Spectral properties of non-Hermitian systems arising in fiber optics

City University London, July 17 2007

Collaboration: Ken Shaw, Boris Mityagin

- Motivation
- Physical background, the NLS
- The Zakharov-Shabat eigenvalue problem:
 - existence and location of EVs
 - EVs and shape of the potential
 - parameter dependence of EVs
 - EV collisions
 - spectral singularities

Motivation

- Pulse propagation in lossless optical fibers as described by the focusing nonlinear Schrödinger equation (joint work with Ken Shaw)
- Inverse scattering transform method
- Non-selfadjoint operators exhibit interesting eigenvalue behavior (joint work with Boris Mityagin)

Physical Background

Under certain ideal conditions optical pulses are governed by the nonlinear Schrödinger equation (focusing case)

$$iu_z = -rac{1}{2}u_{tt} - |u|^2 u,$$

where u(z,t) is the slowly varying field envelope of the pulse (suitably normalized)

Soliton solutions:

$$u(z,t) = A \operatorname{sech}[A(t - vz)] e^{i[vt - (v^2 - A^2)z/2]},$$

where A is the amplitude and v is the velocity

Soliton solutions correspond to eigenvalues of a Zakharov-Shabat system (ZS)

$$v'_1 = -i \xi v_1 + q(t) v_2$$

$$v'_2 = -q(t)^* v_1 + i \xi v_2$$

where q(t) = u(0,t) is often referred to as the potential and ξ is the spectral parameter; $q(t)^*$ is the complex conjugate of q(t). We have

$$\xi = \frac{\mathbf{v}}{2} + \frac{A}{2}i.$$

Given u(0,t) we can find u(z,t) by means of the inverse scattering transform (IST).

The IST for the NLS

Scattering data SD(z): eigenvalues, norming constants and a reflection coefficient

The scattering data evolve in a known way. In particular the eigenvalues are independent of ζ .

Possible application: "eigenvalue communication" (Hasegawa and Kodama: Solitons in Optical Communications, Oxford Series 1995)

The Zakharov-Shabat eigenvalue problem

We assume throughout that

$$q \in L^1(\mathbb{R}).$$

The ZS system can be written in the form

$$H v = (H_0 + Q) v = \xi v,$$

where

$$H_0 = iJ\frac{d}{dt}, \qquad Q = i\begin{pmatrix} 0 & -q \\ -q^* & 0 \end{pmatrix},$$

and

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

 H_0 is selfadjoint, Q is skew-selfadjoint.

The spectrum may contain nonreal components.

H is (formally) J-selfadjoint,

$$JHJ = H^{\dagger}$$

(the † denotes the adjoint) and thus

$$\sigma(H) = \sigma(H)^*.$$

If q is even or if q is real, then the eigenvalues appear as quartets: ξ , ξ^* , $-\xi$, and $-\xi^*$.

The real axis consists of essential spectrum and there are no real eigenvalues.

Bounds on the location of eigenvalues

Theorem Suppose that $q \in L^1(\mathbb{R})$. Then:

(i) If q is of bounded variation, then the eigenvalues lie in the semi-disk

$$|\xi| \le \frac{1}{2} \|q\|_1 \, \operatorname{Var}_{\mathbb{R}} [q].$$

(ii) If $q \in L^1 \cap L^p$, 1 , then the eigenvalues lie in the strip

$$0 < \beta \le \frac{\|q\|_p^r \|q\|_1^r}{2r} \quad \text{if} \quad p \ne \infty,$$

where 1/p + 1/r = 1, $\beta = \text{Im } \xi$.

Furthermore, if $p = \infty$, then $0 < \beta \le \min\{\|q\|_{\infty}, \|q\|_{\infty} \|q\|_{1}/2\}$.

J. Bronski's bounds (1995):

$$\beta \le \frac{\|q'\|_{\infty}}{2\alpha}, \qquad \beta \le \frac{\|q''\|_{\infty} + \|(|q|^2)'\|_{\infty}}{\alpha^2} \quad (\alpha = \operatorname{Re} \xi).$$

Shape-dependence of EVs

A real potential in $L^1(\mathbb{R})$ is called **single lobe** if there is a value t_0 such that q(t) is nondecreasing for $t < t_0$ and nonincreasing for $t > t_0$.

Theorem (2002, with Ken Shaw) Suppose q (or -q) is single lobe. Then there are no non-imaginary eigenvalues and every imaginary eigenvalue has (algebraic) multiplicity 1.

