) & =e^{-x^{2}}, \quad V^{\prime}(x)=-2 x e^{-x^{2}}, \quad V^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}, \quad V^{\prime \prime \prime}(x)=\left(12+-8 x^{3}\right) e^{-x^{2}}
\end{aligned}
$$

assume: $\quad a(x)=A V(t)+B V^{\prime}(A)+C V^{\prime \prime}(A)+D V^{\prime \prime \prime}(A)$

$$
\begin{aligned}
& =\left[(A-2 C)+(-2 B+12 D) x+4 C x^{2}-8 D x^{3}\right] e^{-x^{2}} \\
& \Rightarrow \quad A-2 C=6 \quad \quad 12 D-2 B=-18 \quad 4 C=9 \quad-8 D=-1 \\
& \Rightarrow \quad D=\frac{1}{8} \quad C=\frac{9}{4} \quad B=\frac{39}{4} \quad A=\frac{21}{2}
\end{aligned}
$$

We know $F_{a^{\prime}(A)}=i+F_{a(1)} \quad F_{r(t)}=2 \pi e^{-\frac{x^{2}}{4}}$ for $r_{A 1}=e^{-x^{2}}$

$$
\begin{align*}
\Rightarrow F_{u(t)} & =A F v(x)+B i x F_{V(t)}+C(i x)^{2} F_{V(t)}+D(i x)^{3} F_{V(t)} \\
F_{u(t)} & =\left(\frac{21}{2}+i x \frac{37}{4}-x^{2} \frac{9}{4}-\frac{i}{8} x^{3}\right) \sqrt{\pi} e^{-\frac{x^{2}}{4}} \tag{15}
\end{align*}
$$

2) i) Compute $x u(x)$ with $u(x)=e^{-x} \sin (\alpha x)$

$$
\begin{array}{rlrl}
\mathscr{L} u(t) & =\int_{0}^{\infty} e^{-t} \sin (\alpha t) e^{-t x} d x=\int_{0}^{\infty} \sin (\alpha t) e^{-(1+x) t} d t & & u=-\frac{1}{2} \cos \alpha t \\
u^{\prime} & v & v^{\prime}=-(1+t) e^{-(1+t) t} \\
& =\left.e^{-(1+x) t}\left(-\frac{1}{2}\right) \cos \alpha t\right|_{0} ^{\infty}-\frac{1+t}{2} \int_{0}^{\infty} \cos \left((k t) e^{-(1+x) t} d t\right. & & u=\frac{1}{2} \sin (\alpha t)
\end{array}
$$

$$
=\frac{1}{2}+\underbrace{\left.\left(\frac{1+t}{\alpha}\right) \frac{1}{2} \sin (\alpha+) e^{-(1+t) t+}\right|_{0} ^{\infty}}_{0}-\frac{(1+t)}{\alpha^{2}} \underbrace{\int_{0}^{\infty} \sin \alpha+e^{-(1+x) t} d t}_{\int_{0}^{2}} d t
$$

$$
=\frac{1}{2}-\frac{(1+x)^{2}}{\alpha^{2}} \mathcal{Z} u(x) \quad \Rightarrow \quad Z u(t)=\frac{\alpha}{\alpha^{2}+(1+x)^{2}}
$$

ii)

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+5 y=3 e^{-x} \sin x \\
\mathcal{L} y^{\prime}(x)=x \mathcal{L} y_{(x)}-y_{(0)} \\
\mathcal{L} y^{\prime \prime}(x)=x \mathcal{L} y^{\prime}(x)-Y^{\prime}(0)=x\left(x \mathscr{L}(x)-y_{(0)}\right)-y^{\prime}(0)=x^{2} \mathcal{L} y_{(1)}-x y_{(0)-Y^{\prime}(0)}
\end{gathered}
$$

