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Some recent studies on formulations of
quantum mechanics on quaternionic Hilbert
spaces have been developed along two
seemingly uncorrelated lines.

-On one hand, the complex projection of
dynamics generated by (time-independent)
quaternionic anti-Hermitian Hamiltonians
was considered by showing that they
represent one-parameter semigroup
dynamics in the space of complex density
matrices.

(This can be useful. For instance, in the
case of two qubit compound system we
showed that the complex projection of
quaternionic unitary dynamics between
pure states permits the description of
interesting phenomena as decoherence and
optimal entanglement generation.)

-On the other hand, pseudoanti-Hermitian
quaternionic Hamiltonians were introduced
in order to generalize standard
anti-Hermitian Hamiltonians in quaternionic
Hilbert space.



Moreover, we showed that the subclass of
complex quasi-Hermitian systems can be
described as open quantum systems. A
master equation of Lindblad type can be
derived for such systems, obtaining
one-parameter semigroup dynamics in the
space of complex quasi-Hermitian density
matrices.

We will show that the complex projection of
η-quasianti-Hermitian quaternionic
dynamics are one-parameter semigroup
dynamics in the space of complex
η-quasi-Hermitian density matrices if and
only if such dynamics belong to the
subclass of η-quasianti-Hermitian ones
where η is a (positive definite) complex
operator.



Complex projection
of QQM

The density matrix ρψ associated with a
pure state |ψ〉 ∈ Qn is defined by

ρψ = |ψ〉〈ψ|

Mixed states are described by positive
quaternionic Hermitian operators
ρ = ρα + jρβ on Qn with unit trace and rank
greater than one.

The expectation value of A = Aα + jAβ on a
state |ψ〉 can be expressed as

〈A〉ψ = 〈ψ|A|ψ〉 = ReTrA|ψ〉〈ψ| = ReTrAρψ.

〈A〉ρ = ReTrAρ = ReTrAαρα − Aβ
∗ρβ.

Thus, the expectation value of an Hermitian
operator A on the state ρ depends on the
quaternionic parts of A and ρ, only if both
the observable and the state are
represented by genuine quaternionic
matrices.





This simple observation enables us to
merge CQM in the framework of QQM,
without modifying any theoretical prediction
if only complex observables are taken into
account.

Let us denote by MQ and MC the space
of n × m quaternionic and complex matrices
respectively and let M = Mα + jMβ ∈ MQ.
We define the complex projection

P : MQ → MC

by the relation

PM = 1
2
M − iMi = Mα.

Proposition. The complex projection of a
quaternionic density matrix is a complex
density matrix.



When we consider time-independent
quaternionic unitary dynamics,

ρt = Utρ0Ut,

where

Ut = e−Ht

with H = Hα + jHβ = −H, the differential
equation associated with the time evolution
for ρ is given by

d
dt

ρt = −H,ρt.

The complex projection reads

d
dt

ρα = −Hα,ρα + Hβ
∗ρβ − ρβ

∗Hβ.

It was proven that the dynamics ruled by the
previous equation is a one-parameter
semigroup dynamics in the space of
complex density matrices ρα.



Pseudoanti-Hermitian
Q-dynamics

Whenever the quaternionic Hamiltonian H
of a quaternionic quantum system is
η-pseudoanti-Hermitian,

ηHη−1 = −H, η = η,

the pseudo-inner product, ⋅, ⋅η = ⋅,η ⋅, is
invariant under the time traslation
generated by H.

The adjoint A of A with respect to ⋅, ⋅η, is
given by

A = η−1Aη,

so that for any η-pseudo-Hermitian
operator A,

ηAη−1 = A,

one has,

A = A.



If A = A, then, ηA = ηA, so that

〈ψ|ηA|ψ〉 = ReTr|ψ〉〈ψ|ηA = ReTrρ̃A,

where ρ̃ = |ψ〉〈ψ|η.

More generally, if ρ denotes a generic
quaternionic density matrix, we can
associate it with a generalized density
matrix ρ̃ by means of

ρ̃ = ρη

and we obtain 〈A〉η = ReTrρ̃A.

Note that ρ̃ is η-pseudo-Hermitian:

ρ̃ = ηρ = ηρ̃η−1.



Let us consider now the time evolution of a
pure state.

If the Hamiltonian H is
η-pseudoanti-Hermitian, the evolution
operator Vt = e−Ht:

|ψt〉 = Vt|ψ0〉

is no longer unitary, but η-Unitary,

VηV = η.

Hence,

ρtη = ρ̃t = Vtρ̃0Vt−1.

The η-pseudo-norm conservation holds:

ReTrρ̃t = ReTrρ̃0.

The time evolution of ρ̃t is described by
the usual Liouville-von Neumann equation:

d
dt

ρ̃t = −H, ρ̃.



Complex projection
of

quasianti-Hermitian
Q-dynamics

We will restrict to consider the subclass of
η-quasi-Unitary dynamics generated by
η-pseudoanti-Hermitian quaternionic
Hamiltonians H where η = BB.

In this case a new positive definite inner
product can be introduced in the Hilbert
space where all the usual requirements for
a proper quantum mechanical interpretation
can be maintained.

For instance, an important property of the
corresponding generalized density matrices
is that they are positive definite:

ρ ≥ 0 ⇒ BρB = Bρ̃B−1 ≥ 0.



The following proposition give us
information about the complex projection ρ̃α

of the η-quasi-Hermitian quaternionic
density matrices ρ̃ = ρη = ρ̃α + jρ̃β.

Proposition 1. The complex projection ρ̃α

of a η-quasi-Hermitian quaternionic matrix ρ̃
is η-quasi-Hermitian if and only if the entries
of η are complex.

