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Motivation

® |mportance of continuous symmetries
- Conservation laws
- Gauge symmetries
® |Importance of Large-N limit
- Powerful insights
- Many different approaches

- Useful in many areas of physics



Topics

® Matrix Models with U(N) Symmetry
» hep-th/0701207

® Vector Models with O(N) Symmetry
» arXiv:0707.1655 [hep-th]



Matrix Model Formalism

Hermitian matrix models Brezin et al. (1978)
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More generally
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Note that the potential depends only on the
eigenvalues of M:
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PT-Symmetric Matrix Models
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* Typical, rather than general case

* Defined by extending M from Hermitian to
normal matrices: eigenvalues A\; become complex.

* Assume that ground state is a singlet for all p.
- Can prove for p=2,4
- Would be nice to have general proof!




Ground State Wave Function

* Singlet wave functions P are symmetric
functions of eigenvalues.

* Tranformation of the wave function plus
separation of variables reduce the equation to
a single component.
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Problem becomes fermionic!
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Pauli exclusion principle:

in ground state, fill lowest

N levels
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WKB in the Complex Plane for Large-N
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* Formula must be interpreted by integrating
over p first.

* Formula sets top of Fermi sea.

* Once Fermi energy is known, total ground
energy is sum of individual enegies up to
Fermi level.
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Results for p=3,4
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Integral can be carried out

using the same two-segment

path used in Bender and
Boettcher (1998): straight-

line paths from the complex
classical turning points to the

origin.
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N p=3 p=4
I 0.762852]0.930546
2 0.756058(0.935067
3 0.754860(0.935846
4 0.75444310.9361 15
5 0.75425110.936239
6 0.75414710.936306
7 0.75408410.936347
8 0.75404310.936372
00 0.75399110.936458




Special Case:Tr M*

PT-symmetric and Hermitian STIN
models are isospectral!
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* Proof follows |ones et al. (2006).

* Many features of N=1I case repeat.

* Anomaly dissappears in the large-N limit.
* Includes non-singlet states!

* Singlet nature of ground state follows.



Conclusions for Matrix Models

* The extension from Hermitian matrix models to
PT-symmetric models is straightforward.

* The large-N limit can be constructed, and treated
via WKB in 2 manner similar to Hermitian models.

* Numerical results show a rapid approach to the
large-N limit as N increases.

* The PT-matrix anharmonic oscillator is equivalent
to a Hermitian matrix anharmonic oscillator,
generalizing one-component results.



PT-Symmetric Models with O(N) Symmetry
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® Obvious O(N) symmetry.

® Mixed problem: radial mode plus angular
modes involve different physics.

® Change of variable for single-component
case is problematic here.



An Extended Model
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* g=0: N single-component PT-symmetric models

* A=0: O(N) symmetric model

* Interaction defined by analytic continuation
from p,q=|
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An Even More General Model

A general quartic interaction:
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For our case: A _ 14 4pP

P is the projector
for the radial mode;:
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Strategy

A={UI—-P)+(g+MNP
* A has | eigenvalue g+A ( A

and N-1 eigenvalues A.
* PT- model is defined
over an extended

region.

* PT-symmetric model is
recovered in the limit A
goes to zero.




Equivalence to Hermitian Models
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* Proof again follows |ones et al. (2006)
+ Substitution, with inclusion of AV
+ Promotion of functional determinant into action
+ Integration by parts
+ Functional integration over the original fields
* Many features of N=1| case repeat.
v Quartic interactions
v Mass term flips sign
v Anomaly present




The case N=2

* Thus far we have complete

permutation symmetry. hi = == (0 + )
* Taking A to zero requires a hy = —5 (0 — )
rescaling that breaks that
symmetry. g+ A
. o o — o2
* Even before taking the limit, A

there is a natural scale
separating TTand O
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N=2 and the Limit A=0
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* No obvious O(2) invariance.

* T has no mass term, and no quartic self
coupling. TT appears only quadratically.

* Anomaly involves only sigma, and breaks O’s
discrete symmetry.

* Interactions with O will give T a mass.



The Hermitian Form of the O(N) Model
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e Has the same features the N=2 case has.
* O(N-1) symmetry manifest.

Could we have guessed this!?



The Large-N Limit of the O(N) Model

* We can take the large-N limit by >V No
rescaling O.

* Integrating over the (N-1) 17 fields
gives the large-N effective potential.
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An “Alternate Derivation”

Let’s return to the orginal O(N) invariant Lagrangian:
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We introduce a constraint field p Coleman et al. (1974)
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Original fields now quadratic.



Back to the Future?

* If we integrate over the x’s in the most
naive and unjustified way, we obtain the
large-N effective potential for p.

* |t is essentially identical to our previous
result.
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PT-Symmetric Field Theories

* |f we boldly
extend this —g (52)2
reasoning to field
theory....
40 m?p m* 1 / dk 2

* Of course, this
gives asymptotic
freedom in the
large-N limit..

B=—g*/2n°



Conclusions for O(N) Models

* We now know the Hermitian form of O(N)-
invariant PT-symmetric quantum mechanics. Its
form has many unusual features.

* |ts large-N limit can be derived in a simple way
that we cannot yet justify.

* Arguments suggest that PT-symmetric field
theories are asymptotically free, at least in the
large-N limit.



