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Motivation

« Pulse propagation in lossless optical fibers
as described by the focusing nonlinear

Schrodinger equation (joint work with
Ken Shaw)

« Inverse scattering transform method

« Non-selfadjoint operators exhibit inter-
esting eigenvalue behavior (joint work
with Boris Mityagin)



Physical Background

Under certain ideal conditions optical pulses
are governed by the nonlinear Schrodinger
equation (focusing case)

. 1 5
M, = 5 Uy — |ul”u,

where u(z,t) is the slowly varying field en-
velope of the pulse (suitably normalized)

Soliton solutions:

u(z,t) = Asech|A(t — vz)] ei["t—(VLAz)Z/Q]7

where A is the amplitude and v is the ve-
locity



Soliton solutions correspond to eigenvalues
of a Zakharov-Shabat system (ZS)
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where q(t) = u(0,1) is often referred to as
the potential and £ is the spectral parame-
ter; q(t)* is the complex conjugate of g(t).
We have

Given u(0,t) we can find u(z,t) by means
of the inverse scattering transform (IST).



The IST for the NLS

forward scattering

(0, 1) . SD(0)
NLSl lz—evolution
u(z,t) < SD(z)

inverse scattering

Scattering data SD(z) : eigenvalues, norm-
ing constants and a reflection coefficient

The scattering data evolve in a known way:.
In particular the eigenvalues are indepen-

dent of (.

Possible application: “eigenvalue communi-
cation” (Hasegawa and Kodama: Solitons
in Optical Communications, Oxford Series

1995)



The Zakharov-Shabat
eigenvalue problem

We assume throughout that
q € L'(R).
The ZS system can be written in the form

HU:(HO+Q)UZ€7J>

where
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Hy is selfadjoint, () is skew-selfadjoint.

and

The spectrum may contain nonreal compo-
nents.



H is (formally) J-selfadjoint,

JHJ = H'
(the 1 denotes the adjoint) and thus

If g is even or if q is real, then the eigenvalues
appear as quartets: &, £*, —&, and —¢&*.

The real axis consists of essential spectrum
and there are no real eigenvalues.



Bounds on the location of eigenvalues

Theorem Suppose that ¢ € L!(R). Then:

(¢) If ¢ is of bounded variation, then the
eigenvalues lie in the semi-disk

1
< — .
&l < 5 gl Var q]

(i2) If g € L' N LP, 1 < p < oo, then the
eigenvalues lie in the strip

0<8< lqll; llallt it ptoo

where 1/p+1/r=1, 8 =Im &.

Furthermore, if p = oo, then 0 < 8 <
min{||q|[co; g/l llall1/2}-

J. Bronski’s bounds (1995):
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(e = Re&).



Shape-dependence of EVs

A real potential in L!(R) is called single
lobe if there is a value ty such that ¢(t) is
nondecreasing for ¢ < t; and nonincreasing
for t > t.

Theorem (2002, with Ken Shaw) Suppose
q (or -q) is single lobe. Then there are no
non-imaginary eigenvalues and every imagi-

nary eigenvalue has (algebraic) multiplicity
L.

Recent extension (with B. Mityagin): If ¢ is
even, positive on (—d, d), absolutely contin-
uous on |—d,d|, q(t) = 0 for |t| > d, and
if ¢ has a single maximum at the point %
(0 <ty < d) such that q(tg) < 2¢q(0), then
all eigenvalues are purely imaginary.



A connection with PT-symmetric Hamilto-
nians

Suppose that ¢ is real and smooth. The ZS
eigenvalue problem reads

Hvo=(Hy+Q)v=~¢&v

where

. d (0 —q 1 0
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Squaring gives

(Ho+Q)*v = 2 v < (61 XO w = & w,

where
A= —d*/dt* +iq — ¢°.

If ¢ is also even, then A and A" are PT-
symmetric. Then we have a “single lobe
result” for A, which says that A can only
have real eigenvalues.

)



What happens if the potential is not single
lobe?

We consider the ZS system with potential

q(t) = pp(t),

where 1 > 0 is a coupling constant.

