The metric in quasi-Hermitian quantum mechanics: overview and recent results

Hendrik B Geyer
W Dieter Heiss
Frederik G Scholtz

Institute of Theoretical Physics University of Stellenbosch

Institute of Theoretical Physics
University of Stellenbosch

Stellenbosch University

Central campus with underground library

Twin peaks with snow
(1504 m)

Institute of Theoretical Physics
University of Stellenbosch

Stellenbosch Vineyards

Stellenbosch (founded 1673)

Historic Stellenbosch - Cape Dutch Style

Stellenbosch

Historical Mostertsdrift Homestead

 Stellenbosch Institute for Advanced Study (STIAS)

> National Institute for Theoretical Physics (NITheP) at

Stellenbosch Institute for Advanced Study (STIAS)

View from STIAS/NITheP office

View from postdoc office

View from postdoc office (overlooking vineyard area)

STIAS offices - to be used by NITheP for 6-8 weeks programmes

STIAS seminar area (up to 150 people; can be subdivided)

Brief outline

- Non-Hermitian Hamiltonians in the context of interacting boson models
- General framework for consistent non-Hermitian QM
- Framework of $\mathcal{P} \mathcal{I}$-symmetric QM - links to above
- Role and construction of the metric - Moyal products
- The non-Hermitian oscillator: an example
- Possible link to Berry connection and curvature; ground state phase information in the metric?
- Conclusions; avenues to explore

Institute of Theoretical Physics
University of Stellenbosch

Non-Hermitian Hamiltonians in the context of interacting boson models

On microscopic level arise through application of the non-unitary
Dyson-type mapping to bifermion operators (schematically)

$$
\begin{aligned}
& c^{\dagger} c^{\dagger} \longleftrightarrow f\left(B^{\dagger}, B\right)=B^{\dagger}-B^{\dagger} B^{\dagger} B \\
& c c \longleftrightarrow g\left(B^{\dagger}, B\right)=B \\
& c^{\dagger} c \longleftrightarrow h\left(B^{\dagger}, B\right)=B^{\dagger} B
\end{aligned}
$$

$$
g \neq f^{\dagger}
$$

A (Hermitian) 1-plus-2-body fermion Hamiltonian is generally mapped onto a non-Hermitian 1-plus-2-body boson Hamiltonian
In the boson Hamiltonian this typically leads to terms of the type

$$
\alpha B_{i}^{\dagger} B_{j}^{\dagger} B_{k} B_{i}+\beta B_{i}^{\dagger} B_{k}^{\dagger} B_{j} B_{i} \quad \alpha \neq \beta
$$

Consider the following two possible (Holstein-Primakoff and Dyson) boson realisations of $\operatorname{SU}(2)$ fermion pair operators

$$
\begin{aligned}
& J_{+}=\sum_{m=1}^{\Omega} a_{m}^{\dagger} a_{-m}^{\dagger} \rightarrow b^{\dagger} \sqrt{2 \Omega-b^{\dagger} b} \rightarrow b^{\dagger}\left(2 \Omega-b^{\dagger} b\right) \\
& J_{-}=\sum_{m=1}^{\Omega} a_{-m} a_{m} \rightarrow \sqrt{2 \Omega-b^{\dagger} b} b \rightarrow b \\
& J_{z}=\sum_{m=1}^{\Omega} a_{m}^{\dagger} a_{m} \rightarrow b^{\dagger} b-\Omega \rightarrow b^{\dagger} b-\Omega
\end{aligned}
$$

The pairing Hamiltonian $H=J_{+} J_{-}$maps onto an Hermitian boson Hamiltonian in both cases, but not so for eg

$$
H=J_{+} J_{+}+J_{-} J_{-}
$$

Since the mapping is faithful (all algebraic properties are preserved), it is here guaranteed that the spectrum of the non-Hermitian Hamiltonian will be real (and identical to the original spectrum)

Caveat of physical subspace
Question: Can a criterion be given for a general (eg phenomenological) non-Hermitian Hamiltonian to have a real spectrum?

If so, can a consistent quantum mechanical framework be constructed on this basis?

