Non-Hermitian von Roos Hamiltonian's η-weak-pseudo-Hermiticity and exact solvability

Omar Mustafa ${ }^{1}$ and S.Habib Mazharimousavi ${ }^{2}$
Department of Physics, Eastern Mediterranean University, G Magusa, North Cyprus, Mersin 10,Turkey
${ }^{1}$ E-mail: omar.mustafa@emu.edu.tr
${ }^{2}$ E-mail: habib.mazhari@emu.edu.tr

July 13, 2007

Abstract

A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η-weak-pseudo-Hermitian Hamiltonians. Two "user -friendly" reference-target maps are introduced to serve for exactsolvability of some non-Hermitian η-weak-pseudo-Hermitian position dependent mass Hamiltonians. A non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Scarf II and a non-Hermitian periodic-type $\mathcal{P} \mathcal{T}$-symmetric Samsonov-Roy potentials are used as reference models in a "user-friendly" reference-target map and the corresponding isospectral Hamiltonians are obtained. It is observed that for each exactly-solvable reference Hamiltonian there is a corresponding set of exactly-solvable target Hamiltonians.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1 Introduction

Subjected to von Roos constraint $\alpha+\beta+\gamma=-1 ; \alpha, \beta, \gamma \in \mathbb{R}$, the von Roos position-dependent-mass (PDM) Hamiltonian [1-12] reads

$$
\begin{equation*}
H=-\partial_{x}\left(\frac{1}{M(x)}\right) \partial_{x}+\tilde{V}(x) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{V}(x)=\frac{1}{2}(1+\beta) \frac{M^{\prime \prime}(x)}{M(x)^{2}}-[\alpha(\alpha+\beta+1)+\beta+1] \frac{M^{\prime}(x)^{2}}{M(x)^{3}}+V(x), \tag{2}
\end{equation*}
$$

and primes denote derivatives. An obvious profile change of the potential $\tilde{V}(x)$ obtains as α, β, and γ change, manifesting in effect an ordering ambiguity con-
flict in the process of choosing a unique kinetic energy operator

$$
\begin{equation*}
T=-\frac{1}{2}\left[M(x)^{\alpha} \partial_{x} M(x)^{\beta} \partial_{x} M(x)^{\gamma}+M(x)^{\gamma} \partial_{x} M(x)^{\beta} \partial_{x} M(x)^{\alpha}\right] \tag{3}
\end{equation*}
$$

Hence, α, β, and γ are usually called the von Roos ambiguity parameters. Yet, such PDM-quantum-particles (i.e., $M(x)=m_{\circ} m(x)$) are used in the energy density many-body problem, in the determination of the electronic properties of semiconductors and quantum dots [1-5].

Regardless of the continuity requirements on the wave function at the boundaries of abrupt herterojunctions between two crystals [6] and/or Dutra's and Almeida's [7] reliability test, there exist several suggestions for the kinetic energy operator in (3). We may recollect the Gora's and Williams' ($\beta=\gamma=0$, $\alpha=-1$) [8], Ben Danial's and Duke's $(\alpha=\gamma=0, \beta=-1)$ [9], Zhu's and Kroemer's $(\alpha=\gamma=-1 / 2, \beta=0)$ [10], Li's and Kuhn's $(\beta=\gamma=-1 / 2, \alpha=0)$ [11], and the very recent Mustafa's and Mazharimousavi's $(\alpha=\gamma=-1 / 4$, $\beta=-1 / 2)[3]$. Nevertheless, in this work we shall deal with these orderings irrespective to their classifications of being "good-" (i.e., satisfying the continuity requirements on the wave function, mentioned above, and surviving the Dutra's and Almeida's [7] reliability test) or "to-be-discarded-" orderings (i.e., not satisfying the continuity requirements on the wave function and/or failing the Dutra's and Almeida's [7] reliability test). The reader is advised to refer to, e.g., Mustafa and Mazharimousavi [3] for more details.

The growing interest in the non-Hermitian pseudo-Hermitian Hamiltonians with real spectra [13-21], on the other hand, have inspired our resent work on PDM first-order-intertwining operator and η-weak-pseudo-Hermiticity generators [12]. A Hamiltonian H is pseudo-Hermitian if it obeys the similarity transformation $\eta H \eta^{-1}=H^{\dagger}$, where η is a Hermitian invertible linear operator and $\left({ }^{\dagger}\right)$ denotes the adjoint. The existence of real eigenvalues is realized to be associated with a non-Hermitian Hamiltonian provided that it is an η-pseudoHermitian:

$$
\begin{equation*}
\eta H=H^{\dagger} \eta \tag{4}
\end{equation*}
$$

with respect to the nontrivial "metric"operator $\eta=O^{\dagger} O$, for some linear invertible operator $O: \mathcal{H} \rightarrow \mathcal{H}(\mathcal{H}$ is the Hilbert space $)$. However, under some rather mild assumptions, we may even relax H to be an η-weak-pseudo-Hermitian by not restricting η to be Hermitian (cf., e.g., Bagchi and Quesne [17]), and linear and/or invertible (cf., e.g., Solombrino [18], Fityo [19], and Mustafa and Mazharimousavi [12,20]).