Thus the EVs become functions of . We
are particularly interested in those values of
1 for which

e two EVs collide
e an EV branch £(u) enters or leaves C*

at some point £ on the real axis (spec-
tral singularities)

We assume from now on that p is real and
even and that p has compact support [—d, d].



Eigenvalue collisions

Every eigenfunction belongs to one of two
symmetry subspaces:

S+ = {v(t) bounded : v1(0) = +v5(0)}

We note that &() is determined by the equa-
tion

vi(d; §(p), ) =0

and that we may assume
vi(—=d; &, ) = 1,0o(—d; &, ) = 0.
A wuseful tool is the formula
§'(p) =

L) [t E (), 1) + walt; E), w)?) dt
2 [* ot (), )va(t; €(p), )t




Since at & = 0 we have

oy(t:0, 1) = cos (u / td p(T)dT>
ot 0, 1) = — sin (M /_ td pde)

it follows that

2k — 1)1
Ul(d707:u>20<:>:u::uk:< d )
4 J, p(t)dt
for k=1,2,3,....
Then

i(—1)F [ p(t)dt
fod cos (2 fotp(T>dT>dt

whenever &(u) is an EV branch such that
&(pr) = 0.

Therefore

Im &'(ug,) > 0 = an EV appears as 1 1 pp+e
Im &'(uy) < 0 = an EV is absorbed as i | py

If kis odd (even), then v(t; 0, ugp) € S_(Sy).

& () =




Lemma Suppose vy(d; &(ur), ui) = 0 and
Im &'(py) < 0 for some k. Then there exists
0 < uf < pp such that &(u) is a simple
purely imaginary EV for uf < p < py and
a non-simple EV for p = py.

This means that the EV must originate from
a collision of two (or more) EVs.

Hypothesis (H) Suppose that p has sup-
port |—d, d], is positive, even, and has the
property that there exists an a € (0, d) such
that p is absolutely continuous on each of
the subintervals |0, a) and (a, d|.

Let

Niot(p) = #{k : 0 < e < p},
Now(pt) = #4k -0 < s < prond Im &) > 0},
Naown(pt) = #{k : 0 < pg < pand Im 5'(/%) < 0},

Let
L Jo p(t)dt _ pla+) pla—)
+) —

“ofpmd " pd) (plat) — pla—))




Theorem Assume hypothesis (H) holds.
Then the following are true:

(2) If |p| > 1, then Im &' (ux) > 0 for all
sufficiently large k.

(27) If [p| < 1 and w ¢ Q, then

Naown(pt) 1 arcsin |p|

U—>00 NtOt(M) N 2 /[

We also have results when |p| < 1 and w €

Q.

The theorem says that in case (¢4) infinitely
many collisions must occur.



Location of collisions

Theorem Suppose
(¢2) p(t) is even, p(t) =0 for 0 < t < a,
(4%) on |a, d], p(t) is positive and p'(t) € L.

Then there exist positive constants ci, co
such that if &(u) is a non-simple, purely
imaginary eigenvalue of the ZS system on
the subspace S, then £(p) € (c11n p, coIn )
provided p is sufficiently large. As p in-
creases, eigenvalues in (0, ¢1 In ] move down-
ward and eigenvalues in [c2 In pu, 00) move
upward.

There are no non-simple imaginary EVs on
S_ provided p is sufficiently large.



Let
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Theorem Suppose that p(t) is even, p(t) =
0for 0 <t < a, positive and absolutely con-
tinuous for a <t < d, and zero for ¢t > d.

Then collisions on S, occur for

- In(2ai;)]? In 72;) In(In 1
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at £ = 1 s¢, where
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Spectral singularities

Spectral singularities are points & € R where
Ul(d; 57 :u) = 0.

A typical result There exist two pairs of
sequences (£, , ;) and (&, i) such that

_ ™ _
ng%) :UJ]g_>OO

T

and vi(d; &, ) = 0, va(d; &, ) = 0.
Similar results hold at 57, n =2,3,....

Asymptotics:

o7 fadp(t) dt 1
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