Answer is positive

FG Scholtz, HB Geyer \& FJW Hahne Ann Phys (NY) 213 (1992) 74-101

Require existence of a linear operator (metric) Θ on Hilbert space \mathcal{H}
$\Theta: \mathcal{H} \rightarrow \mathcal{H}$ such that
(i) $\mathcal{D}(\Theta)=\mathcal{H}$
(ii) $\Theta^{\dagger}=\Theta$ (Hermiticity)
(iii) $(\varphi, \Theta \varphi)>0 \forall \varphi \in \mathcal{H}$ and $\varphi \neq 0$ (positive definiteness) (iv) $\|\Theta \varphi\| \leq\|\Theta\|\|\varphi\| \forall \varphi \in \mathcal{H}$ (boundedness)
(v) $\Theta H=H^{\dagger} \Theta$ (H is quasi-Hermitian wrt metric Θ)

A note on terminology:

"Quasi-Hermitian" was introduced in our 1992 Ann Phys paper, following existing terminology in linear algebra (eg "Methods of Matrix Algebra" by MC Pease III (NY, Academic, 1965)), now refering to a complete and consistent framework for nonHermitian QM.

In papers since 2002 by Mostafazadeh (and other authors) "pseudoHermitian" has been used for the same concept, although without the requirement of positivity for the metric, since the primary focus (at first) was on conditions for the reality of the spectrum of a non-Hermitian Hamiltonian, for which the existence of Θ with $\Theta H=H^{\dagger} \Theta$ is sufficient.

The metric Θ is not uniquely defined by these conditions.
However, by requiring
$\Theta A_{i}=A_{i}^{\dagger} \Theta \quad \forall i$
for a set of operators A_{i} which is irreducible (and includes H), uniqueness can be proved

The introduction of the metric Θ amounts to the introduction of a modified inner product

$$
\begin{aligned}
& (\varphi, \psi)_{\Theta} \equiv(\varphi, \Theta \psi) \\
& \Rightarrow\left(\varphi, A_{i} \psi\right)_{\Theta}=\left(\varphi, \Theta A_{i} \psi\right)=\left(\varphi, A_{i}^{\dagger} \Theta \psi\right)=\left(A_{i} \varphi, \psi\right)_{\Theta}
\end{aligned}
$$

In some sense the metric fixes the physical content of the theory. What does this mean and how can it be used...?

Institute of Theoretical Physics
University of Stellenbosch

Link to Gauge Theories

- In Dirac quantisation of a gauge theory, the physical Hilbert space is defined as the subspace annihilated by the (first class) constraints.
- What is the inner product on the physical Hilbert space?
- Ashtekar and Rendall considered this issue in parallel with our work (1992).
- Conclusion: if the gauge invariant observables (which commute weakly with the constraints) form an irreducible set, the inner product on the physical Hilbert space is uniquely determined.
- Again, the observables dictate the choice of inner product (Hilbert space).

PT-symmetric quantum mechanics

Carl Bender et al

Developed from studies of the class of Hamiltonians

$$
H=p^{2}+x^{2}(i x)^{\varepsilon}
$$

for which numerical studies (based on, and supported by, indepth analysis) confirmed a real spectrum only for $\varepsilon \geq 0$ (subsequently strictly proven by Dorey et al via Bethe ansatz).

Institute of Theoretical Physics
University of Stellenbosch

PT Symmetry - "trademark cartoon" (from Bender et al)

Emphasised by Bender et al that the reality of the spectrum may be linked to $\mathcal{P} \mathcal{I}$-symmetry (ie invariance of H under simultaneous parity and time reversal)

The parity operator \mathscr{P} is linear

$$
p \rightarrow-p \text { and } x \rightarrow-x
$$

The time-reversal operator \mathcal{T} is anti-linear

$$
p \rightarrow-p, \quad x \rightarrow x \text { and } i \rightarrow-i
$$

For unbroken $\mathcal{P T}$-symmetry (simultaneous eigenstate of H and $\mathcal{P T}$) reality follows readily. However, $[H, \mathcal{P} \mathcal{T}]=0$ does not generally imply simultaneous eigenstates, since $\mathcal{P T}$ is anti-linear. Assumption is non-trivial, as it is not simple to determine a priori whether $\mathcal{P} \mathcal{T}$-symmetry is unbroken.