$$
\Rightarrow \quad y(x)=e^{-x}(\sin x+\sin 2 x)
$$

i iil

$$
\begin{aligned}
y^{\prime}(x)= & e^{-x}(\cos x+2 \cos 2 x)-e^{-x}(\sin x+\sin 2 x) \\
= & e^{-x}(-\sin x+\cos x+2 \cos 2 x-\sin 2 x) \\
y^{\prime \prime}(x)= & -e^{-x}(-\sin x+\cos x+2 \cos 2 x-\sin 2 x) \\
& +e^{-x}(-\cos x-\sin x-4 \sin 2 x-2 \cos 2 x) \\
= & e^{-x}(2 \cos x-3 \sin 2 x-4 \cos 2 x)
\end{aligned}
$$

$$
\Rightarrow e^{-x}\left(-2 \cos x-3 \sin 2 x-4 \cos 2 x /+2 e^{-x}(-\sin x+\cos x+2 \cos 2 x-\sin 2+/\right.
$$

$$
+5 e^{-x}(\sin x+\sin 2 x)=3 e^{-x} \sin x
$$

banday conditions: $\quad y(0)=0 \quad y^{\prime}(0)=3$

$$
\begin{aligned}
y(x) & =x^{3}+\int_{0}^{x} \sin (x-t) y(t) d t \\
& =x^{3}+\int_{0}^{\infty} H(x-t) \sin (x-t) y(t) d t \\
& =x^{3}+\sqrt{2}+y(x) \\
\Rightarrow \quad \mathscr{L} y(x) & =\mathscr{L} x^{3}+\mathscr{L}(V * y)(x) \\
\Rightarrow \quad \mathscr{L} y(x) & =\mathscr{L} x^{3}+\mathscr{L} V(x) \mathcal{L}+(x)
\end{aligned}
$$

$$
V(x)=H(x) \sin (x)
$$

$$
\begin{aligned}
& \Rightarrow \mathscr{L} y^{\prime \prime}+2 \mathcal{L} y^{\prime}+5 \mathcal{L} y=3 \mathcal{L}\left(e^{-x} \sin x\right) \\
& \Rightarrow \quad x^{2} \mathcal{L} y(x)-3+2 x \mathcal{L} y(x)+5 \mathcal{L} y(x)=3 \mathcal{L}\left(e^{-x} \sin x\right) \\
& \Rightarrow \quad<\nmid(x)\left(x^{2}+2 x+5\right)=\frac{3}{1^{2}+(1+x)^{2}}+3 \\
& \Rightarrow \quad z y(x)=\left(3+\frac{3}{1+(1+x)^{2}}\right) \frac{1}{x^{2}+2 x+5} \\
& =\frac{3}{1+(1+x)^{2}}+\frac{3}{\left(x^{2}+2 x+2\right)\left(x^{2}+2 x+5\right)} \\
& =\frac{3}{1+(1+x)^{2}}+\frac{1}{x^{2}+2 x+2}-\frac{1}{x^{2}+2 x+5} \\
& =\frac{2}{1+(1+x)^{2}}+\frac{1}{1+(1+x)^{2}}=\mathscr{L}\left(\sin 2 x e^{-x}\right)+\mathcal{L}\left(\sin x e^{-x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \mathcal{L} y(x)(1-\mathcal{L} v(x))=\mathscr{L} x^{3} \\
& \Rightarrow \quad \mathscr{L} y(x)=\frac{\mathscr{L} x^{3}}{1-\mathcal{Z} v(+1}
\end{aligned}
$$

with

$$
\left.\begin{array}{rl}
\mathscr{L} x^{3}=\int_{0}^{\infty} t^{3} e^{-t x} d t=\frac{6}{x^{4}} \\
\mathscr{L} v(x)=\int_{0}^{\infty} H(t) \sin t e^{-t x} d t=\frac{1}{1+x^{2}}
\end{array}\right\} \Rightarrow \mathscr{L}+(x)=\frac{\frac{6}{x^{4}}}{1-\frac{1}{1-x^{2}}}
$$

$$
\Rightarrow \quad \mathcal{L} x_{A 1}=\frac{6\left(1+x^{2}\right)}{x^{6}}=\frac{6}{x^{6}}+\frac{6}{x^{4}}=\mathcal{L} x^{3}+\frac{1}{20} \mathcal{L}+5
$$

$$
\Rightarrow \quad y^{y}(x)=x^{3}+\frac{1}{20} x^{5}
$$

