Mathematical Methods II

Exercises 5

1) Compute the Fourier transforms $\mathcal{F} u(x)$ of the following functions
i)

$$
u(x)=\left\{\begin{array}{rcc}
-1 & \text { for } & -1 \leq x \leq 0 \\
1 & \text { for } & 0<x \leq 1 \\
0 & \text { for } & |x|>1
\end{array}\right.
$$

ii)

$$
u(x)=\left\{\begin{array}{lll}
x & \text { for } & |x| \leq \lambda \\
0 & \text { for } & |x|>\lambda
\end{array}\right.
$$

iii)

$$
u(x)=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

Exploit the fact that $\mathcal{F} u^{\prime}(x)=i x \mathcal{F} u(x)$ and $\mathcal{F}\left(e^{-x^{2}}\right)=\sqrt{\pi} e^{-x^{2} / 4}$.
iv)

$$
u(x)=x^{2} e^{-\lambda x^{2}}
$$

Exploit the scaling property of the Fourier transform $\mathcal{F} u(\lambda x)=i x \mathcal{F} u(x)$ and $\mathcal{F}\left(e^{-x^{2}}\right)=\sqrt{\pi} e^{-x^{2} / 4}$.
2) By using a similar technique as for the heat equation in the lecture, solve the wave equation

$$
\frac{d^{2} \phi(x, t)}{d t^{2}}-\frac{d^{2} \phi(x, t)}{d x^{2}}=0
$$

subject to the initial condition $\phi(x, 0)=0$ and boundary condition $\partial_{t} \phi(x, t)=f(x)$.
3) The function $\psi(x, y)$ satisfies the Laplace equation

$$
\frac{d^{2} \psi(x, y)}{d x^{2}}+\frac{d^{2} \psi(x, y)}{d y^{2}}=0 \text { for }-\infty<x<\infty, y>0
$$

subject to the boundary condition $\psi(x, 0)=f(x), \lim _{y \rightarrow \infty} \psi(x, y)=0$. Solve this Dirichlet problem by using Fourier transforms.
4) The heat equation in two space dimensions is

$$
\Delta T(x, y, t)=\partial_{t} T(x, y, t)
$$

Write this equation in polar coordinates and assume that $T(x, y, t)$ as a function of r, ϑ and t factorises as

$$
T(r, \vartheta, t)=R(r) \Theta(\vartheta) \tau(t)
$$

Find the differential equation satisfied by $R(r), \Theta(\vartheta)$ and $\tau(t)$.

Solutions to exercises 5

1) i)

$$
\mathcal{F} u(x)=\frac{2 i}{x}[\cos (x)-1]
$$

ii)

$$
\mathcal{F} u(x)=\frac{2 i}{x}\left[\lambda \cos (x \lambda)-\frac{\sin (x \lambda)}{x}\right]
$$

iii)

$$
\mathcal{F} u(x)=(i x)^{2} \mathcal{F}\left(e^{-x^{2}}\right)=-x^{2} \sqrt{\pi} e^{-x^{2} / 4}
$$

iv)

$$
\mathcal{F} u(x)=-\frac{d}{d \lambda} \mathcal{F}\left(e^{-\lambda x^{2}}\right)=-\frac{d}{d \lambda}\left(\sqrt{\frac{\pi}{\lambda}} e^{-x^{2} / 4 \lambda}\right)=\frac{e^{-x^{2} / 4 \lambda}}{4} \sqrt{\frac{\pi}{\lambda^{5}}}\left(2 \lambda-x^{2}\right)
$$

2)

$$
\phi(x, t)=\frac{1}{2} \int_{-t}^{t} f(x-s) d s
$$

3)

$$
\psi(x, y)=\int_{-\infty}^{\infty} g(s) e^{-s y} e^{-i s x} d s \text { where } \mathcal{F} g(x)=f(x)
$$

4)

$$
\begin{aligned}
\tau^{\prime}+\alpha^{2} \tau & =0 \\
\Theta^{\prime \prime}+\beta^{2} \Theta & =0 \\
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\alpha^{2} r^{2}-\beta^{2}\right) R & =0
\end{aligned}
$$