Link to previous considerations (metric) by introducing the so-called C-operator
Properties similar to standard charge operator $\quad C^{2}=1$
Position space representation $\quad C \phi_{n}(x)=(-1)^{n} \phi_{n}(x)$
$C(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y)$, where the $\phi_{n}(x)$ are eigenstates of H
Introduce a modified inner product
$\langle f \mid g\rangle_{\text {CPT }} \equiv \int_{C} d x[C P T f(x)] g(x)$
with completeness relation
$\sum_{n} \phi_{n}(x)\left[C P T \phi_{n}(y)\right]=\delta(x-y)$
This inner product is positive definite, dynamically determined by H

Three stages in the development of PT-symmetric QM

- Real spectra for (some) non-Hermitian Hamiltonians
- Link with $\mathcal{P} \mathcal{T}$-symmetry
- Identification of a positive definite inner product
\Rightarrow consistent QM framework

Role and construction of the metric - Moyal products

> FG Scholtz \& HBG, PLB 634 (2006) 84 J Phys A 39 (2006) 10189

Constructing the metric Θ, it is required to solve the operator equation
$\Theta H=H^{\dagger} \Theta$, where $\Theta=\Theta(x, p)$
Exploit the Moyal construction which re-writes the operator equation as a standard partial differential equation, based on the Moyal or star product (replacing the ordinary product)

$$
A(x, p) * B(x, p) \equiv A(x, p) e^{i \hbar \hat{\omega}_{x} \bar{\theta}_{p}} B(x, p)
$$

where the non-commutative nature of x and p is captured by directional derivatives acting on ordinary functions

Institute of Theoretical Physics
University of Stellenbosch

Check: suppose we specify \hat{x} and \hat{p} to be observables (other observables such as H are to be functions of \hat{x} and \hat{p}), then the equations for the metric are

$$
\left.\left.\begin{array}{l}
\Theta \hat{x}=\hat{x} \Theta \\
\Theta \hat{p}=\hat{p} \Theta
\end{array}\right\} \Rightarrow \begin{array}{l}
\Theta * x=x * \Theta \\
\Theta * p=p * \Theta
\end{array}\right\} \Rightarrow \frac{\partial \Theta}{\partial x}=\frac{\partial \Theta}{\partial p}=0 \Rightarrow \Theta=\text { const. }
$$

as in standard QM.

Moyal products - brief background

For Hilbert space with finite dimension N, construct unitary irrep of Heisenberg-Weyl algebra

$$
g h=e^{i \phi} h g ; \quad g^{\dagger}=g^{-1}, h^{\dagger}=h^{-1}, \quad \phi=2 \pi / N
$$

$U(n, m)=g^{n} h^{m}$ forms a basis, $m, n=0,1 \ldots \ldots . . N-1$
Expand any operator $A=\sum_{n, m=0}^{N-1} a_{n, m} g^{n} h^{m}, \quad a_{n, m}=(U(n, m), A) / N$
with $(B, A) \equiv \operatorname{tr} B^{\dagger} A$

Substitute

$$
g \rightarrow e^{i \alpha}, h \rightarrow e^{i \beta} ; \alpha, \beta \in[0,2 \pi)
$$

turns A into a function

$$
A(\alpha, \beta)=\sum_{n, m=0}^{N-1} a_{n, m} e^{i n \alpha} e^{i m \beta}
$$

uniquely detemined by the operator A.

Isomorphism with operator product $A B$ now established by Moyal or star product

$$
A(\alpha, \beta) * B(\alpha, \beta) \equiv A(\alpha, \beta) e^{i \phi \hat{\partial}_{\alpha} \vec{\partial}_{\beta}} B(\alpha, \beta)
$$

where directional derivatives in the exponent capture the non-commutative nature of the operators

Given the function
$A(\alpha, \beta)$ establish the coefficients $a_{n, m}$
through Fourier transformation, and finally the operator A

Can establish a relation between the two functions which represent a given operator and its Hermitian conjugate.

This can then be used to establish the condition for Hermiticity on the level of functions

$$
A^{*}(\alpha, \beta)=e^{-i \phi \partial_{\alpha} \partial_{\beta}} A(\alpha, \beta) \text {. }
$$

All of these results for a finite dimensional Hilbert space can be generalized to the case of QM.

The main result is the form of the Moyal product which now reads

$$
A(x, p) * B(x, p) \equiv A(x, p) e^{i \hbar \hbar_{x} \vec{x}_{p}} B(x, p)
$$

A shifted oscillator - the ix potential

The shifted harmonic oscillator with
$V(x)=\frac{1}{2} x^{2}+\gamma x$ can of course be solved exactly, also for the $P T$-symmetric case $\gamma=i$

It is also known that the C-operator and the metric Θ can be related by
$C=\Theta^{-1} P$
in this case the C-operator had been solved (Bender) as
$C=e^{-2 p} P$
From the Moyal product construction the metric Θ is solved from the PDE
$2 i x \Theta(x, p)+(i x-1) \Theta^{(0,1)}-\frac{1}{2} \Theta^{(0,2)}-i \Theta^{(1,0)} p+\frac{1}{2} \Theta^{(2,0)}=0$,
with $\Theta^{(m, n)}=\frac{\partial^{m+n} \Theta}{\partial^{m} x \partial^{n} p}$

