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Brief outline 

• Non-Hermitian Hamiltonians in the context of interacting 
boson models

• General framework for consistent non-Hermitian QM
• Framework of PT-symmetric QM – links to above
• Role and construction of the metric  ̶ Moyal products
• The non-Hermitian oscillator: an example
• Possible link to Berry connection and curvature; ground 

state phase information in the metric?
• Conclusions; avenues to explore



Non-Hermitian Hamiltonians in the context of 
interacting boson models

On microscopic level arise through application of the non-unitary 
Dyson-type mapping to bifermion operators (schematically)
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A (Hermitian) 1-plus-2-body fermion Hamiltonian is generally mapped 
onto a non-Hermitian 1-plus-2-body boson Hamiltonian
In the boson Hamiltonian this typically leads to terms of the type
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Consider the following two possible ((Holstein-Primakoff and Dyson) ) 
boson realisations of SU(2) fermion pair operators

H J J+ −=The pairing Hamiltonian maps onto an

Hermitian boson Hamiltonian in both cases, but not so for eg

H J J J J+ + − −= +



Since the mapping is faithful (all algebraic properties are 
preserved), it is here guaranteed that the spectrum of the 
non-Hermitian Hamiltonian will be real (and identical to the 
original spectrum)

Caveat of physical subspace

Question: Can a criterion be given for a general        
(eg phenomenological) non-Hermitian
Hamiltonian to have a real spectrum?

If so, can a consistent quantum mechanical 
framework be constructed on this basis?



Answer is positive
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Require existence of a linear operator (metric)  on Hilbert space 
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FG FG ScholtzScholtz, HB Geyer & FJW , HB Geyer & FJW HahneHahne
Ann Phys (NY) 213 (1992) 74Ann Phys (NY) 213 (1992) 74--101101



A note on terminology:

“Quasi-Hermitian” was introduced in our 1992 Ann Phys paper, 
following existing terminology in linear algebra (eg “Methods of 
Matrix Algebra” by MC Pease III (NY, Academic, 1965)), now 
refering to a complete and consistent framework for non-
Hermitian QM.

In papers since 2002 by Mostafazadeh (and other authors) “pseudo-
Hermitian” has been used for the same concept,  although 
without the requirement of positivity for the metric, since the 
primary focus (at first) was on conditions for the reality of the 
spectrum of a non-Hermitian Hamiltonian, for which  the 
existence of      with                      is sufficient.†  H HΘ = ΘΘ



( ) ( )

† 
 for a  of operators  which is  (and includes ),
 uniqueness can be proved
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In some sense the metric fixes the physical content of the 
theory.  What does this mean and how can it be used…?



Link to Gauge Theories

• In Dirac quantisation of a gauge theory, the physical 
Hilbert space is defined as the subspace annihilated by 
the (first class) constraints.

• What is the inner product on the physical Hilbert space?
• Ashtekar and Rendall considered this issue in parallel 

with our work (1992).
• Conclusion: if the gauge invariant observables (which 

commute weakly with the constraints) form an irreducible 
set, the inner product on the physical Hilbert space is 
uniquely determined.

• Again, the observables dictate the choice of inner product 
(Hilbert space).



PT-symmetric quantum mechanics

Developed from studies of the class of Hamiltonians

for which numerical studies (based on, and supported by, in-
depth analysis) confirmed a real spectrum only for 
(subsequently strictly proven by Dorey et al via Bethe 
ansatz).

Carl Bender et al
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PT Symmetry – “trademark cartoon” (from Bender et al )



Emphasised by Bender et al that the reality of the spectrum 
may be linked to PT-symmetry (ie invariance of H under  
simultaneous parity and time reversal)

The parity operator  is linearP   and  p p x x→ − → −

The time-reversal operator  is anti - linearT

,    and  p p x x i i→ − → → −

For unbroken  PTPT--symmetry (simultaneous symmetry (simultaneous eigenstateeigenstate of of H H 
and and PT PT ) reality follows readily. However, [) reality follows readily. However, [HH, , PT PT ]=0 does ]=0 does 
notnot generally imply simultaneous generally imply simultaneous eigenstateseigenstates, since , since PT PT is is 
antianti--linear. Assumption is nonlinear. Assumption is non--trivial, as it is not simple to trivial, as it is not simple to 
determine determine a priori  a priori  whether whether PTPT--symmetry is unbroken.symmetry is unbroken.



