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Abstract

An algebraic technique useful in studying of a non-Hermitian Hamilto-
nians with real spectra, is presented. The method is illustrated by explicit
application to a family of one-dimensional potentials

The existence of non-Hermitian Hamiltonians with real spectra is one of
the interesting problems in theoretical physics. For one thing they are used
in various branches of theoretical physics, for other it is interesting in itself to
understand the reasons for the reality ( see, e.g., [1] and references therein).
The understanding of these Hamiltonians has been largely improved during

the past years by the realization that their existence is deeply related to the
existence of symmetry under the combined transformation of parity P and time
reversal T [2]. Later it was shown that [3] the operator H (with a complete set
of biorthonormal eigenvectors) has a real spectrum if there exists a Hermitian
automorphism � such that

Hy� = �H (1)

or
HO = OH0 (2)

where OOy = � and H0 is Hermitian. In a recent paper, however, Kretschmer
and Szymanowski proposed a way which might allow for �nding in a systematic
way large classes of non-Hermitian Hamiltonians with real spectra. The exis-
tence of an operator 
 that intertwine a given non-Hermitian Hamiltonian H
and Hermitian one h ensures the reality of the spectrum of H

H
 = 
h (3)

Here we shall use a group-theoretical methods to construct a class of non-
Hermitian operators H with real spectra for which the relation (3) holds. To
gain a better understanding of our approach, we illustrate it for Hamiltonians
related to SO(2:1). To this end, a few facts from the representation theory of
the SO(2:1) are useful [5].
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Let R2;1 be a three-dimensional pseudo-Euclidean space with bilinear form

[�; �] = �0�0 � �1�1 � �2�2: (4)

By SO(2; 1) we denote the connected component of the group of linear trans-
formations of R2;1preserving the form (4). We consider SO(2; 1) as acting on
R2;1on the right.
The principal non-unitary series of representations T� of the group SO(2; 1)

are labelled by complex number �. They can be realized in the Hilbert space
L2(S) with inner product

(f1; f2) =
1

2�

Z
S

f1(n) f
�
2 (n)dn (5)

where S = fn = (1; cos'; sin')g denotes the circle of radius 1 and dn = d'.
The representation T� is de�ned by

T�(g)f(n) = j(ng)0j� f
�

ng

(ng)0

�
: (6)

The in�nitesimal operators a0; a1; a2 of the representation T�, corresponding to
the one-parameter subgroups g0(t); g1(t) and g2(t) , where g0(t) is the rotations
in the 1-2 plane, while g1(t) and g2(t) are the pure Lorentz transformations
along the 1 and 2 axes, respectively are given by

a1 = � cos'� sin' d

d'

a2 = �� sin'� cos' d

d'
(7)

a3 =
d

d'

The Casimir operator
C = a20 � a21 � a22 (8)

is identically a multiple of the unit

C = ��(� + 1)I: (9)

The representations T� and T����1 are Hermitian-adjoint, i.e.

(T�f1; T����1f2) = (f1; f2) (10)

Therefore T� is unitary if and only if Re� = � 1
2 . The in�nitesimal operators

of a unitary representation satisfy the condition

a+� = �ai; i = 0; 1; 2 (11)

i.e the operators
Jk = �iak; k = 0; 1; 2 (12)
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are Hermitian. For Re� 6= � 1
2 the representation T� is non-unitary although

J3 still Hermitian. If we diagonalize J3 we obtain

J3 m = m m; C m = ��(� + 1) m; m = 0;�1;�2; : : : (13)

A key concept in group-theoretical approach is that the Hamiltonian H
under study is a function of in�nitesimal operators ai of the representation of
some Lie group G

H = �(ai): (14)

Particularly
H = �(Ci) (15)

where Ci are Casimir operators of G: Here we want to construct the Hamil-
tonians in terms of operators of Lie algebra of SO(2; 1) for which relation (3)
holds. The key to their construction lies in the observation that the relation (3)
for such systems is essentially a relation between equivalent representations of
SO(2; 1). Thus in order to �nd the Hamiltonians for the systems under con-
sideration we should look for another realization of principal non-unitary series
representation.
Let us denote by H� the space of functions F (�) on one sheet hyperboloid

�20 � �21 � �22 = �1; (16)

satisfying the equation

4F (�) = ��(� + 1)F (�); � 2 C (17)

where

4 =
@2

@�21
+

@2

@�22
� ^(^+ 1) (18)

with

^ = �1
@

@�1
+ �2

@

@�2
(19)

Then the principal non-unitary representations of the SO(2; 1) can be realized
in H�. In this realization the representation is de�ned by

U�F (�) = F (�g) (20)

We note that the interrelation between representations (5) and (20) is given
by

F (�) =

Z
S

j[�; n]j�1�� f(n)dn (21)

� (Af)(�)

Moreover the following intertwining relation is held

U�A = AT� (22)
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We are now prepared to extract the one-dimensional Hamiltonian from (18).
For this purpose instead of coordinates �1 and �2 we introduce the coordinates
x and � via

�1 =
cos'p
1� z(x)2

; �2 =
sin'p
1� z(x)2

; z(x) 2 [�1; 1] (23)

If we compute 4 for this parametrization it becomes

4 =
(1� z2)2

_z2

�
� @2

@x2
+

�
z _z

1� z2 +
�z

_z

�
@

@x
+

_z2

1� z2
@2

@�2

�
(24)

where dots represent derivatives with respect to x, i.e., _z = dz
dx , etc. The solu-

tions to (17) then separate and have the form

Fm(�) = 	m(x)e
im� (25)

where 	m(x) satis�es the equation�
� @2

@x2
+

�
z _z

1� z2 +
�z

_z

�
@

@x
+ �(� + 1)

_z2

(1� z2)2

�
	m(x) = m2 _z2

1� z2	m(x)

(26)
which upon the substitution

z(x) = sinx (27)

transforms to the Schrödinger equation

H	m(x) = m2	m(x) (28)

with non-Hermitian Hamiltonian given by

H = � d2

dx2
+
�(� + 1)

cos2 x
(29)

Moreover, it follows from (21) and (22) that

	m(x) =

Z ���tanx� cos'
cosx

����1�� eim'd' (30)

� (
 m)(x)

and
H
 = 
h (31)

where
h = �J23 and  m = eim' (32)

The veri�cation of (31) is based on the relation

Hk(x; ') = hk(x; ') (33)
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where k(x; ') is the kernel of the intertwining operator 
, i.e.

k(x; ') =
���tanx� cos'

cosx

����1�� (34)

Another example is provided by Hamiltonian of the form

H = � d2

dx2
+
�(� + 1)

sin2 x
(35)

which is obtained by substituting

z = cosx (36)

In this case

	m(x) =

Z ���cotx� cos'
sinx

����1�� eim' (37)
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