Assuming $\Theta=\Theta(p)$, the PDE reduces to the ODE

$$
2 i x \Theta+(i x-1) \Theta^{\prime}-\frac{1}{2} \Theta^{\prime \prime}=0
$$

with solution $\Theta=e^{-2 p}$ as before
From here all the standard results for the shifted oscillator can be obtained

Institute of Theoretical Physics
University of Stellenbosch

Hermiticity and positive definitenesss of the metric Θ

The PDE for the metric Θ is linear, of the form $L \Theta(x, p)=0$. From

$$
e^{-i \hbar \partial_{x} \partial_{p}} x e^{i \hbar \partial_{x} \partial_{p}}=x-i \hbar \partial_{p} \quad \text { and } \quad e^{-i \hbar \partial_{x} \partial_{p}} p e^{i \hbar \partial_{x} \partial_{p}}=p-i \hbar \partial_{x}
$$

it follows that
$e^{-i \hbar \partial_{x} \partial_{p}} L e^{i \hbar \partial_{x} \partial_{p}}=-L^{*} \quad$ implying
$L^{*} e^{-i \hbar \partial_{x} \partial_{p}} \Theta(x, p)=0$.
But

$$
L^{*} \Theta^{*}(x, p)=0
$$

Thus, provided the boundary conditions also satisfy the general hermiticity condition

$$
A^{*}(x, p)=e^{-i \hbar \partial_{x} \partial_{p}} A(x, p) \text {, then } \Theta^{*}(x, p)=e^{-i \hbar \partial_{x} \partial_{p}} \Theta(x, p)
$$

ie the metric is guaranteed to be Hermitian, since L is linear (and has a unique solution).

For the shifted oscillator e.g. this follows trivially; for the real metric

$$
\Theta=e^{-2 p} \quad \text { which is a function of } p \text { only, }
$$

$$
e^{-i \hbar \partial_{x} \partial_{p}} \Theta(x, p)=\Theta(p)=\Theta^{*}(p)
$$

i.e. Hermitian.

To verify positive definiteness, one generally verifies that the logarithm of the metric is Hermitian. First requires that the function corresponding to the logarithm has to be found, ie find $\eta(x, p)$ such that

$$
\Theta=1+\eta+\frac{1}{2!} \eta * \eta+\frac{1}{3!} \eta * \eta * \eta+\ldots . .
$$

Here the Moyal product trivially reduces to an ordinary product, the logarithm of Θ is simply $-2 p$, and again obviously Hermitian.

Example: non-Hermitian oscillator

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)+\alpha a^{2}+\beta a^{+^{2}} \quad \alpha \neq \beta
$$

Can solve this by rescaling $a \rightarrow \lambda a$ and $a^{\dagger} \rightarrow \lambda^{-1} a^{\dagger}$

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)+\sqrt{\alpha \beta}\left(a^{2}+a^{+^{2}}\right)
$$

Diagonalise with standard Bogoliubov transformation;
Yields SHO, effective frequency $\Omega=\sqrt{\omega^{2}-4 \alpha \beta}$
Spectrum $E_{n}=(n+1 / 2) \hbar \Omega$
If S hermitizes H, then H is quasi-Hermitian wrt $\Theta=S^{\dagger} S$
Here $S=\left(\frac{\alpha}{\beta}\right)^{\hat{4} / 4}$ (with $\left.\hat{n}=a^{\dagger} a\right) \Rightarrow \hat{H}=S H S^{-1}=H^{\dagger}$

Choosing different observables to complete the irreducible set together with the Hamiltonian yields different metrics

$$
\begin{aligned}
& \text { number operator } \hat{n} \Rightarrow \Theta(\hat{n})=\left(\frac{\alpha}{\beta}\right)^{\hat{n} / 2} \\
& \text { position } x \Rightarrow \Theta(x)=\exp \left(\frac{\alpha-\beta}{(\omega-\alpha-\beta)} x^{2}\right)
\end{aligned}
$$

$$
\text { momentum } p \Rightarrow \Theta(p)=\exp \left(-\frac{\alpha-\beta}{(\omega+\alpha+\beta)} p^{2}\right)
$$