Link to previous considerations (metric) by introducing the 
so-called C-operator 
Properties similar to standard charge operator

( , ) ( ) ( ) ,  where the  ( ) are eigenstates of  n n n
n

x y x y x Hφ φ φ= ∑C

Introduce a modified inner product

C
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f g dx f x g x≡ ⎡ ⎤⎣ ⎦∫ CPT

with completeness relation
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dynamically determined by H
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1=2C

Position space representation



• Real spectra for (some) non-Hermitian Hamiltonians

• Link with PT-symmetry

• Identification of a positive definite inner product

consistent QM framework⇒

Three stages in the development 
of PT-symmetric QM



Role and construction of the metric  ̶ Moyal products

Constructing the metric Θ, it is required to solve the 
operator equation

† ,  where ( , )H H x pΘ = Θ Θ = Θ

Exploit the Moyal construction which re-writes the operator 
equation as a standard partial differential equation, based 
on the Moyal or star product (replacing the ordinary product)

( ) ( ) ( ) ( ) x piA x, p B x, p A x, p e B x, p∂ ∂∗ ≡
s r
h

where the non-commutative nature of x and p is captured 
by directional derivatives acting on ordinary functions

FG Scholtz & HBG, PLB 634 (2006) 84        
J Phys A 39 (2006) 10189 
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Θ = Θ Θ∗ = ∗Θ⎫ ⎫ ∂Θ ∂Θ
⇒ ⇒ = = ⇒Θ=⎬ ⎬Θ = Θ Θ∗ = ∗Θ ∂ ∂⎭ ⎭

Check: suppose we specify      and  to be 
observables (other observables such as H are to be 
functions of and    ), then the equations for the metric 
are  

x̂ p̂

ˆ

as in standard QM.

x p̂



Moyal products – brief background

For Hilbert space with finite dimension N, construct 
unitary irrep of Heisenberg-Weyl algebra

† 1 † 1;   ,igh e hg g g , h hφ − −= = = 2
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Substitute

turns A into a function

uniquely detemined by the operator A.

Isomorphism with operator product AB now established by Moyal or star product
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where directional derivatives in the exponent capture the non-commutative 
nature of the operators

Given the function 

( )A ,α β establish the coefficients n,ma

through Fourier transformation, and finally 
the operator A



Can establish a relation between the two functions 
which represent a given operator and its Hermitian
conjugate.

This can then be used to establish the condition for 
Hermiticity on the level of functions

( ) ( ) iA , e A , .α βφα β α β− ∂ ∂∗ =

All of these results for a finite dimensional Hilbert 
space can be generalized to the case of QM.

The main result is the form of the Moyal product 
which now reads

( ) ( ) ( ) ( )  x piA x, p B x, p A x, p e B x, p∂ ∂∗ ≡ h
s r



A shifted oscillator – the ix potential

The shifted harmonic oscillator with 
21

2( )  can of course be solved exactly,
also for the -symmetric case  
V x x x

i
γ

γ
= +

=PT

It is also known that the C-operator and the metric Θ can be related by

1−ΘC = P
in this case the C-operator had been solved (Bender) as 

2 pe−C = P
From the Moyal product construction the metric Θ is solved from the PDE

(0,1) (0,2) (1,0) (2,0)1 1
2 22 ( , ) + ( 1)     0 ,ix x p ix i pΘ − Θ − Θ − Θ + Θ =

( , )with   
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+∂ Θ
Θ =
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1
22 ( 1) ' '' 0,ix ixΘ+ − Θ − Θ =

