PT Symmetry,
 Continuous Symmetries, and

 Large-N

 Large-N}

Michael Ogilvie
Washington University
St. Louis, MO 63I30 USA
mco@physics.wustl.edu

Motivation

- Importance of continuous symmetries
- Conservation laws
- Gauge symmetries
- Importance of Large-N limit
- Powerful insights
- Many different approaches
- Useful in many areas of physics

Topics

- Matrix Models with $U(N)$ Symmetry
- hep-th/070I207
- Vector Models with $\mathrm{O}(\mathrm{N})$ Symmetry
| arXiv:0707.I655 [hep-th]

Matrix Model Formalism

Hermitian matrix models Brezin et al. (1978)

$$
\frac{1}{2} \operatorname{Tr}\left(\frac{d M}{d t}\right)^{2}+\frac{g}{N} \operatorname{Tr} M^{4}
$$

More generally

$$
L=\frac{1}{2} \operatorname{Tr}\left(\frac{d M}{d t}\right)^{2}+\operatorname{Tr} V(M)
$$

Note that the potential depends only on the eigenvalues of M :

$$
\operatorname{Tr} V(M)=\sum_{j} V\left(\lambda_{j}\right) \quad M=U \Lambda U^{+}
$$

PT-Symmetric Matrix Models

$$
L=\frac{1}{2} \operatorname{Tr}\left(\frac{d M}{d t}\right)^{2}-\frac{g}{N^{p / 2-1}} \operatorname{Tr}(i M)^{p}
$$

- Typical, rather than general case
- Defined by extending M from Hermitian to normal matrices: eigenvalues λ_{j} become complex.
- Assume that ground state is a singlet for all p.
- Can prove for $p=2,4$
- Would be nice to have general proof!

Ground State Wave Function

- Singlet wave functions ψ are symmetric functions of eigenvalues.
- Tranformation of the wave function plus separation of variables reduce the equation to a single component.

$$
\begin{gathered}
\phi\left(\lambda_{1}, . ., \lambda_{N}\right)=\left[\prod_{j<k}\left(\lambda_{j}-\lambda_{k}\right)\right] \psi\left(\lambda_{1}, . ., \lambda_{N}\right) \\
H=\frac{1}{2} p^{2}-\frac{g}{N^{p / 2-1}}(i \lambda)^{p} \quad \phi\left(\lambda_{1}, . ., \lambda_{N}\right)=\prod_{j} \phi_{k_{j}}\left(\lambda_{j}\right)
\end{gathered}
$$

Problem becomes fermionic!

Symmetric Ψ gives rise to antisymmetric Φ

$$
\phi\left(\lambda_{1}, . ., \lambda_{N}\right)=\left[\prod_{j<k}\left(\lambda_{j}-\lambda_{k}\right)\right] \psi\left(\lambda_{1}, . ., \lambda_{N}\right)
$$

Pauli exclusion principle: in ground state, fill lowest N levels

$$
\begin{aligned}
& \phi\left(\lambda_{1}, . ., \lambda_{N}\right)=\prod_{j} \phi_{k_{j}}\left(\lambda_{j}\right) \\
& H=\frac{1}{2} p^{2}-\frac{g}{N^{p / 2-1}}(i \lambda)^{p}
\end{aligned}
$$

WKB in the Complex Plane for Large- N

$$
N=\frac{1}{2 \pi} \int d p d \lambda \theta\left[E_{F}-H(p, \lambda)\right]
$$

- Formula must be interpreted by integrating over p first.
- Formula sets top of Fermi sea.
- Once Fermi energy is known, total ground energy is sum of individual enegies up to Fermi level.

$$
E_{\infty}^{(0)}=\frac{1}{2 \pi} \int d p d \lambda H_{s c}(p, \lambda) \theta\left[\epsilon_{F}-H_{s c}(p, \lambda)\right]
$$

Results for $p=3,4$

$$
E_{\infty}^{(0)}=\frac{p+2}{3 p+2}\left[\left(\frac{\pi}{2}\right)^{p}\left(\frac{\Gamma(3 / 2+1 / p)}{\sin (\pi / p) \Gamma(1+1 / p)}\right)^{2 p} g^{2}\right]^{\frac{1}{p+2}}
$$

Integral can be carried out using the same two-segment path used in Bender and Boettcher (1998): straightline paths from the complex classical turning points to the origin.