These can be obtained by solving simple difference or differential equations

Using the Moyal construction to obtain Θ in general, first re-write $\hat{H}\left(a^{\dagger}, a\right)=\hat{H}(x, p)$

$$
\begin{aligned}
& \hat{H}-\omega / 2=a \hat{p}^{2}+b \hat{x}^{2}+i c \hat{p} \hat{x} \\
& a=(\omega-\alpha-\beta) / 2, b=(\omega+\alpha+\beta) / 2, c=(\alpha-\beta)
\end{aligned}
$$

This yields the associated functions (p ordered to left of x at operator level)

$$
H(x, p)=a p^{2}+b x^{2}+i c p x ; \quad H^{\dagger}(x, p) a p^{2}+b x^{2}-i c p x+c
$$

$$
\text { From } H(x, p) * \Theta(x, p)=\Theta(x, p) * H^{\dagger}(x, p) \text { one }
$$

finds the PDE

$$
\begin{aligned}
& c(1-2 \text { i } p x) \Theta(x, p)+(c p-2 i b x) \Theta^{(0,1)}(x, p)+ \\
& (c x+2 \text { i a } p) \Theta^{(1,0)}(x, p)+b \Theta^{(0,2)}(x, p)-a \Theta^{(0,2)}(x, p)=0
\end{aligned}
$$

where $\Theta^{(m, n)}=\frac{\partial^{n+m} \Theta}{\partial^{n} \times \partial^{m} p}$

Choice of boundary conditions

 \leftrightarrow non-uniqueness of metricGeneral solution is $\Theta(x, p)=\exp \left(r p^{2}+s p x+t x^{2}\right)$
with s a free parameter, and

$$
r=\frac{-c \pm \sqrt{c^{2}-4 a b \hbar s(2 i-\hbar s)}}{4 b \hbar} ; t=\frac{c \pm \sqrt{c^{2}-4 a b \hbar s(2 i-\hbar s)}}{4 a \hbar}
$$

(essential singularity at $\hbar=0$; metric not a classical object)

Specifying p as an observable (in addition to H) requires

$$
p * \Theta(x, p)=\Theta(x, p) * p \text { which gives } \Theta^{(1,0)}(x, p)=0
$$

$$
\text { i.e. } \Theta(x, p)=\Theta(p)
$$

This requires $s=0 ; t=0 ; r=-\frac{c}{2 b}=-\frac{\alpha-\beta}{\omega+\alpha+\beta}$

$$
\text { with } \Theta(p)=\exp \left(-\frac{\alpha-\beta}{(\omega+\alpha+\beta)} p^{2}\right) \text { as before }
$$

One can now continue to calculate matrix elements of various physical quantities, recalling that $S=\sqrt{ } \Theta$ hermitizes H and that the inverse transformation can be used to obtain operators X and P which could be viewed as equivalent to x and p, viz

$$
\begin{aligned}
& X=S^{-1} x S \\
& P=S^{-1} p S
\end{aligned}
$$

$$
S^{2}=\Theta
$$

and using the modified inner product

$$
(\varphi, \psi)_{\Theta} \equiv(\varphi, \Theta \psi)
$$

Also gain insight into the problem by starting directly from an ansatz for the similarity transformation that hermitizes H :

$$
\begin{aligned}
& S=\exp A \\
& A=\varepsilon a^{\dagger} a+\eta a^{2}+\eta^{*} a^{\dagger 2}
\end{aligned}
$$

$$
\begin{aligned}
& S a S^{-1}=\left(\cosh \theta-\frac{\varepsilon}{\theta} \sinh \theta\right) a-2 \frac{\eta^{*}}{\theta} \sinh \theta a^{\dagger} \\
& S a^{\dagger} S^{-1}=\left(\cosh \theta+\frac{\varepsilon}{\theta} \sinh \theta\right) a^{\dagger}+2 \frac{\eta^{*}}{\theta} \sinh \theta a \\
& \theta=\sqrt{\varepsilon^{2}-4|\eta|^{2}} \\
& h_{S}=S H S^{-1}=U(\varepsilon, \eta)\left(a^{\dagger} a+\frac{1}{2}\right)+V(\varepsilon, \eta) a^{2}+W(\varepsilon, \eta) a^{\dagger 2}
\end{aligned}
$$

h_{s} Hermitian requires

$$
\begin{aligned}
& U \in \square ; V=W^{*} \text {, leading to } \\
& \frac{\tanh \theta}{\theta}=\frac{\alpha-\beta}{(\alpha+\beta) \varepsilon-2 \omega \eta} \text { with } \eta=\eta^{*}
\end{aligned}
$$

