Mathematical Methods II

Exercises 4

1) (Recap from calculus 2) Show that the Laplace equation in Cartesian coordinates

Ad(z,y) =0

transforms into o 1% 106
Ap(r,V) = —+—==—+-—=0
o(r,9) or? + r2 12 + r or
when using polar coordinates x = rcos?,y = rsint. This was used in section 2.3 of
the lecture.

2) Find the potential function for the entire xy-plane when two infinitely long cylinders
|z| = 1 and |z — zg| = 2 are non-coaxial. Place the cylinders at the constant potentials
¢1 =0 at |z| =1 and ¢y = 220V at |z — x| = x¢. Take the value of the center of the
smaller cylinder and its radius to be i) o = 2/5 and ii) zo = 4/17.

3) Find the steady state temperature function in the semi-infinite strip as depicted in the
figure.

This means solve the Dirichlet problem

AT =0, T(r/2,y)=0, T(0,y)=1,  T(z,0)=0, f0r0<x<g,y>0.



Solutions to exercises 4

1) Use the chain rule to compute
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Solving for 0¢/0x and 0¢/dy
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Adding these equations gives
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3) The solution is
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