Mathematical Methods II
 Exercises 3

1) Find a conformal map which maps the wedge region

$$
\mathcal{W}=\left\{r, \theta: r \in \mathbb{R}^{+},-\frac{\pi}{6} \leq \theta<\frac{\pi}{6}\right\}
$$

in the z-plane onto the unit disc $|w| \leq 1$. Draw a figure and indicate the corresponding regions including some characteristic points.
2) Find a conformal map which maps the first quadrant in the z-plane

$$
\mathcal{W}_{2}=\left\{r, \theta: r \in \mathbb{R}^{+}, 0 \leq \theta<\frac{\pi}{2}\right\}
$$

onto the unit disc $|w| \leq 1$. Draw a figure and indicate the corresponding regions including some characteristic points.
3) Find two different types of domains for the following function

$$
f(z)=\ln \left(\frac{z+1}{z-1}\right)
$$

such that it becomes single valued and analytic. In one case the domain should have one branch cut and in the other two. In each case compute the values

$$
f(0 \pm i \varepsilon), \quad f(2 \pm i \varepsilon) \quad \text { and } \quad f(-2 \pm i \varepsilon) \quad \text { for } \quad \varepsilon \ll 1
$$

and verify that the prescription

$$
f(z)=\frac{1}{2}[f(z+i \varepsilon)+f(z-i \varepsilon)]
$$

eliminates the ambiguities and gives the same answer in all cases.

Solutions to exercises 3

1) First we map the wedge onto the entire right half plane $\tilde{u} \geq 0$. The boundaries of the two regions must be mapped onto each other as the region inside stretches to infinity. This is achived by the map

$$
\tilde{w}=\tilde{f}(z)=r^{3} e^{3 i \theta}=z^{3}, \quad \Rightarrow \arg z= \pm \frac{\pi}{6} \mapsto \quad \arg \tilde{w}= \pm \frac{\pi}{2} .
$$

In the next step we map the right half plane $\tilde{u} \geq 0$ onto the unit disc $|w| \leq 1$. Assuming this to be a linear fractional transformation, this map is determined by three points in the \tilde{u}-plane and three points in w-plane and a subsequent use of

$$
\begin{equation*}
\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(\tilde{w}-\tilde{w}_{1}\right)\left(\tilde{w}_{2}-\tilde{w}_{3}\right)}{\left(\tilde{w}-\tilde{w}_{3}\right)\left(\tilde{w}_{2}-\tilde{w}_{1}\right)} \tag{1}
\end{equation*}
$$

We choose three points on the imaginary axis $\tilde{w}_{1}=0, \tilde{w}_{2}=i, \tilde{w}_{3} \rightarrow i \infty$ and map them to $w_{1}=-1, w_{2}=i, w_{3}=1$. Therfore (1) yields

$$
\frac{(w+1)(i-1)}{(w-1)(i+1)}=\frac{\tilde{w}}{i} .
$$

Solving this for w gives

$$
w=f(\tilde{w})=\frac{\tilde{w}-1}{\tilde{w}+1}
$$

Thus the analytic function which maps the wedge \mathcal{W} onto the unit circle is

$$
w=f \circ \tilde{f}(z)=\frac{z^{3}-1}{z^{3}+1}
$$

Include some characteristic points into the figure.

2) We start by rotating the first quadrant by $-i \pi / 4$

$$
\hat{w}=\hat{f}(z)=z e^{-i \pi / 4}
$$

Now the problem is similar to the one in 1) only that the wedge is now

$$
\mathcal{W}^{\prime}=\left\{r, \theta: r \in \mathbb{R}^{+},-\frac{\pi}{4} \leq \theta<\frac{\pi}{4}\right\} .
$$

We proceed similarly as before and map this wedge to the right half plane

$$
\tilde{w}=\tilde{f}(\hat{w})=\hat{w}^{2} .
$$

Finally we map the right half plane to the unit circle

$$
w=f(\tilde{w})=\frac{\tilde{w}-1}{\tilde{w}+1}
$$

Thus the map which maps the first quadrant onto the unit circle is

$$
w=f \circ \tilde{f} \circ \hat{f}(z)=f \circ \tilde{f}\left(z e^{-i \pi / 4}\right)=f\left(z^{2} e^{-i \pi / 2}\right)=f\left(-i z^{2}\right)=\frac{z^{2}-i}{z^{2}+i}
$$

