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Motivation

• Importance of continuous symmetries

- Conservation laws

- Gauge symmetries

• Importance of Large-N limit

- Powerful insights

- Many different approaches

- Useful in many areas of physics



Topics

• Matrix Models with U(N) Symmetry 

‣ hep-th/0701207

• Vector Models with O(N)  Symmetry

‣ arXiv:0707.1655 [hep-th]



Matrix Model Formalism

Hermitian matrix models          Brezin et al. (1978)

More generally

L =
1
2
Tr

(
dM

dt

)2

+ TrV (M)
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2
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)2

+
g

N
TrM4

Note that the potential depends only on the
eigenvalues of M:

Tr V (M) =
∑

j

V (λj) M = UΛU+



PT-Symmetric Matrix Models

• Typical, rather than general case
• Defined by extending M from Hermitian to 

normal matrices: eigenvalues λj become complex.
• Assume that ground state is a singlet for all p.
- Can prove for p=2,4
- Would be nice to have general proof!
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Ground State Wave Function

• Singlet wave functions ψ are symmetric 
functions of eigenvalues.

• Tranformation of the wave function plus 
separation of variables reduce the equation to 
a single component.

φ (λ1, ..,λN ) =




∏

j<k

(λj − λk)



ψ (λ1, ..,λN )

φ (λ1, ..,λN ) =
∏

j

φkj (λj)H =
1
2
p2 − g

Np/2−1
(iλ)p



Problem becomes fermionic!
Symmetric ψ gives rise to antisymmetric Φ

φ (λ1, ..,λN ) =




∏

j<k

(λj − λk)



ψ (λ1, ..,λN )

Pauli exclusion principle:  
in ground state, fill lowest 
N levels

φ (λ1, ..,λN ) =
∏
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φkj (λj)
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WKB in the Complex Plane for Large-N

N =
1
2π

∫
dpdλ θ [EF −H(p, λ)]

• Formula must be interpreted by integrating 
over p first.

• Formula sets top of Fermi sea.
• Once Fermi energy is known, total ground 

energy is sum of individual enegies up to 
Fermi level.

E(0)
∞ =

1
2π

∫
dpdλ Hsc(p,λ)θ [εF −Hsc(p, λ)]



Results for p=3,4

N p=3 p=4

1 0.762852 0.930546

2 0.756058 0.935067

3 0.754860 0.935846

4 0.754443 0.936115

5 0.754251 0.936239

6 0.754147 0.936306

7 0.754084 0.936347

8 0.754043 0.936372

∞ 0.753991 0.936458

E(0)
∞ =

p + 2
3p + 2

[(π

2

)p
(

Γ(3/2 + 1/p)
sin (π/p) Γ(1 + 1/p)

)2p

g2

] 1
p+2

Integral can be carried out 
using the same two-segment 
path used in Bender and 
Boettcher (1998): straight-
line paths from the complex 
classical turning points to the 
origin.



Special Case: Tr M4

M = −2i
√

1 + iH

LPT =
1
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)2

+
1
2
m2Tr M2 − g

N
TrM4

LH =
1
2
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(
dΠ
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)2

−
√

2g

N
TrΠ−m2TrΠ2 +

4g

N
TrΠ4

PT-symmetric and Hermitian
models are isospectral!

• Proof follows Jones et al. (2006).
• Many features of N=1 case repeat.
• Anomaly dissappears in the large-N limit.
• Includes non-singlet states!
• Singlet nature of ground state follows.



Conclusions for Matrix Models

• The extension from Hermitian matrix models to 
PT-symmetric models is straightforward.

• The large-N limit can be constructed, and treated 
via WKB in a manner similar to Hermitian models.

• Numerical results show a rapid approach to the 
large-N limit as N increases.

• The PT-matrix anharmonic oscillator is equivalent 
to a Hermitian matrix anharmonic oscillator, 
generalizing one-component results.



PT-Symmetric Models with O(N) Symmetry

• Obvious O(N) symmetry.

• Mixed problem: radial mode plus angular 
modes involve different physics.

• Change of variable for single-component 
case is problematic here.

