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The Simple Pendulum

Position:

X = L sin θ

Y = −L cos θ

Velocity:

Ẋ = Lθ̇ cos θ

Ẏ = Lθ̇ sin θ

Energies:

V = −mgL cos θ

T = 1

2
m(Ẋ2 + Ẏ 2) = 1

2
mL2θ̇2

Hamiltonian:

H = 1

2
mL2θ̇2

− mgL cos θ
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Turning points

We have turning points in
the motion when

p = 0

Hence,

H = V (x) = E

For a simple harmonic os-
cillator with Hamiltonian
H = 1

2
p2 + x2

x0 =
√

2E

x

2E2E
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Complexifying the Simple pendulum

Gravity:

g = 1

Turning points:

x0 =
√

2E

There is a branch cut
between turning points
(x =

√
2E)

Paths have the same
period:
T =

∮

C
dx/

√

2[E − V (x)]
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A periodic potential

Case 1: −1 ≤ E ≤ 1 (Swinging pendulum)
Hamiltonian:

H = 1

2
p2 − cos x

Gravity:

g = 1

Turning points:

x0 = π/2 + nπ
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Example: Real Gravitational Field

Case 2: |E| ≥ 1 (Rotating pendulum)

Hamiltonian:

H = 1

2
p2 − cos x

Gravity:

g = 1

Energy:

E = cosh1

Turning points:

x0 = (2k + 1)π ± i
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Example: Real Gravitational Field

Time to follow the purple path . . .

T =
1√
2

∫

i∞+π

x=i+π

dx√
E + cos x

T = 1.97536 · · ·
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Example: Real Gravitational Field

Case 3: E ≤ −1 (Unphysical pendulum)

Hamiltonian:

H = 1

2
p2 − cos x

Gravity:

g = 1

Energy:

E = − cosh1

Turning points:

x0 = 2πk + ±i
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Example: Imaginary Gravitational Field

Case 1: E = sinh 1

Hamiltonian:

H = 1

2
p2 − i cos x

Gravity:

g = i

Energy:

E = sinh1

Turning points:

x0 = (n+ 1

2
)π+(−1)ni
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Example: Imaginary Gravitational Field

Time to follow the purple path . . .

T =
1
√

2

∫ i∞+3π/2

x=i+3π/2

dx
√

E + i cos x

T =
1
√

2

∫

∞

s=1

ds
√

sinh s − sinh 1

=
2
√

e
K(−1/e2) = 1.84549 · · ·
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Example: Imaginary Gravitational Field

Case 2: E = − sinh 1

Hamiltonian:

H = 1

2
p2 − i cos x

Gravity:

g = i

Energy:

E = − sinh1

Turning points:

x0 = (n+1

2
)π+(−1)n+1i
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What about chaotic systems?

Introduce a driving term of the form ǫ sin(ωt):

H = 1

2
p2 − g cos x − ǫ sin(ωt)

g = i, ǫ > 0
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Imaginary energy?

g = i and E = i
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Euler Equations

The Euler equations govern-
ing the rotation of a rigid body about a fixed axis also are PT .

L̇1 = L2L3

L̇2 = −2L1L3

L̇3 = L1L2
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Euler Equations

We extend the Euler Equations into the complex plane.
There are two constants of motion (which gives us 4
constraints):

C = 1

2

(

x2
1 + x2

2 + x2
3

)

and H = 1

2
x2

3 − 1

2
x2

1.
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Euler Equations

Intersections of the level surfaces give us the orbits:
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Euler Equations

If we allow energy to be imaginary:
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Lotka-Volterra equations

Another PT-Symmetric system - this time under:

ẋ = x − xy, ẏ = −y + xy (1)

constant of motion

x + y − log(xy) = C. (2)

Fox/ rabbit interchange, and time reversal.
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Lotka-Volterra equations

1 2 3 4
ReHxL
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Conclusions

Classical Mechanics seems to naturally extend into the
complex plane to give some familiar and not so familiar
results

Complex extensions of classical mechanics help us
understand well known systems
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Where next?

spherical pendulum, the spinning top

other discrete dynamical systems - SIR models etc.

classification of chaotic systems using PT Symmetry
(see for example, the Kicked Rotor).
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