Assuming the PDE reduces to the ODE( ),  pΘ = Θ

2with solution as before pe−Θ =

From here all the standard results for the shifted oscillator can be 
obtained 



Hermiticity and positive definitenesss of the metric Θ

The PDE for the metric Θ is linear, of the form LΘ(x,p) = 0. From

x p x pi i
pe x e x i− ∂ ∂ ∂ ∂ = − ∂h h

h and x p x pi i
xe p e p i− ∂ ∂ ∂ ∂ = − ∂h h

h

it follows that

x p x pi i *e Le L− ∂ ∂ ∂ ∂ = −h h

( )=0x pi*L e x, p .− ∂ ∂ Θh

implying

But ( )=0* *L x, p .Θ

Thus, provided the boundary conditions also satisfy the general 
hermiticity condition

( ) ( )x piA x, p e A x, p ,− ∂ ∂∗ = h
then ( ) ( )x pix, p e x, p− ∂ ∂∗Θ = Θh

ie the metric is guaranteed to be    
Hermitian, since L is linear 
(and has a unique solution).



2  pe−Θ=

For the shifted oscillator e.g. this follows trivially; for the real metric

which is a function of p only,

( ) ( ) ( ),x pi *e x, p p p− ∂ ∂ Θ = Θ = Θh i.e. Hermitian.

To verify positive definiteness, one generally verifies that the logarithm of  
the metric is Hermitian. First requires that the function corresponding to 
the logarithm has to be found, ie find η(x,p) such that

1 1
2! 3!1  .....η η η η η ηΘ= + + ∗ + ∗ ∗ +

Here the Moyal product trivially reduces to an ordinary product, the 
logarithm of Θ is simply -2p, and again obviously Hermitian.



Example: non-Hermitian oscillator 

2† 2 †1 
2

H a a a aω α β⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

α β≠

† 1 †Can solve this by rescaling    and  a a a aλ λ−→ →

� ( )2† 2 †1
2

H a a a aω αβ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

2

Diagonalise with standard Bogoliubov transformation;

Yields SHO, effective frequency 4ω αβΩ = −

†If    hermitizes  ,  then   is quasi-Hermitian wrt S H H S SΘ =
ˆ

4
†ˆHere  (with  ) 

n

S n a aα
β

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

� � †1  H SHS H−⇒ = =

Spectrum ( 1/ 2)nE n= + Ωh



Choosing different observables to complete the irreducible 
set together with the Hamiltonian yields different metrics

ˆ / 2

ˆ ˆnumber operator  ( )
n

n n α
β

⎛ ⎞
⇒ Θ = ⎜ ⎟

⎝ ⎠

2position ( ) exp
( )

x x xα β
ω α β

⎛ ⎞−
⇒ Θ = ⎜ ⎟− −⎝ ⎠

2momentum ( ) exp
( )

p p pα β
ω α β

⎛ ⎞−
⇒ Θ = −⎜ ⎟+ +⎝ ⎠

These can be obtained by solving simple 
difference or differential equations
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ω
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( ) ( )2 2 † 2 2 H x, p ap bx icpx; H x, p ap bx icpx c= + + + − +

Using the Moyal construction to obtain Θ in general, 
first re-write ( ) ( )†ˆ ˆH a ,a H x, p=

This yields the associated functions (p ordered 
to left of x at operator level)

( ) ( ) ( ) ( )†H x, p x, p x, p H x, p∗Θ = Θ ∗From one

finds the PDE
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+∂ Θ
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Choice of boundary conditions
↔ non-uniqueness of metric

General solution is

with s a free parameter, and

(essential singularity at ;0=h metric not a classical object)



Specifying p as an observable (in addition to H) requires 

( ) ( )p x, p x, p p∗Θ = Θ ∗ which gives ( )(1 0) 0, x, pΘ =

i.e. ( ) ( )x, p pΘ = Θ

This requires 0; 0; 
2
cs t r
b

α β
ω α β

−
= = = − = −

+ +

2( ) exp
( )

p pα β
ω α β

⎛ ⎞−
Θ = −⎜ ⎟+ +⎝ ⎠

with as before



One can now continue to calculate matrix elements of  
various physical quantities, recalling that S = √Θ hermitizes
H  and that the inverse transformation can be used to 
obtain operators X  and P which could be viewed as 
equivalent to  x  and p , viz

