Mathematical Methods II

Exercises 4

1) (Recap from calculus 2) Show that the Laplace equation in Cartesian coordinates

$$\Delta \phi(x,y) = 0$$

transforms into

$$\Delta\phi(r,\vartheta) = \frac{\partial^2\phi}{\partial r^2} + \frac{1}{r^2}\frac{\partial^2\phi}{\partial \vartheta^2} + \frac{1}{r}\frac{\partial\phi}{\partial r} = 0$$

when using polar coordinates $x = r \cos \theta$, $y = r \sin \theta$. This was used in section 2.3 of the lecture.

- 2) Find the potential function for the entire xy-plane when two infinitely long cylinders |z| = 1 and $|z x_0| = x_0$ are non-coaxial. Place the cylinders at the constant potentials $\phi_1 = 0$ at |z| = 1 and $\phi_0 = 220V$ at $|z x_0| = x_0$. Take the value of the center of the smaller cylinder and its radius to be i) $x_0 = 2/5$ and ii) $x_0 = 4/17$.
- **3)** Find the steady state temperature function in the semi-infinite strip as depicted in the figure.

This means solve the Dirichlet problem

$$\Delta T = 0$$
, $T(\pi/2, y) = 0$, $T(0, y) = 1$, $T(x, 0) = 0$, for $0 < x < \frac{\pi}{2}, y > 0$.

Solutions to exercises 4

1) Use the chain rule to compute

$$\frac{\partial \phi}{\partial r} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial \phi}{\partial x} \cos \vartheta + \frac{\partial \phi}{\partial y} \sin \vartheta \tag{1}$$

$$\frac{\partial \phi}{\partial \theta} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial \phi}{\partial x} r \sin \theta + \frac{\partial \phi}{\partial y} r \cos \theta \tag{2}$$

Solving for $\partial \phi / \partial x$ and $\partial \phi / \partial y$

$$(1)r\cos\vartheta - (2)\sin\vartheta : \frac{\partial\phi}{\partial r}r\cos\vartheta - \frac{\partial\phi}{\partial\vartheta}\sin\vartheta = \frac{\partial\phi}{\partial x}r(\cos^2\vartheta + \sin^2\vartheta)$$

$$(1)r\cos\vartheta - (2)\sin\vartheta : \frac{\partial\phi}{\partial r}r\sin\vartheta + \frac{\partial\phi}{\partial\vartheta}\cos\vartheta = \frac{\partial\phi}{\partial u}r(\cos^2\vartheta + \sin^2\vartheta)$$

therefore

$$\begin{array}{lll} \frac{\partial \phi}{\partial x} & = & \cos \vartheta \frac{\partial \phi}{\partial r} - \frac{1}{r} \sin \vartheta \frac{\partial \phi}{\partial \vartheta} \\ \frac{\partial \phi}{\partial y} & = & \sin \vartheta \frac{\partial \phi}{\partial r} + \frac{1}{r} \cos \vartheta \frac{\partial \phi}{\partial \vartheta}. \end{array}$$

Next

$$\begin{array}{lll} \frac{\partial^2 \phi}{\partial x^2} & = & \cos \vartheta \frac{\partial}{\partial r} \left(\cos \vartheta \frac{\partial \phi}{\partial r} - \frac{1}{r} \sin \vartheta \frac{\partial \phi}{\partial \vartheta} \right) - \frac{1}{r} \sin \vartheta \frac{\partial}{\partial \vartheta} \left(\cos \vartheta \frac{\partial \phi}{\partial r} - \frac{1}{r} \sin \vartheta \frac{\partial \phi}{\partial \vartheta} \right) \\ \frac{\partial^2 \phi}{\partial y^2} & = & \sin \vartheta \frac{\partial}{\partial r} \left(\sin \vartheta \frac{\partial \phi}{\partial r} + \frac{1}{r} \cos \vartheta \frac{\partial \phi}{\partial \vartheta} \right) + \frac{1}{r} \cos \vartheta \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial \phi}{\partial r} + \frac{1}{r} \cos \vartheta \frac{\partial \phi}{\partial \vartheta} \right) \end{array}$$

Adding these equations gives

$$\Delta\phi(r,\vartheta) = \frac{\partial^2\phi}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2\phi}{\partial \vartheta^2} + \frac{1}{r} \frac{\partial\phi}{\partial r} = 0.$$

2)

$$i)$$
 $x_0 = \frac{2}{5}$ $\Rightarrow r_0 = \frac{1}{2}$ $\Rightarrow \phi(r) = -220 \frac{\ln\left|\frac{2z-1}{z-2}\right|}{\ln 2} V$

ii)
$$x_0 = \frac{4}{17}$$
 $\Rightarrow r_0 = \frac{1}{4}$ $\Rightarrow \phi(r) = -220 \frac{\ln\left|\frac{4z-1}{z-2}\right|}{\ln 4} V$

3) The solution is

$$T(x,y) = \frac{2}{\pi} \arctan\left(\frac{\tanh y}{\tan x}\right)$$