Hence, the subclass of
η-quasianti-Hermitian quaternionic
dynamics where η is a complex operator
allows one to construct η-quasi-Hermitian
quaternionic density matrices ρ̃ admitting
η-quasi-Hermitian complex projection
density matrices ρ̃α:

ρα ≥ 0 ⇒ BραB = Bρ̃αB−1 ≥ 0.

Moreover, we can prove that any
η-quasianti-Hermitian quaternionic
Hamiltonians H with a complex η is given by

H = K + jSη = Aη,

where K = −K, ST = S, hence A = −A.



Now, putting η = BB into the previous
equation we get

H ′ = BHB−1 = −BHB−1 = −H ′,

i. e., H ′ is anti-Hermitian.

In particular, a standard master equation
holds for the complex projection of the
dynamics generated by H ′

d
dt

ρα
′ = Lρα

′  = −Hα
′ ,ρα

′  + Hβ
′∗ρβ

′ − ρβ
′∗Hβ

′

where ρα
′ and ρβ

′ are the complex projection

and the purely quaternionic term, of the
quaternionic Hermitian density matrix

ρ ′ = ρα
′ + jρβ

′ = BρηB−1 = BρB.

The dynamics is a one-parameter
semigroup dynamics in the space of
complex density matrices, so that we can
identify

Lρα
′  = −Hα

′ ,ρα
′  +∑

r,s=1

n2−1

CrsFr
′ρα

′ Fs
′ − 1

2
Fr

′Fs
′ ,ρα

′ ,

where TrFr
′Fs

′  = δrs and Crs = Crs.





Then, coming back by means of

B−1 : |ψ ′ 〉 → B−1|ψ ′ 〉,

we obtain an equation of the Lindblad type
which describes the most general time
evolution of the generalized complex
projection density matrix ρ̃α = ραη:

d
dt

ρ̃α = Lρ̃α = −Hα, ρ̃α + Dρ̃α

− Hα, ρ̃α +∑
r,s=1

n2−1

CrsFrρ̃αFs
 − 1

2
Fr

Fs, ρ̃α.

Note that TrFr
Fs = δrs and the dissipative

term Dρ̃α is η-quasi-Hermitian.

Hence, the dynamics ruled by the previous
equation is a one-parameter semigroup
dynamics in the space of η-quasi-Hermitian
complex density matrices ρ̃α.



An Example
We denote by Hα the free complex
anti-Hermitian Hamiltonian describing a
spin half particle in a constant magnetic
field,

Hα = ω
2

i 0

0 −i
,

and by jHβ a purely η-quasianti-Hermitian
quaternionic constant potential,

jHβ =
0 j v

x

jxv 0
x,v ∈ R − 0,

where

η =
x2 0

0 1
.

Putting H = Hα + jHβ, we obtain

ηHη−1 = −H.



The eigenvalues and the corresponding
biorthonormal eigenbasis of H = Hα + jHβ

are given by

iE± = i ω
2

± v

and

|ψ±〉 =
± i

x

j

1

2
, |φ±〉 =

±xi

j

1

2
.

The η-quasi-Unitary evolution operator
reads

Vt = e−Ht = |ψ+〉e−iE+t〈φ+| + |ψ−〉e−iE−t〈φ−| =

1
2

e−iE+t + e−iE−t 1
x e−iE−t − e−iE+tk

xe iE+t − e iE−tk e iE+t + e iE−t
.



Let us consider a η-quasi-Hermitian
complex pure initial state:

ρ̃0 =
0 0

0 1
,

then,

ρ̃t = Vtρ̃0Vt−1 = Vtρ̃0η−1Vtη =

1
2

1 − cos2vt − j
x sin2vt

jx sin2vt 1 + cos2vt
.

The η-quasi-Hermitian complex projection
ρ̃αt of ρ̃t assume the diagonal form,

ρ̃αt = 1
2

1 − cos2vt 0

0 1 + cos2vt
.



The one-parameter semigroup generator
associated with the complex projection of
the quaternionic η-quasianti-Hermitian
dynamics can be immediately computed:

Lρ̃αt = −Hα, ρ̃α + Hβ
∗ρ̃β − ρ̃β

∗Hβ =

v sin2vt 0

0 −v sin2vt
.

The expectation value of the z-component
of the spin observable

sz =
σ3

2
,

when the system is in the generalized state
ρ̃t is given by (note that sz is
η-quasi-Hermitian)

〈sz〉 = ReTrszρ̃t = Trszρ̃αt =
cos2vt

2
.



By a simple calculation the (positive
definite) energy η-quasi-Hermitian
observable |H| reads

|H| = |ψ+〉E+〈φ+| + |ψ−〉E−〈φ−| =

ω
2

−k v
x

kxv ω
2

and its expectation value is given by

〈|H|〉 = ReTr|H|ρ̃t = ω
2

= Tr|Hα|ρ̃αt.

This example may have interesting physical
applications because the quaternionic
potential strongly affects the spin values
while the system energy is unchanged.



Concluding remarks
-We proved that the complex projection of
η-quasianti-Hermitian quaternionic
dynamics are one-parameter semigroup
dynamics in the space of complex
η-quasi-Hermitian density matrices if and
only if such dynamics belong to the
subclass of η-quasianti-Hermitian ones
where η is a (positive definite) complex
operator.

-The complex projection of quaternionic
unitary dynamics can be obtained as a
particular case of this more general setting,
putting η = 1 into the equations.

-Given the importance of pseudo-Hermitian
quantum system dynamics, these results
allow us to construct a class of complex
η-quasi-Hermitian open quantum system
dynamics.

-The inverse problem is under investigation.
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