( ) ( ), ,ϕ ψ ϕ ψ
Θ
≡ Θ

1

1

 
 

X S x S
P S p S

−

−

=

=

and using the modified inner productand using the modified inner product

2S = Θ



Also gain insight into the problem by starting 
directly from an ansatz for the similarity transformation
that hermitizes H :

† 2 * †2

expS A
A a a a aε η η

=

= + +

*
1 †

*
† 1 †

2 2

1 † 2 †2

(cosh sinh ) 2 sinh

(cosh sinh ) 2 sinh

4 | |
1( , ) ( , ) ( , )
2S

SaS a a

Sa S a a

h SHS U a a V a W a

ε ηθ θ θ
θ θ
ε ηθ θ θ
θ θ

θ ε η

ε η ε η ε η

−

−

−

= − −

= + +

= −

⎛ ⎞= = + + +⎜ ⎟
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tanh  with 
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U V W
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θ α β ε ωη
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−
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2ˆ ˆ ˆ(cosh  sinh  

2ˆ ˆ ˆ(cosh  sinh  

iX S xS x p

P S pS p i x

ε ηθ θ
ω θ
ε ηθ ω θ
θ

−

−

−
= = +

+
= = −

2z ε
η=Define2

2

1 ( ) 1arctanh 
2 1

z
zz

α βε
α β ω
− −

=
+ −−

Sh Hermitian requires

Position and momentum observables are accordingly given by

Clearly metric dependent



( )2 2
( )

1 ˆ ˆ( ) ( )
2S zh z p z xμ ν= +

( ),  ( ) functions of 
, ,   and 
z z

z
μ ν
α β ω

For z=0 one has

S(z) is obtained similarly

1 4 ln ( / ) ε α β=

ˆ / 2
2

n

S α
β

⎛ ⎞
Θ = = ⎜ ⎟

⎝ ⎠
and

2 2
( 0)

2 ˆ ˆ( 2 )
2 2S zh p x

ω αβ ω ω αβ
ω=

−
= + +



For z=1 one has similarly ( ) (2( ))ε α β ω α β= − − − −

2 2ˆexpS xα β ω
ω α β

⎛ ⎞−
Θ = = −⎜ ⎟− −⎝ ⎠

and

2
2 2

( 1) ˆ ˆ
2 2( )S zh p xω α β ω
ω ω α β=

− − Ω
= +

− −

All forms of Sh are of course isospectral, viz

2 2 4μν ω αβ= Ω = −



The classical limit of the hermitized Hamiltonian is

2 2
cl / 2 ( )E A zμ= Ω

which is explicitly metric dependent, contrary to a recent 
conjecture from a perturbative calculation (Mostafazadeh)
that it should be metric independent.

A is the classical oscillation amplitude



Berry connection and curvature

1Write ( ) ( ) ( ) ( ) ,  where ( ) is diagonal in chosen basisH q S q D q S q D q−=

[ ]1( ) ( )( ) ( ) ( ), ( ) .i
i i

H q D qS q S q A q H q
q q

−∂ ∂
− =

∂ ∂

1 2Consider ( , ....) ( ),  generally non-HermitianH q q H q≡

S(q) may be singular
Differentiate wrt q’s

with Berry connection

1( )( ) ( ) .i
i

S qA q S q
q

−∂
=

∂

generates change in eigenstates



[ ]( ) , ( ) [ ( ), ( )], ( ) .i
i

H q H q A q H q H q
q

⎡ ⎤∂
=⎢ ⎥∂⎣ ⎦

Consider singularities of  S(q) – recall that metric is linked to 
Hermitization (diagonalization):

Again resort to Moyal construction to solve operator equation for Berry 
connection A