Include some characteristic points into the figure.
3) The function $f(z)$ has two branch points at $z=1$ and at $z=-1$. For the two arguments of the logarithm we can write

$$
z+1=|z+1| e^{i \theta_{1}} \quad \text { and } \quad z-1=|z-1| e^{i \theta_{2}}
$$

such that

$$
f(z)=\ln \left(\frac{z+1}{z-1}\right)=\ln (z+1)-\ln (z-1)=\ln \left|\frac{z+1}{z-1}\right|+i\left(\theta_{1}-\theta_{2}\right)
$$

We have now various choices for the restriction on θ_{1} and θ_{2} :
i) Assume the principal values for the logarithms:

$$
-\pi<\theta_{1} \leq \pi \quad \text { and } \quad-\pi<\theta_{2} \leq \pi
$$

Let us now consider the different regions on the real axis:

- $z \in(1, \infty)$: On this part of the axis there is no problem as both θ_{1} and θ_{2} are both continuous when crossing the axis.
- $z \in(-1,1)$: On this line segment θ_{1} is continuous, but θ_{2} jumps and therefore we require a cut.
- $z \in(-\infty, 1)$: When crossing this part of the axis both θ_{1} and θ_{2} are discontinuous. However, the relevant quantity, which is the difference $\theta_{1}-\theta_{2}$ is continuous. Above the axis we have $\theta_{1}=\theta_{2}=\pi$, such that $\theta_{1}-\theta_{2}=0$ and below the axis we have $\theta_{1}=\theta_{2}=-\pi$ and therefore also $\theta_{1}-\theta_{2}=0$.

This means we only need a branch cut at the line segment $(-1,1)$ in order to make this function single valued and analytic.

$$
f(-2 \pm i \varepsilon) \approx \ln 1 / 3, \quad f(2 \pm i \varepsilon) \approx \ln 3 / 2 \quad f(\pm i \varepsilon) \approx \mp i \pi
$$

ii) Next we assume:

$$
0<\theta_{1} \leq 2 \pi \quad \text { and } \quad 0<\theta_{2} \leq 2 \pi
$$

Let us consider again the different regions on the real axis:

- $z \in(1, \infty)$: When crossing this part of the axis both θ_{1} and θ_{2} are discontinuous, but with the same argument as before the difference $\theta_{1}-\theta_{2}$ is continuous. Above the axis we have $\theta_{1}=\theta_{2}=0$, such that $\theta_{1}-\theta_{2}=0$ and below the axis we have $\theta_{1}=\theta_{2}=2 \pi$ and therefore also $\theta_{1}-\theta_{2}=0$.
- $z \in(-1,1)$: On this line segment θ_{2} is continuous, but θ_{1} jumps and therefore we require a cut.
- $z \in(-\infty, 1)$: On this part of the axis there is no problem as both θ_{1} and θ_{2} are continuous when crossing the axis.
This means once again we only need a branch cut at the line segment $(-1,1)$ in order to make this function single valued and analytic.

$$
f(-2 \pm i \varepsilon) \approx \ln 1 / 3, \quad f(2 \pm i \varepsilon) \approx \ln 3 / 2 \quad f(\pm i \varepsilon) \approx \mp i \pi
$$

iii) Next we assume:

$$
-\pi<\theta_{1} \leq \pi \quad \text { and } \quad 0<\theta_{2} \leq 2 \pi
$$

Let us consider again the different regions on the real axis:

- $z \in(1, \infty)$: On this part of the axis θ_{1} is continuous, but θ_{2} jumps and therefore we require a cut.
- $z \in(-1,1)$: On this line segment there is no problem as both θ_{1} and θ_{2} are continuous when crossing the axis.
- $z \in(-\infty, 1)$: On this part of the axis θ_{2} is continuous, but θ_{1} jumps and therefore we require another cut.
This means in this case we need two branch cut one at $(-\infty, 1)$ and the other at $(1, \infty)$ in order to make this function single valued and analytic.

$$
f(-2 \pm i \varepsilon) \approx \ln 1 / 3 \pm i \pi, \quad f(2 \pm i \varepsilon) \approx \ln 3 / 2 \pm i \pi \quad f(\pm i \varepsilon) \approx 0
$$

When averaging across the cut we obtain in all three cases

$$
f(-2 \pm i \varepsilon) \approx \ln 1 / 3, \quad f(2 \pm i \varepsilon) \approx \ln 3 / 2 \quad f(\pm i \varepsilon) \approx 0
$$