Position and momentum observables are accordingly given by

$$
\begin{aligned}
& X=S^{-1} \hat{x} S=\left(\cosh \theta \hat{x}+\frac{i}{\omega} \frac{\varepsilon-2 \eta}{\theta} \sinh \theta \hat{p}\right. \\
& P=S^{-1} \hat{p} S=\left(\cosh \theta \hat{p}-i \omega \frac{\varepsilon+2 \eta}{\theta} \sinh \theta \hat{x}\right.
\end{aligned}
$$

Clearly metric dependent

$$
\varepsilon=\frac{1}{2 \sqrt{1-z^{2}}} \operatorname{arctanh} \frac{(\alpha-\beta) \sqrt{1-z^{2}}}{\alpha+\beta-z \omega}
$$

Define $Z=\varepsilon / 2 \eta$

$$
h_{S(z)}=\frac{1}{2}\left(\mu(z) \hat{p}^{2}+v(z) \hat{x}^{2}\right)
$$

$\mu(z), v(z)$ functions of α, β, ω and z

$S(z)$ is obtained similarly
For $z=0$ one has $\quad \varepsilon=1 / 4 \ln (\alpha / \beta)$

$$
\Theta=S^{2}=\left(\frac{\alpha}{\beta}\right)^{\hat{n} / 2} \quad \text { and }
$$

$$
h_{S(z=0)}=\frac{\omega-2 \sqrt{\alpha \beta}}{2 \omega} \hat{p}^{2}+\frac{\omega}{2}(\omega+2 \sqrt{\alpha \beta}) \hat{X}^{2}
$$

For $z=1$ one has similarly $\varepsilon=-(\alpha-\beta) /(2(\omega-\alpha-\beta))$

$$
\Theta=S^{2}=\exp \left(-\frac{\alpha-\beta}{\omega-\alpha-\beta} \omega \hat{x}^{2}\right)
$$

and

$$
h_{S(z=1)}=\frac{\omega-\alpha-\beta}{2 \omega} \hat{p}^{2}+\frac{\omega \Omega^{2}}{2(\omega-\alpha-\beta)} \hat{x}^{2}
$$

All forms of h_{S} are of course isospectral, viz

$$
\mu \nu=\Omega^{2}=\omega^{2}-4 \alpha \beta
$$

The classical limit of the hermitized Hamiltonian is
$E_{\mathrm{cl}}=A^{2} \Omega^{2} / 2 \mu(\mathrm{z}) \quad A$ is the classical oscillation amplitude
which is explicitly metric dependent, contrary to a recent conjecture from a perturbative calculation (Mostafazadeh) that it should be metric independent.

Berry connection and curvature

Consider $H\left(q_{1}, q_{2} \ldots.\right) \equiv H(q)$, generally non-Hermitian
Write $H(q)=S(q) D(q) S^{-1}(q)$, where $D(q)$ is diagonal in chosen basis
$S(q)$ may be singular
Differentiate wrt q's
$\frac{\partial H(q)}{\partial q_{i}}-S(q) \frac{\partial D(q)}{\partial q_{i}} S^{-1}(q)=\left[A_{i}(q), H(q)\right]$.
with Berry connection

$$
A_{i}(q)=\frac{\partial S(q)}{\partial q_{i}} S^{-1}(q) .
$$

generates change in eigenstates

Consider singularities of $S(q)$ - recall that metric is linked to Hermitization (diagonalization):

If S hermitizes H, then H is quasi-Hermitian wrt $\Theta=S^{\dagger} S$
Proceed by considering commutator with H
$\left[\frac{\partial H(q)}{\partial q_{i}}, H(q)\right]=\left[\left[A_{i}(q), H(q)\right], H(q)\right]$.
Again resort to Moyal construction to solve operator equation for Berry connection A

While there is a `gauge freedom' in A, the Berry phase should be unique

Invariance of Berry curvature under `gauge' transformation: $\Lambda(q)$ diagonal

$$
A_{i}(q) \rightarrow A_{i}^{\prime}(q)=A_{i}(q)+S(q) \frac{\partial \Lambda(q)}{\partial q_{i}} \Lambda^{-1}(q) S^{-1}(q)
$$

$$
S_{1}=\left(1+A_{j} d q_{j}+\frac{1}{2}\left(\frac{\partial A_{j}}{\partial q_{j}}+A_{j}^{2}\right) d q_{j}^{2}\right) S_{0},
$$

