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1. Introduction

Development of subject:

- Initial discovery of real eigenvalues. Exploration of soluble

models

- Need for +ve. definite metric. CPT , η

- Construction of equivalent Hermitian Hamiltonian h

- Ghost busting: Lee model, Pais-Uhlenbeck model

2



All above concerns non-Hermitian systems in isolation

But most of physics is Hermitian.

∴ have to consider interface between two.

First attempts:

- Quantum Brachistochrone (CMB et al.)

- Coupling Hermitian and non-Hermitian Hamiltonians (
CMB
HFJ )

- Scattering off localized complex potentials (HFJ)
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2. Quantum Brachistochrone

For Hermitian Hamiltonians ∃ lower bound on “passage time”

= time for (unitary) evolution by e−iHt between orthogonal

states

For 2 × 2 matrices, and fixed dispersion E+ − E− = ω , bound

[

e.g. from

(

1
0

)

to

(

0
1

)]

is

t ≥ π/ω

Can we do better using a non-Hermitian H?
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Yes!

Take

H =

(

reiθ s

s re−iθ

)

Real eigenvalues when r sin θ < s . So write r sin θ = s sinα

Then ω = 2s cosα , and passage time is

t = (π + 2α)/ω

Can be made arbitrarily small as α → −π/2 !
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How do we avoid theorem?

- In framework of conventional QM, states are orthogonal, but

H is not Hermitian, and time evolution is not unitary.

- Alternatively, to describe transition can introduce pseudo-

Hermitian metric η . Then evolution is unitary w.r. to η ,

but states are not orthogonal.

Note interface between Hermitian world (initial and final states)

and intervening non-Hermitian Hamiltonian.
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3. Coupling Hermitian and non-Hermitian Hamiltonians

Here we consider

H = H1 + H2 + coupling,

where H1 is Hermitian, and H2 is quasi-Hermitian

3.1 Matrix model:

H =









1 1 ε 0

1 1 0 ε

ε 0 reiθ s

0 ε s re−iθ









Unperturbed eigenvalues are 0 , 2 , r cos θ ± s cosα

( r sin θ = s sinα )

Numerically, eigenvalues are real up to ε ≈ 0.704. Then complex.
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3.2 SHO+shifted SHO:

H = p2 + x2
︸ ︷︷ ︸

+ q2 + y2 + 2iy
︸ ︷︷ ︸

+2εxy
︸ ︷︷ ︸

H1 H2 coupling

Construct Q to satisfy

H† = e−QHeQ

Solution is Q = 2

(
εp − q

1 − ε2

)

Note possible problems when |ε| → 1
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Now construct equivalent Hermitian Hamiltonian:

h = e−
1
2QHe

1
2Q

= p2 + x2 + q2 + y2 + 2εxy +
1

1 − ε2

Two coupled SHOs. Diagonalize by

x =
1√
2
(X + Y ) p =

1√
2
(P + Q)

y =
1√
2
(X − Y ) q =

1√
2
(P − Q)
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Net result is

h = P2 + (1 + ε)X2 + Q2 + (1 − ε)Y 2 +
1

1 − ε2

with eigenvalues

Em,n = (2m + 1)
√

1 + ε + (2n + 1)
√

1 − ε +
1

1 − ε2

So eigenvalues complex for |ε| > 1

10



3.3 SHO+Swanson Hamiltonian:

H = (p2 + x2) + (q2 + y2 + ic{q, y}+) + 2εxy

Can take Q = −cy2 , which shifts q → q − icy

Then

h = p2 + x2 + q2 + (1 − c2)y2 + 2εxy

Can be diagonalized, to give

h = P2 + Ω2
1X2 + Q2 + Ω2

2Y 2

where

Ω1,2 = 1 − 1

2
c2 ±

(

ε2 +
1

4
c4

)1
2
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Eigenvalues

Em,n = (2m + 1)Ω1 + (2n + 1)Ω2

again become complex when ε2 > 1 − c2

3.4 Generic Real V (x)+shifted SHO:

H = (p2 + V (x)) + (q2 + y2 + 2iy) + 2εxy

Can show in perturbation theory that E real up to O(ε2).