While there is a `gauge freedom’ in A , the Berry phase should be unique 

†If    hermitizes  ,  then   is quasi-Hermitian wrt S H H S SΘ =

Proceed by considering commutator with H



' 1 1( )( )  ( ) ( ) ( ) ( ) ( )i i i
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qA q A q A q S q q S q
q

− −∂Λ
→ = + Λ

∂
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2 1
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3 2
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2
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2
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j
j j j j
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i i
i i i j i i
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j j i j j j

i j

i
i i i i

i

A
S A dq A dq S

q

A AS Adq dq dq A dq S
q q

A A
S A dq dq dq A dq S

q q

AS Adq A dq
q

⎛ ⎞⎛ ⎞∂
= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

= + + + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

= − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂

= − + −⎜ ⎜ ⎟⎜ ∂⎝ ⎠⎝
3 .S⎟⎟

⎠

Change in S to 2nd

order around 
plaquette

Invariance of Berry curvature under `gauge’ transformation: Λ(q) diagonal
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A
S A dq A dq S
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A AS Adq dq dq A dq S
q q

A A
S A dq dq dq A dq S
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AS Adq A dq
q

⎛ ⎞⎛ ⎞∂
= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

= + + + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

= − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂

= − + −⎜ ⎜ ⎟⎜ ∂⎝ ⎠⎝
3 .S⎟⎟

⎠

Expand to 2nd order



( )4 0yielding 1 ,ij i jS F dq dq S= +

, .ji
ij i j

j i

AAF A A
q q

∂∂ ⎡ ⎤= − + ⎣ ⎦∂ ∂

where the Berry curvature has been introduced:

' 1 1( )( )  ( ) ( ) ( ) ( ) ( ) ,i i i
i

qA q A q A q S q q S q
q

− −∂Λ
→ = + Λ

∂

Invariance of F under the transformation 

now readily follows



1 2
1 2

1 2

1
( , ) ;

 1
q iq

H q q
q iq

+⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

Consider a simple 2D matrix model

General solution is

( ) ( )( ) ( )

( ) ( )( ) ( )

1
1 1 22

1 2 1 21 2 1 21 1 2

1 1

1
2 1 22

1 2 1 21 2 1 22 1 2

1 2

2 1 1
  1      1   ( , )

2  
  1      1   ( , )

w y w
q i q q i qq i q q i qA q q

w y

i w i iy iw
q i q q i qq i q q i qA q q

i w y

⎛ ⎞− + −⎜ ⎟+ + ++ + += ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞− + −⎜ ⎟+ + ++ + += ⎜ ⎟
⎜ ⎟
⎝ ⎠

Solving for the Berry connection from the operator equation

[ ]( ) , ( ) [ ( ), ( )], ( ) .i
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Removing (spurious) singularity at the origin leaves

1 2Singularities at 0, 1, ie at the exceptional 
points where  is not diagonalizable
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Analysis for the quadratic boson Hamiltonian
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Can express H as

Now solve

where

is the Moyal bracket
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Ansatz for A :

yields

Singularities at

2 2
1 24 4 0q q ω αβ+ = − =

On these curves the Bogoliubov transformation that diagonalizes H
breaks down; metric Θ does not exist. Link to quantum phase transition?



Singular curves of the 
Berry connection; 
cannot pass between 
regions without 
crossing a singularity 
of S(q)

Circle is expected 
radius of convergence 
for perturbative
expansion around the 
origin.



Conclusions & avenues to explore

• A consistent framework of QM can be built on quasi-Hermitian 
operators; exists since 1992 and includes PT-symmetric quantum 
mechanics; central role of metric 

• Moyal product construction is a viable route to obtain the metric from 
its basic operator definition

• Explore non-uniqueness of metric/different choices of irreducible set 
of observables; choice of observables (and metric) as starting point 
of QM

• Possible link between phase structure/transitions and singularities of 
the metric

• Phenomenology of non-Hermitian boson Hamiltonians
• Explicit construction of metric for such models (old problem of CM 

Vincent & GK Kim)
• Clarify what we understand under a physical application of non-

Hermitian QM
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Experimental PT-symmetric QM



Experimental quasi-Hermitian QM 
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