Change in S to $2^{\text {nd }}$ order around plaquette
$S_{2}=\left(1+A_{i} d q_{i}+\frac{\partial A_{i}}{\partial q_{j}} d q_{i} d q_{j}+\frac{1}{2}\left(\frac{\partial A_{i}}{\partial q_{i}}+A_{i}^{2}\right) d q_{i}^{2}\right) S_{1}$,
$S_{3}=\left(1-A_{j} d q_{j}-\frac{\partial A_{j}}{\partial q_{i}} d q_{i} d q_{j}+\frac{1}{2}\left(A_{j}{ }^{2}-\frac{\partial A_{j}}{\partial q_{j}}\right) d q_{j}{ }^{2}\right) S_{2}$,
$S_{4}=\left(1-A_{i} d q_{i}+\frac{1}{2}\left(A_{i}^{2}-\frac{\partial A_{i}}{\partial q_{i}}\right) d q_{i}^{2}\right) S_{3}$.

$$
\begin{aligned}
& S_{1}=\left(1+A_{j} d q_{j}+\frac{1}{2}\left(\frac{\partial A_{j}}{\partial q_{j}}+A_{j}^{2}\right) d q_{j}^{2}\right) S_{0}, \\
& S_{2}=\left(1+A_{i} d q_{i}+\frac{\partial A_{i}}{\partial q_{j}} d q_{i} d q_{j}+\frac{1}{2}\left(\frac{\partial A_{i}}{\partial q_{i}}+A_{i}^{2}\right) d q_{i}^{2}\right) S_{1}, \\
& S_{3}=\left(1-A_{j} d q_{j}-\frac{\partial A_{j}}{\partial q_{i}} d q_{i} d q_{j}+\frac{1}{2}\left(A_{j}^{2}-\frac{\partial A_{j}}{\partial q_{j}}\right) d q_{j}^{2}\right) S_{2}, \\
& S_{4}=\left(1-A_{i} d q_{i}+\frac{1}{2}\left(A_{i}^{2}-\frac{\partial A_{i}}{\partial q_{i}}\right) d q_{i}^{2}\right) S_{3} .
\end{aligned}
$$

yielding $S_{4}=\left(1+F_{i j} d q_{i} d q_{j}\right) S_{0}$,
where the Berry curvature has been introduced:
$F_{i j}=\frac{\partial A_{i}}{\partial q_{j}}-\frac{\partial A_{j}}{\partial q_{i}}+\left[A_{i}, A_{j}\right]$.
Invariance of F under the transformation

$$
A_{i}(q) \rightarrow A_{i}^{\prime}(q)=A_{i}(q)+S(q) \frac{\partial \Lambda(q)}{\partial q_{i}} \Lambda^{-1}(q) S^{-1}(q)
$$

now readily follows

Solving for the Berry connection from the operator equation

$$
\left[\frac{\partial H(q)}{\partial q_{i}}, H(q)\right]=\left[\left[A_{i}(q), H(q)\right], H(q)\right]
$$

Consider a simple 2D matrix model

$$
\begin{aligned}
& H\left(q_{1}, q_{2}\right)=\left(\begin{array}{cc}
1 & q_{1}+i q_{2} \\
q_{1}+i q_{2} & -1
\end{array}\right) ; \\
& \hline \\
& A_{1}\left(q_{1}, q_{2}\right)=\left(\begin{array}{cc}
\frac{2 w_{1}}{q_{1}+i q_{2}}-\frac{1}{\left(q_{1}+i q_{2}\right)\left(1+\left(q_{1}+i q_{2}\right)^{2}\right)}+y_{1} & w_{1}-\frac{1}{1+\left(q_{1}+i q_{2}\right)^{2}} \\
w_{1} & y_{1}
\end{array}\right) \\
& A_{2}\left(q_{1}, q_{2}\right)=\left(\begin{array}{cc}
\frac{2 i w_{1}}{q_{1}+i q_{2}}-\frac{1}{\left(q_{1}+i q_{2}\right)\left(1+\left(q_{1}+i q_{2}\right)^{2}\right)}+y_{2} & i w_{1}-\frac{i}{1+\left(q_{1}+i q_{2}\right)^{2}} \\
i w_{1} & y_{2}
\end{array}\right)
\end{aligned}
$$