Recent extension (with B. Mityagin): If q is even, positive on (-d, d), absolutely continuous on [-d, d], q(t) = 0 for |t| > d, and if q has a single maximum at the point t_0 $(0 < t_0 \le d)$ such that $q(t_0) < 2q(0)$, then all eigenvalues are purely imaginary.

A connection with PT-symmetric Hamiltonians

Suppose that q is real and smooth. The ZS eigenvalue problem reads

$$H v = (H_0 + Q) v = \xi v$$

where

$$H_0 = iJ\frac{d}{dt}, \quad Q = i\begin{pmatrix} 0 & -q \\ -q & 0 \end{pmatrix}, \quad J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Squaring gives

$$(H_0+Q)^2 v = \xi^2 v \Longleftrightarrow \begin{pmatrix} A & 0 \\ 0 & A^{\dagger} \end{pmatrix} w = \xi^2 w,$$

where

$$A = -d^2/dt^2 + iq' - q^2.$$

If q is also even, then A and A^{\dagger} are PT-symmetric. Then we have a "single lobe result" for A, which says that A can only have real eigenvalues.

What happens if the potential is not single lobe?

We consider the ZS system with potential

$$q(t) = \mu \, p(t),$$

where $\mu \geq 0$ is a coupling constant.

Thus the EVs become functions of μ . We are particularly interested in those values of μ for which

- two EVs collide
- an EV branch $\xi(\mu)$ enters or leaves \mathbb{C}^+ at some point ξ on the real axis (spectral singularities)

We assume from now on that p is real and even and that p has compact support [-d, d].

Eigenvalue collisions

Every eigenfunction belongs to one of two symmetry subspaces:

$$S_{\pm} = \{v(t) \text{ bounded} : v_1(0) = \pm v_2(0)\}$$

We note that $\xi(\mu)$ is determined by the equation

$$v_1(d; \xi(\mu), \mu) = 0$$

and that we may assume

$$v_1(-d; \xi, \mu) = 1, v_2(-d; \xi, \mu) = 0.$$

A useful tool is the formula

$$\xi'(\mu) =$$

$$-\frac{i\int_{-d}^{d} p(t) \left[v_{1}(t;\xi(\mu),\mu)^{2}+v_{2}(t;\xi(\mu),\mu)^{2}\right] dt}{2\int_{-d}^{d} v_{1}(t;\xi(\mu),\mu)v_{2}(t;\xi(\mu),\mu)dt}$$

Since at $\xi = 0$ we have

$$v_1(t; 0, \mu) = \cos\left(\mu \int_{-d}^t p(\tau)d\tau\right)$$
$$v_2(t; 0, \mu) = -\sin\left(\mu \int_{-d}^t p(\tau)d\tau\right)$$

it follows that

$$v_1(d; 0, \mu) = 0 \iff \mu = \mu_k = \frac{(2k-1)\pi}{4\int_0^d p(t)dt}$$

for $k = 1, 2, 3, \dots$

Then

$$\xi'(\mu_k) = \frac{i(-1)^{k+1} \int_0^d p(t)dt}{\int_0^d \cos(2\mu_k \int_0^t p(\tau)d\tau)dt}$$

whenever $\xi(\mu)$ is an EV branch such that $\xi(\mu_k) = 0$.

Therefore

Im $\xi'(\mu_k) > 0 \Longrightarrow$ an EV appears as $\mu \uparrow \mu_k + \epsilon$ Im $\xi'(\mu_k) < 0 \Longrightarrow$ an EV is absorbed as $\mu \downarrow \mu_k$

If k is odd (even), then $v(t; 0, \mu_k) \in \mathcal{S}_{-}(\mathcal{S}_{+})$.

Lemma Suppose $v_1(d; \xi(\mu_k), \mu_k) = 0$ and Im $\xi'(\mu_k) < 0$ for some k. Then there exists $0 < \mu_k^c < \mu_k$ such that $\xi(\mu)$ is a simple purely imaginary EV for $\mu_k^c < \mu < \mu_k$ and a non-simple EV for $\mu = \mu_k^c$.

This means that the EV must originate from a collision of two (or more) EVs.

Hypothesis (**H**) Suppose that p has support [-d, d], is positive, even, and has the property that there exists an $a \in (0, d)$ such that p is absolutely continuous on each of the subintervals [0, a) and (a, d].