2)

$$
\partial_{t}^{2} \phi(x, t)-\partial_{x}^{2} \phi(x, t)=0
$$

define $\phi(x, t)=F_{x} u(x, t)=\int_{-\infty}^{+\infty} u(s, t) e^{-i s+} d s$

$$
\begin{aligned}
& \Rightarrow \partial_{x}^{2} \phi(t, t)=\int_{-\infty}^{+\infty} u(t, t)\left(-s^{2}\right) e^{-i s+} d s=\int_{-\infty}^{+\infty} \partial_{t}^{2} u(x, t) e^{-i s x} d s \\
& \Rightarrow \quad \partial_{\epsilon}^{2} u(s, t)+s^{2} u(s, t)=0 \Rightarrow u(s, t)=c_{1}(s) e^{i s t}+c_{2}(s) e^{-i s t} \\
& \Rightarrow \quad \phi(x, t)=\int_{-\infty}^{+\infty}\left[c_{1}(s) e^{-i s(x-t)}+c_{2}(s) e^{-i s(x+t)}\right] d s
\end{aligned}
$$

initial

$$
\phi(x, 0)=0=\int_{-\infty}^{+\infty}\left(c_{1}(s)+c_{2}(s)\right) e^{-i 5 x} d s \Rightarrow c_{1}(s)=-c_{2}(s)=c(s)
$$

define $c^{2}(x)=\int_{-\infty}^{+\infty} c(s) e^{-i s x} d s$

$$
\Rightarrow \quad \phi(x, t)=c^{2}(x-t)-c^{n}(x+t)=-\int_{-t}^{t} \partial_{s} \vec{c}(x-s) d s
$$

$$
\left.\underset{t}{\text { banding }} \Rightarrow \partial_{t} \phi(t, t)\right|_{t=0}=f(t)=\partial_{t} \vec{c}(x-t)-\left.\partial_{t} \vec{c}(x+t)\right|_{t=0}
$$

$$
=-\partial_{s} \vec{c}(s)-\partial_{s} \hat{c}(s)=-2 \partial_{s} \hat{c}(s)
$$

$$
\Rightarrow \quad \partial_{s} c^{2}(s)=-\frac{1}{2} f(s) \Rightarrow \phi(x, t)=\frac{1}{2} \int_{-t}^{t} d s f(x-s)
$$

3)

$$
\partial_{x}^{2} \psi(x, y)+\partial_{x}^{2} \psi(x, y)=0
$$

define $\psi(x, y)=F_{+} u(x, y)=\int_{-\infty}^{+\infty} u(s, y) e^{-i s x} d s$

$$
\begin{aligned}
& \Rightarrow \partial_{x}^{2} \psi(t, y)=\int u(s, y)\left(-s^{2}\right) e^{-i s x} d s=-\int \partial_{y}^{2} u(s, y) e^{-i s y} d s \\
& \Rightarrow \partial_{y}^{2} u\left(s, y-s^{2} u(s, y)=0 \Rightarrow u(s, y)=c_{1}(s) e^{s y}+c_{2}(s) e^{-s)}\right.
\end{aligned}
$$

bombay $\Rightarrow \lim _{y \rightarrow \infty} \psi\left(x, y=0 \Rightarrow \lim _{y \rightarrow \infty} u(x, y)=0 \Rightarrow c_{1}(s)=0\right.$

$$
\begin{aligned}
& \Rightarrow \psi(x, y)=\int c_{2}(s) e^{-s y} e^{-i s x} d s \\
\text { initial } & \Rightarrow \psi(x, 0)=\int c_{2}(s) e^{-i s x} d s=f(x)=F g(x) \\
& \Rightarrow c_{2}(s)=g(s)
\end{aligned}
$$

$$
\Rightarrow \quad \psi\left(x_{1} y\right)=\int g(5) e^{-5 y} e^{-i s x} d s
$$