N	$\mathrm{p}=3$	$\mathrm{p}=4$
I	0.762852	0.930546
2	0.756058	0.935067
3	0.754860	0.935846
4	0.754443	0.936115
5	0.75425 I	0.936239
6	0.754147	0.936306
7	0.754084	0.936347
8	0.754043	0.936372
∞	0.753991	0.936458

Special Case: $\operatorname{Tr} \mathrm{M}^{4}$

PT-symmetric and Hermitian

 models are isospectral!

$$
M=-2 i \sqrt{1+i H}
$$

$$
\begin{aligned}
& L_{P T}=\frac{1}{2} \operatorname{Tr}\left(\frac{d M}{d t}\right)^{2}+\frac{1}{2} m^{2} \operatorname{Tr} M^{2}-\frac{g}{N} \operatorname{Tr} M^{4} \\
& L_{H}=\frac{1}{2} \operatorname{Tr}\left(\frac{d \Pi}{d t}\right)^{2}-\sqrt{\frac{2 g}{N}} \operatorname{Tr} \Pi-m^{2} \operatorname{Tr} \Pi^{2}+\frac{4 g}{N} \operatorname{Tr} \Pi^{4}
\end{aligned}
$$

- Proof follows Jones et al. (2006).
- Many features of $\mathrm{N}=\mathrm{I}$ case repeat.
- Anomaly dissappears in the large- N limit.
- Includes non-singlet states!
- Singlet nature of ground state follows.

Conclusions for Matrix Models

- The extension from Hermitian matrix models to PT-symmetric models is straightforward.
- The large- N limit can be constructed, and treated via WKB in a manner similar to Hermitian models.
- Numerical results show a rapid approach to the large- N limit as N increases.
- The PT-matrix anharmonic oscillator is equivalent to a Hermitian matrix anharmonic oscillator, generalizing one-component results.

PT-Symmetric Models with $\mathrm{O}(\mathrm{N})$ Symmetry

$$
L_{E}=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\partial_{t} x_{j}\right)^{2}+\frac{1}{2} m^{2} x_{j}^{2}\right]-\frac{g}{N}\left(\sum_{j=1}^{N} x_{j}^{2}\right)^{2}
$$

- Obvious $\mathrm{O}(\mathrm{N})$ symmetry.
- Mixed problem: radial mode plus angular modes involve different physics.
- Change of variable for single-component case is problematic here.

An Extended Model

$$
L_{E}=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\partial_{t} x_{j}\right)^{2}+\frac{1}{2} m^{2} x_{j}^{2}-\lambda x_{j}^{4}\right]-\frac{g}{N}\left(\sum_{j=1}^{N} x_{j}^{2}\right)^{2}
$$

- $g=0: N$ single-component PT-symmetric models
- $\lambda=0: \mathrm{O}(\mathrm{N})$ symmetric model
- Interaction defined by analytic continuation from $p, q=I$

$$
-\lambda \sum_{j=1}^{N}\left(-i x_{j}\right)^{2 p}-\frac{g}{N}\left(-\sum_{j=1}^{N} x_{j}^{2}\right)^{q}
$$

An Even More General Model

A general quartic interaction:

$$
L_{E}=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\partial_{t} x_{j}\right)^{2}+\frac{1}{2} m^{2} x_{j}^{2}\right]-\sum_{j, k=1}^{N} x_{j}^{2} \Lambda_{j k} x_{k}^{2}
$$

For our case:

$$
\Lambda=\lambda I+g P
$$

P is the projector for the radial mode:

$$
P=\frac{1}{N}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & . . \\
1 & . . & . .
\end{array}\right) \quad P^{2}=P
$$

Strategy

- Λ has I eigenvalue $g+\lambda$

$$
\Lambda=(I-P)+(g+\lambda) P
$$ and N-I eigenvalues λ.

- PT- model is defined over an extended region.
- PT-symmetric model is recovered in the limit λ goes to zero.

Equivalence to Hermitian Models

$$
\begin{aligned}
L_{E}=\sum_{j} & {\left[\frac{1}{2} \dot{h}_{j}^{2}+4 \lambda\left(h_{j}^{2}-\frac{m^{2}}{8 \lambda}\right)^{2}\right]-\sqrt{2 \lambda} \sum_{j} h_{j} } \\
& -\frac{g}{N(g+\lambda)}\left[\frac{1}{2}\left(\sum_{j} \dot{h}_{j}\right)^{2}+4 \lambda\left(\sum_{j}\left(h_{j}^{2}-\frac{m^{2}}{8 \lambda}\right)\right)^{2}\right]
\end{aligned}
$$

- Proof again follows Jones et al. (2006)
- Substitution, with inclusion of ΔV
- Promotion of functional determinant into action
- Integration by parts
- Functional integration over the original fields
- Many features of $N=1$ case repeat.
\checkmark Quartic interactions
\checkmark Mass term flips sign
\checkmark Anomaly present

The case $\mathrm{N}=2$

- Thus far we have complete permutation symmetry.
- Taking λ to zero requires a

$$
\begin{aligned}
& h_{1}=\frac{1}{\sqrt{2}}(\sigma+\pi) \\
& h_{2}=\frac{1}{\sqrt{2}}(\sigma-\pi)
\end{aligned}
$$

rescaling that breaks that

symmetry.