LE =
N∑

j=1

[
1
2
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]
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An Extended Model

LE =
N∑
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j
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−
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q

• g=0: N single-component PT-symmetric models
• λ=0: O(N) symmetric  model
• Interaction defined by analytic continuation 

from p,q=1



An Even More General Model

LE =
N∑

j=1

[
1
2

(∂txj)
2 +

1
2
m2x2

j

]
−

N∑

j,k=1

x2
jΛjkx2

k

Λ = λI + gP

P =
1
N




1 1 1
1 1 ..
1 .. ..



 P 2 = P

A general quartic interaction:

For our case:

P is the projector 
for the radial mode:



Strategy

• Λ has 1 eigenvalue g+λ 
and N-1 eigenvalues λ.

• PT- model is defined 
over an extended 
region.

• PT-symmetric model is 
recovered in the limit λ 
goes to zero.

Λ = (I − P ) + (g + λ) P



Equivalence to Hermitian Models

• Proof again follows Jones et al. (2006)
✦ Substitution, with inclusion of ΔV
✦ Promotion of functional determinant into action
✦ Integration by parts
✦ Functional integration over the original fields

• Many features of N=1 case repeat.
✓Quartic interactions
✓Mass term flips sign
✓Anomaly present
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∑

j
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The case N=2

h1 = 1√
2

(σ + π)
h2 = 1√

2
(σ − π)

σ →
√

g + λ

λ
σ

• Thus far we have complete  
permutation symmetry.

• Taking λ to zero requires a 
rescaling that breaks that 
symmetry.

• Even before taking the limit, 
there is a natural scale 
separating π and σ

LE =
1
2
σ̇2 +

1
2
π̇2 −m2σ2 − λm2

g + λ
π2 + 2 (g + λ) σ4 +

2λ2

g + λ
π4 + (8g + 12λ) σ2π2 − 2

√
g + λσ



N=2 and the Limit λ=0

LE =
1
2
σ̇2 +

1
2
π̇2 −m2σ2 + 2gσ4 + 8gσ2π2 − 2

√
gσ

• No obvious O(2) invariance.
• π has no mass term, and no quartic self 

coupling. π appears only quadratically.
• Anomaly involves only sigma, and breaks σ’s 

discrete symmetry.
• Interactions with σ will give π a mass.



The Hermitian Form of the O(N) Model

LE =
1
2
σ̇2 +

1
2
"̇π2 −m2σ2 +

4g

N
σ4 +

16g

N
σ2"π2 −

√
2gNσ

• Has the same features the N=2 case has.
• O(N-1) symmetry manifest.

Could we have guessed this?



The Large-N Limit of the O(N) Model

σ →
√

Nσ

LE =
N

2
σ̇2 +

1
2
"̇π2 −Nm2σ2 + 4gNσ4 + 16gσ2"π2 −N

√
2gσ

Veff/N = −m2σ2 + 4gσ4 +
1
2

√
32gσ2 −

√
2gσ

• We can take the large-N limit by 
rescaling σ.

• Integrating over the (N-1) π fields 
gives the large-N effective potential.



An “Alternate Derivation”

LE =
N∑
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LE =
N∑

j=1

[
1
2

(∂txj)
2 + 4ρx2

j

]
+

4Nρ2

g
− Nm2ρ

g
+

Nm4

16g

Let’s return to the orginal O(N) invariant Lagrangian: 

We introduce a constraint field ρ          Coleman et al. (1974)

Original fields now quadratic.



Back to the Future?

ρ = gσ2

• If we integrate over the x’s in the most 
naive and unjustified way, we obtain the 
large-N effective potential for ρ.

• It is essentially identical to our previous 
result.

Veff/N =
4ρ2

g
− m2ρ

g
+

√
2ρ +

m4

16g

Veff/N = −m2σ2 + 4gσ4 +
1
2

√
32gσ2 −

√
2gσ



PT-Symmetric Field Theories

−g
(
!φ2

)2

Veff/N =
4ρ2

g
− m2ρ

g
+

m4

16g
+

1
2

∫
ddk

(2π)d
ln

[
k2 + 8ρ

]

β = −g2/2π2

• If we boldly 
extend this 
reasoning to field 
theory....

• Of course, this 
gives asymptotic 
freedom in the 
large-N limit..



Conclusions for O(N) Models

• We now know the Hermitian form of O(N)-
invariant PT-symmetric quantum mechanics. Its 
form has many unusual features.

• Its large-N limit can be derived in a simple way 
that we cannot yet justify.

• Arguments suggest that PT-symmetric field 
theories are asymptotically free, at least in the 
large-N limit.