Removing (spurious) singularity at the origin leaves
$A_{1}\left(q_{1}, q_{2}\right)=-i A_{2}\left(q_{1}, q_{2}\right)=\left(\begin{array}{cc}\frac{q_{1}+i q_{2}}{1+\left(q_{1}+i q_{2}\right)^{2}} & \frac{1}{2}-\frac{1}{1+\left(q_{1}+i q_{2}\right)^{2}} \\ \frac{1}{2} & 0\end{array}\right)$
Singularities at $q_{1}=0, q_{2}= \pm 1$, ie at the exceptional points where H is not diagonalizable
Compute curvature at exceptional point from $\left.\frac{\partial S(\phi)}{\partial \phi} S^{-1}(\phi)\right|_{(0,1)}=A_{\phi}=\left(\begin{array}{cc}\frac{i}{2} & -\frac{1}{2} \\ 0 & 0\end{array}\right)$.
Result is $F=\left(\begin{array}{cc}-1 & -2 i \\ 0 & 1\end{array}\right)$.
Eigenstates close to e.p. are $u_{ \pm}=\binom{-i \pm i \sqrt{2 w}}{0}$
$F u_{ \pm}=u_{\mp}$, interchanging eigenstates as anticipated

Analysis for the quadratic boson Hamiltonian

Can express H as
$H(x, p)=p^{2}+q_{1} x^{2}+i q_{2} p x ; \quad q_{1}=\frac{b}{a}=\frac{\omega+\alpha+\beta}{\omega-\alpha-\beta}, q_{2}=\frac{c}{a}=\frac{2(\alpha-\beta)}{\omega-\alpha-\beta}$.
Now solve
$\left.\left[\frac{\partial H(x, p, q}{\partial q_{i}}\right), H(x, p, q)\right]_{*}=\left[\left[A_{i}(x, p, q), H(x, p, q)\right], H(x, p, q)\right]_{*}$.
where
$[A(x, p), B(x, p)]_{*}=A(x, p) * B(x, p)-B(x, p) * A(x, p)$.
is the Moyal bracket

Ansatz for A :

$$
A_{i}(x, p)=r_{i} p^{2}+s_{i} x p+t_{i} x^{2} ; i=1,2
$$

yields

$$
\begin{aligned}
& A_{1}(x, p)=\frac{i p x}{\hbar\left(4 q_{1}+q_{2}{ }^{2}\right)}-\frac{x^{2} q_{2}}{2 \hbar\left(4 q_{1}+q_{2}{ }^{2}\right)} \\
& A_{2}(x, p)=\frac{x^{2} q_{2}}{\hbar\left(4 q_{1}+{q_{2}}^{2}\right)}+\frac{i p x q_{2}}{2 \hbar\left(4 q_{1}+q_{2}{ }^{2}\right)}
\end{aligned}
$$

Singularities at

$$
4 q_{1}+q_{2}^{2}=\omega^{2}-4 \alpha \beta=0
$$

On these curves the Bogoliubov transformation that diagonalizes H breaks down; metric Θ does not exist. Link to quantum phase transition?

Singular curves of the Berry connection; cannot pass between regions without crossing a singularity of $\mathrm{S}(\mathrm{q})$

Circle is expected radius of convergence for perturbative expansion around the origin.

Institute of Theoretical Physics
University of Stellenbosch

Conclusions \& avenues to explore

- A consistent framework of QM can be built on quasi-Hermitian operators; exists since 1992 and includes $\mathcal{P} \mathcal{I}$-symmetric quantum mechanics; central role of metric
- Moyal product construction is a viable route to obtain the metric from its basic operator definition
- Explore non-uniqueness of metric/different choices of irreducible set of observables; choice of observables (and metric) as starting point of QM
- Possible link between phase structure/transitions and singularities of the metric
- Phenomenology of non-Hermitian boson Hamiltonians
- Explicit construction of metric for such models (old problem of CM Vincent \& GK Kim)
- Clarify what we understand under a physical application of nonHermitian QM

PHHQP4 - The Physics of Non-Hermitian Operators

Stellenbosch Workshop, Nov 2005

Laboratory for non-Hermitian QM

Experimental PT-symmetric QM

Experimental quasi-Hermitian QM

Conclusions \& avenues to explore

- A consistent framework of QM can be built on quasi-Hermitian operators; exists since 1992 and includes $\mathcal{P} \mathcal{I}$-symmetric quantum mechanics; central role of metric
- Moyal product construction is a viable route to obtain the metric from its basic operator definition
- Explore non-uniqueness of metric/different choices of irreducible set of observables; choice of observables (and metric) as starting point of QM
- Possible link between phase structure/transitions and singularities of the metric
- Phenomenology of non-Hermitian boson Hamiltonians
- Explicit construction of metric for such models (old problem of CM Vincent \& GK Kim)
- Clarify what we understand under a physical application of nonHermitian QM