Let

$$N_{tot}(\mu) = \#\{k : 0 < \mu_k \le \mu\},$$

$$N_{up}(\mu) = \#\{k : 0 < \mu_k \le \mu \text{ and } \operatorname{Im} \xi'(\mu_k) > 0\},$$

$$N_{down}(\mu) = \#\{k : 0 < \mu_k \le \mu \text{ and } \operatorname{Im} \xi'(\mu_k) < 0\},$$

Let

$$\omega = \frac{\int_0^a p(t)\,dt}{2\int_0^d p(t)\,dt}, \qquad \rho = \frac{p(a+)\,p(a-)}{p(d)\,(p(a+)-p(a-))}.$$

Theorem Assume hypothesis (H) holds. Then the following are true:

- (i) If $|\rho| > 1$, then Im $\xi'(\mu_k) > 0$ for all sufficiently large k.
- (ii) If $|\rho| \leq 1$ and $\omega \notin \mathbb{Q}$, then

$$\lim_{\mu \to \infty} \frac{N_{down}(\mu)}{N_{tot}(\mu)} = \frac{1}{2} - \frac{\arcsin|\rho|}{\pi}$$

We also have results when $|\rho| \leq 1$ and $\omega \in \mathbb{Q}$.

The theorem says that in case (ii) infinitely many collisions must occur.

Location of collisions

Theorem Suppose

- (i) p(t) is even, p(t) = 0 for $0 \le t < a$,
- (ii) on [a,d], p(t) is positive and $p'(t) \in L^{\infty}$.

Then there exist positive constants c_1 , c_2 such that if $\xi(\mu)$ is a non-simple, purely imaginary eigenvalue of the ZS system on the subspace \mathcal{S}_+ , then $\xi(\mu) \in (c_1 \ln \mu, c_2 \ln \mu)$ provided μ is sufficiently large. As μ increases, eigenvalues in $(0, c_1 \ln \mu]$ move downward and eigenvalues in $[c_2 \ln \mu, \infty)$ move upward.

There are no non-simple imaginary EVs on S_{-} provided μ is sufficiently large.

Let

$$\widehat{\mu}_k = \frac{(2k-1)\pi}{2\int_a^d p(t) dt},$$

$$\omega_1 = \int_a^d p(t) dt, \qquad \omega_2 = \frac{1}{2} \int_a^d \frac{dt}{p(t)}.$$

Theorem Suppose that p(t) is even, p(t) = 0 for $0 \le t < a$, positive and absolutely continuous for $a \le t \le d$, and zero for t > d.

Then collisions on \mathcal{S}_+ occur for

$$\mu_k^c = \widehat{\mu}_k + \frac{\omega_2}{4 a^2 \omega_1} \frac{\left[\ln(2a\widehat{\mu}_k)\right]^2}{\widehat{\mu}_k} + O\left(\frac{\left(\ln\widehat{\mu}_k\right) \ln(\ln\widehat{\mu}_k)}{\widehat{\mu}_k}\right),\,$$

at $\xi = i s_k^c$, where

$$s_k^c = \frac{\ln(2a\widehat{\mu}_k)}{2a} - \frac{1}{2a} \ln\left(\frac{\omega_2}{a} \ln(2a\widehat{\mu}_k)\right) + O\left(\frac{\ln(\ln\widehat{\mu}_k)}{\ln\widehat{\mu}_k}\right).$$

Spectral singularities

Spectral singularities are points $\xi \in \mathbb{R}$ where $v_1(d; \xi, \mu) = 0$.

A typical result There exist two pairs of sequences (ξ_k^-, μ_k^-) and (ξ_k^+, μ_k^+) such that

$$\xi_k^- \uparrow \frac{\pi}{2a}, \qquad \mu_k^- \to \infty$$

$$\xi_k^+ \downarrow \frac{\pi}{2a}, \qquad \mu_k^+ \to \infty$$

and $v_1(d; \xi_k^-, \mu_k^-) = 0$, $v_1(d; \xi_k^+, \mu_k^+) = 0$.

Similar results hold at $\frac{n\pi}{2a}$, $n = 2, 3, \ldots$

Asymptotics:

$$\xi_{k}^{-} = \frac{\pi}{2a} - \frac{\int_{a}^{d} p(t) dt}{4a^{2}p(d)k} + O\left(\frac{1}{k^{2}}\right)$$

$$\mu_{k}^{-} = \frac{k\pi}{\int_{a}^{d} p(t) dt} + \frac{\pi}{4 \int_{a}^{d} p(t) dt} + O\left(\frac{1}{k}\right)$$