- Even before taking the limit,

$$
\sigma \rightarrow \sqrt{\frac{g+\lambda}{\lambda}} \sigma
$$ there is a natural scale separating π and σ

$$
L_{E}=\frac{1}{2} \dot{\sigma}^{2}+\frac{1}{2} \dot{\pi}^{2}-m^{2} \sigma^{2}-\frac{\lambda m^{2}}{g+\lambda} \pi^{2}+2(g+\lambda) \sigma^{4}+\frac{2 \lambda^{2}}{g+\lambda} \pi^{4}+(8 g+12 \lambda) \sigma^{2} \pi^{2}-2 \sqrt{g+\lambda} \sigma
$$

$\mathrm{N}=2$ and the Limit $\lambda=0$

$$
L_{E}=\frac{1}{2} \dot{\sigma}^{2}+\frac{1}{2} \dot{\pi}^{2}-m^{2} \sigma^{2}+2 g \sigma^{4}+8 g \sigma^{2} \pi^{2}-2 \sqrt{g} \sigma
$$

- No obvious $\mathrm{O}(2)$ invariance.
- π has no mass term, and no quartic self coupling. π appears only quadratically.
- Anomaly involves only sigma, and breaks σ 's discrete symmetry.
- Interactions with σ will give π a mass.

The Hermitian Form of the $\mathrm{O}(\mathrm{N})$ Model

$$
L_{E}=\frac{1}{2} \dot{\sigma}^{2}+\frac{1}{2} \dot{\vec{\pi}}^{2}-m^{2} \sigma^{2}+\frac{4 g}{N} \sigma^{4}+\frac{16 g}{N} \sigma^{2} \vec{\pi}^{2}-\sqrt{2 g N} \sigma
$$

- Has the same features the $\mathrm{N}=2$ case has.
- $\mathrm{O}(\mathrm{N}-\mathrm{I})$ symmetry manifest.

Could we have guessed this?

The Large-N Limit of the $\mathrm{O}(\mathrm{N})$ Model

- We can take the large-N limit by

$$
\sigma \rightarrow \sqrt{N} \sigma
$$ rescaling σ.

- Integrating over the ($\mathrm{N}-\mathrm{I}$) π fields gives the large- N effective potential.

$$
\begin{gathered}
L_{E}=\frac{N}{2} \dot{\sigma}^{2}+\frac{1}{2} \dot{\vec{\pi}}^{2}-N m^{2} \sigma^{2}+4 g N \sigma^{4}+16 g \sigma^{2} \vec{\pi}^{2}-N \sqrt{2 g} \sigma \\
\\
V_{e f f} / N=-m^{2} \sigma^{2}+4 g \sigma^{4}+\frac{1}{2} \sqrt{32 g \sigma^{2}}-\sqrt{2 g} \sigma
\end{gathered}
$$

An "Alternate Derivation"

Let's return to the orginal $\mathrm{O}(\mathrm{N})$ invariant Lagrangian:

$$
L_{E}=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\partial_{t} x_{j}\right)^{2}+\frac{1}{2} m^{2} x_{j}^{2}\right]-\frac{g}{N}\left(\sum_{j=1}^{N} x_{j}^{2}\right)^{2}
$$

We introduce a constraint field $\rho \quad$ Coleman et al. (I974)

$$
\begin{gathered}
L_{E} \rightarrow L_{E}+\frac{g}{N}\left(\frac{2 N \rho}{g}+\sum_{j=1}^{N} x_{j}^{2}-\frac{N m^{2}}{4 g}\right)^{2} \\
L_{E}=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\partial_{t} x_{j}\right)^{2}+4 \rho x_{j}^{2}\right]+\frac{4 N \rho^{2}}{g}-\frac{N m^{2} \rho}{g}+\frac{N m^{4}}{16 g}
\end{gathered}
$$

Original fields now quadratic.

Back to the Future?

- If we integrate over the x's in the most naive and unjustified way, we obtain the large- N effective potential for ρ.
- It is essentially identical to our previous result.

$$
\begin{array}{r}
V_{e f f} / N=\frac{4 \rho^{2}}{g}-\frac{m^{2} \rho}{g}+\sqrt{2 \rho}+\frac{m^{4}}{16 g} \\
\quad \rho=g \sigma^{2} \\
V_{e f f} / N=-m^{2} \sigma^{2}+4 g \sigma^{4}+\frac{1}{2} \sqrt{32 g \sigma^{2}}-\sqrt{2 g} \sigma
\end{array}
$$

PT-Symmetric Field Theories

- If we boldly extend this reasoning to field

$$
-g\left(\vec{\phi}^{2}\right)^{2}
$$ theory....

$$
V_{e f f} / N=\frac{4 \rho^{2}}{g}-\frac{m^{2} \rho}{g}+\frac{m^{4}}{16 g}+\frac{1}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \ln \left[k^{2}+8 \rho\right]
$$

- Of course, this gives asymptotic freedom in the large-N limit..

Conclusions for $\mathrm{O}(\mathrm{N})$ Models

- We now know the Hermitian form of $\mathrm{O}(\mathrm{N})$ invariant PT-symmetric quantum mechanics. Its form has many unusual features.
- Its large- N limit can be derived in a simple way that we cannot yet justify.
- Arguments suggest that PT-symmetric field theories are asymptotically free, at least in the large-N limit.