Attempting proof that E becomes complex for some ε
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4. Conceptual Problems in Scattering

4.1 Scattering off Simple non-Hermitian Potentials

(i) Two delta functions

Consider PT-symmetric potential:

V (x) = iλ(δ(x − a) − δ(x + a)) (4.1)

with WF

ψ =







eikx + Ce−ikx x < −a

Aeikx + Ce−ikx −a < x < a

Deikx a < x

(4.2)
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Applying conty condns [ψ] = 0 , [ψ′] = ±iλψ at boundaries, get

D =
1

1 + iα2e2ika sin 2ka

C = 2iDα(1 − α) sin 2ka,

(α ≡ λ/(2k))

In particular

|D|2 =
1

1 − 4α2(1 − α2) sin2 2ka

> 1 for α < 1

But in conventional QM, |D|2 represents the transmission prob-

ability . So probability not conserved even though V is PT-

symmetric.
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(ii) Same is true for complex square well (PT-symmetric):

V (x) =







0 |x| > a
−iλ −a < x < 0
iλ 0 < x < a

0.2 0.4 0.6 0.8 1 1.2 1.4
k

0.5

1

1.5

2

T
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(iii) and for single complex δ function: V = zδ(x) ,

with z = 2λ(1 + iε)
WF is just

ψ =







eikx + Ce−ikx x < 0

Deikx 0 < x,

with

D =

(

1 +
iz

2k

)−1

, C = − iz

2k
D .

Now

|C|2 + |D|2 =

(

1 − 2εq

1 + ε2 + q2

)−1

≷ 1 for ε ≷ 0

(k = λq)
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So in each case unitarity (as conventionally calculated) is vio-

lated.

Two approaches:

1. Treat V as an effective potℓ, and don’t worry (Cannata et al.)

2. Treat V as fundamental, and use appropriate η metric

Will go through this exercise, but note from beginning that it

must involve a fundamental redefinition of QM even at infinity.
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4.2 Quasi-Hermitian Approach (V = zδ(x)) (AM)

Recall that metric η ≡ e−Q is defined by

H† = ηHη−1

Then calculate matrix elements by including η

e.g.

〈A〉ψ = 〈ψ|ηA|ψ〉
A is an observable, with real eigenvalues, if it is quasi-Hermitian:

A† = ηAη−1

Mostafazadeh has calculated perturbn series for η :

η =
∞∑

r=0

εrη(r)

up to O(ε3).
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Matrix elements of η(0) and η(1) are

η(0)(x, y) = δ(x − y)

η(1)(x, y) =
1

2
iλ[θ(xy)e−λ|x−y| + θ(−xy)e−λ|x+y|] sgn(y2 − x2)

If we use η metric, x is no longer an observable. Instead position

observable is X, defined by

X = ρ−1xρ,

where ρ = η
1
2 = e−

1
2Q

Big problem is that η and ρ are non-local .
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According to AM, relevant WF is not ψ(x) ≡ 〈x|ψ〉 , but

Ψ(x) ≡ 〈x|Ψ〉 = 〈x|ρ|ψ〉

Then

〈X̂〉ψ = 〈ψ|ηX̂|ψ〉
= 〈Ψ|ρ−1η (ρ−1x̂ρ)ρ−1|Ψ〉
= 〈Ψ|x̂|Ψ〉 =

∫

x|Ψ(x)|2dx

Take new probability density as ̺ ≡ |Ψ(x)|2 .

Then total probability is conserved in time:

d(
∫

̺ dx)/dt = 0

[But ∄ local conservation equation of form ∂̺/∂t + dj/dx = 0 ]
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So, have to calculate

Ψ(x) =
∫

dyρ(x, y)ψ(y),

where ρ = η(0) + 1
2εη(1) + O(ε2)

Recall that

ψ =







eikx + Ce−ikx x < 0

Deikx 0 < x,

with

D =

(

1 +
iz

2k

)−1

, C = − iz

2k
D .

Result of this calculation for x > 0 , and to O(ε) , is
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Ψ>(x) = Deikx +
ελk

2(λ2 + k2)

(

e−ikx − (C + D)eikx
)

+ O(e−λx)

N.B. Ψ>(x) no longer represents a pure outgoing wave ∝ eikx

Contains term ∝ e−ikx as well. ∴ physical picture of the scat-

tering is completely changed.

But can neglect it to calculate probabilities to O(ε)

Then get

Ψ>(x) = eikx q

q + i

(

1 +
ε

2(q + i)

)

(k = qλ)
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Similarly, for x < 0 , get

Ψ<(x) = eikx

(

1 +
εq

2(q2 + 1)

)

− ie−ikx

q + i

(

1 +
ε

2(q + i)
− iε

)

so that

|Ψ<(x)|2 =

(

1 +
εq

q2 + 1

)

︸ ︷︷ ︸

+
1

q2 + 1

(

1 +
εq

q2 + 1

)

︸ ︷︷ ︸

+interference term

incoming flux outgoing flux

So just multiply Hermitian fluxes for real δ function 2λδ(x) by

same common factor.

Hence newly-defined probability is indeed conserved to this order
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5. Summary

1. Quantum brachistochrone works because of mixture of Her-

mitian and non-Hermitian Hamiltonians.

2. Can couple Hermitian and non-Hermitian systems weakly

while retaining real energies.

3. Scattering presents quasi-Hermitian QM with a quandary. If

Hamiltonian is to be treated as fundamental it necessitates

a change in the framework of QM even at infinity.

N.B. Problem is generic, and not confined to δ-functions and

square wells.

24


