Mathematical Methods II

Exercises 2

1) Consider the map $w=f(z)=z^{2}$. Determine to which kind of geometrical configuration straight horizontal and vertical lines in the w-plane correspond to in the z-plane? Sketch the corresponding figures.
2) Find the linear fractional transformation which maps the three points z_{1}, z_{2}, z_{3} uniquely onto w_{1}, w_{2}, w_{3}.

$$
\begin{array}{rll}
\text { i) } & z_{1}=i, z_{2}=0, z_{3}=2 i & \rightarrow w_{1}=-1, w_{2}=1, w_{3}=2 \\
i i) & z_{1}=1, z_{2}=i, z_{3}=1+i & \rightarrow \\
w_{1}=1, w_{2}=-1, w_{3} \rightarrow \infty \\
\text { iii) } z_{1}=2, z_{2} \rightarrow \infty, z_{3}=i-1 & \rightarrow w_{1}=2, w_{2}=3-i, w_{3} \rightarrow \infty
\end{array}
$$

3) Given are the linear fractional transformations

$$
T_{1}(z)=\frac{z-1}{z+2}, \quad T_{2}(z)=\frac{z}{z+2} \quad \text { and } \quad f_{I}(z)=\frac{1}{z} .
$$

i) Compute the expressions

$$
T_{1} \circ T_{2}(z), \quad T_{2} \circ T_{1}(z), \quad T_{2} \circ f_{I} \circ T_{2}(z), \quad T_{1} \circ f_{I} \circ T_{1} \circ f_{I}(z) \quad \text { and } \quad T_{2}^{-1} \circ T_{1}(z)
$$

ii) Decompose your answers for $T_{1} \circ T_{2}(z)$ and $T_{2} \circ T_{1}(z)$ into a succession of translations f_{T}^{Δ}, rotations f_{R}^{λ} and the inversion map f_{I}.
4) i) Express

$$
f_{I} \circ f_{R}^{\lambda} \circ f_{I} \circ f_{R}^{\mu} \quad \text { for } \lambda, \mu \in \mathbb{C}
$$

as a single rotation.
ii) Write

$$
f_{R}^{\lambda} \circ f_{T}^{\delta} \circ f_{I} \circ f_{T}^{\Delta} \quad \text { for } \lambda, \delta, \Delta \in \mathbb{C}
$$

as a linear fractional transformations.
5) Compute the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ with $z_{1}=1+\sqrt{3}, z_{2}=1-3 i, z_{3}=-1-i$, $z_{4}=1+i$ and decide whether the four points are situated on a circle, a line or neither of the two.

Solutions to exercises 2

1) Horizontal and vertical lines are mapped into hyperbolas:

$$
z^{2}=(x+i y)^{2}=u+i v=x^{2}-y^{2}+i 2 x y
$$

This means vertical lines $u=x^{2}-y^{2}=\kappa_{1}$ are rectangular hyperbolas and horizontal lines $v=2 x y=\kappa_{2}$ correspond to orthogonal hyperbolas.

Figure 1: Hyperbolas for $\kappa_{1}=0.5$ and $\kappa_{2}=1$.
2) Solving the general formula

$$
\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}
$$

for $w=f(z)$, we find

$$
f_{1}(z)=\frac{6 i-7 z}{6 i-5 z}, \quad f_{2}(z)=\frac{i z}{1+i-z}, \quad f_{3}(z)=\frac{(3-i) z}{1-i+z} .
$$

3) i) We find

$$
\begin{array}{lll}
T_{1} \circ T_{2}(z)=-\frac{2}{4+3 z}, & T_{2} \circ T_{1}(z)=\frac{z-1}{3+3 z}, & T_{2} \circ f_{I} \circ T_{2}(z)=\frac{2+z}{2+3 z}, \\
T_{1} \circ f_{I} \circ T_{1} \circ f_{I}(z)=z, & T_{2}^{-1} \circ T_{1}(z)=\frac{2}{3}(z-1), & \text { where } T_{2}^{-1}(z)=\frac{2 z}{1-z}
\end{array}
$$

ii)

$$
\begin{aligned}
& T_{1} \circ T_{2}(z)=f_{R}^{-2} \circ f_{I} \circ f_{T}^{4} \circ f_{R}^{3}(z) \\
& T_{2} \circ T_{1}(z)=f_{T}^{1 / 3} \circ f_{R}^{-2} \circ f_{I} \circ f_{T}^{3} \circ f_{R}^{3}(z)
\end{aligned}
$$

4) i)

$$
f_{I} \circ f_{R}^{\lambda} \circ f_{I} \circ f_{R}^{\mu}=f_{R}^{\mu / \lambda}
$$

ii)

$$
f_{R}^{\lambda} \circ f_{T}^{\delta} \circ f_{I} \circ f_{T}^{\Delta}=\frac{\delta \lambda z+(\delta \lambda \Delta+\lambda)}{z+\Delta}
$$

5) We find $T_{c}\left(x_{4}\right)=-1 / \sqrt{3} \in \mathbb{R}$, which means the points must be on a line or a circle. Suppose the points are on a line $y=\alpha x+c$, then we compute for instance

$$
\left.\begin{array}{cc}
z_{3}: & -1=-\alpha+c \\
z_{4}: & 1=\alpha+c
\end{array}\right\} \Rightarrow c=0, \Rightarrow z_{3}: 1=\alpha, \text { but } z_{1}: 0 \neq(1+\sqrt{3}) .
$$

This means the points have to lie on a circle.