Whilst in the non-Hermitian pseudo-Hermitian Hamiltonians neighborhood [13-22], the non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians (i.e., a Bender's and Boettcher's [13] initiative on the so called nowadays $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics) are unavoidably in point. They form a subclass of the non-Hermitian pseudo-Hermitian Hamiltonians (where \mathcal{P} denotes parity and \mathcal{T} mimics the time reversal). Namely, if $\mathcal{P} \mathcal{T} H \mathcal{P} \mathcal{T}=H$ and if $\mathcal{P} \mathcal{T} \Phi(x)= \pm \Phi(x)$ the eigenvalues turn out to be real. However, if the latter condition is not satisfied the eigenvalues appear in complex-conjugate pairs (cf., e.g., Ahmed in [13]).

In this work, we consider (in section 2) a complexified von Roos Hamiltonian (1) (i.e., $\tilde{V}(x) \longrightarrow \tilde{V}(x)+i W(x))$ regardless of the nature of the ordering of the ambiguity parameters as to being "good" or "to-be-discarded" ones. A Hermitian first-order differential PDM-intertwining operator is used to obtain the corresponding non-Hermitian η-weak-pseudo-Hermitian PDM-Hamiltonian. The related reference/old-target/new non-Hermitian η-weak-pseudo-Hermitian Hamiltonians' map is also given in the same section. Yet, in connection with the resulting effective reference/old potential, two feasible "user-friendly" forms are suggested to serve for exact-solvability of some non-Hermitian η-weak-pseudoHermitian PDM-Hamiltonians. Such user-friendly forms turn out to imply that there is always a set of isospectral target/new non-Hermitian η-weak-pseudo-Hermitian PDM-Hamiltonians associated with "one" exactly-solvable reference/old non-Hermitian η-weak-pseudo-Hermitian PDM-Hamiltonian. In section 3, we use two illustrative examples (i.e., a complexified $P T$-symmetric Scarf-II and a periodic-type $P T$-symmetric Samsonov-Roy potentials) as reference/old models in one of the two "user-friendly" forms and report the corresponding sets of isospectral target/new non-Hermitian η-weak-pseudo-Hermitian PDM-Hamiltonians. Section 4 is devoted for the concluding remarks.

2 An η-intertwiner and η-weak-pseudo-Hermitian Hamiltonians' reference-target map

A complexification of the potential $\tilde{V}(x)$ in (1) may be achieved by the transformation $\tilde{V}(x) \longrightarrow \tilde{V}(x)+i W(x)$, where $\tilde{V}(x), W(x) \in \mathbb{R}$ and $\mathbb{R} \ni x \in$ $(-\infty, \infty)$. Hence, Hamiltonian (1) becomes non-Hermitian and reads

$$
\begin{equation*}
H=-\mu(x)^{2} \partial_{x}^{2}-2 \mu(x) \mu^{\prime}(x) \partial_{x}+\tilde{V}(x)+i W(x) \tag{5}
\end{equation*}
$$

with $\mu(x)= \pm 1 / \sqrt{M(x)}$. A Hermitian first-order intertwining PDM-differential operator (cf., e.g., Mustafa and Mazharimousavi [12] on the detailed origin of this PDM-operator) of the form

$$
\begin{equation*}
\eta=-i\left[\mu(x) \partial_{x}+\mu^{\prime}(x) / 2\right]+F(x) ; \quad F(x), \mu(x) \in \mathbb{R} \tag{6}
\end{equation*}
$$

would result, when used in (4),

$$
\begin{gather*}
W(x)=-\mu(x) F^{\prime}(x) \tag{7}\\
\tilde{V}(x)=-F(x)^{2}-\frac{1}{2} \mu(x) \mu^{\prime \prime}(x)-\frac{1}{4} \mu^{\prime}(x)^{2}+\alpha_{\circ} \tag{8}
\end{gather*}
$$

where $\alpha_{\circ} \in \mathbb{R}$ is an integration constant. One may then recast $V(x)$ as

$$
\begin{align*}
V(x)= & \alpha_{\circ}-F(x)^{2}+\left(\frac{1}{2}+\beta\right) \mu(x) \mu^{\prime \prime}(x) \\
& +\left[4 \alpha(\alpha+\beta+1)+\beta+\frac{3}{4}\right] \mu^{\prime}(x)^{2} \tag{9}
\end{align*}
$$

One should, nevertheless, be reminded that an anti-Hermitian first -order operator of the form $\eta=\mu(x) \partial_{x}+\mu^{\prime}(x) / 2+F(x)$ will exactly do the same job (cf., e.g., Mustafa and Mazharimousavi [12]). Moreover, as a result of this intertwining process, a non-Hermitian η-weak-pseudo-Hermitian Hamiltonian is obtained.

We may now consider our non-Hermitian η-weak-pseudo-Hermitian Hamiltonian in (5), along with (7) and (8), in the one-dimensional Schrödinger equation

$$
\begin{equation*}
H \psi(x)=E \psi(x) \tag{10}
\end{equation*}
$$

and construct the so-called reference/old-target/new non-Hermitian η-weak-pseudo-Hermitian Hamiltonians' map (equation (10) is the so-called target/new Schrödinger equation). A task that would be achieved by the substitution

$$
\begin{equation*}
\psi(x)=\varphi(q(x)) / \sqrt{\mu(x)} \tag{11}
\end{equation*}
$$

to imply, with the requirement

$$
\begin{equation*}
q^{\prime}(x)=1 / \mu(x) \tag{12}
\end{equation*}
$$

that removes the first-order derivative $\partial_{q} \varphi(q)$, a so-called reference/old Schrödinger equation

$$
\begin{equation*}
-\partial_{q}^{2} \varphi(q(x))+\left[\tilde{V}_{e f f}(q(x))-E\right] \varphi(q(x))=0 \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{V}_{e f f}(q(x))= & (\beta+1) \mu(x) \mu^{\prime \prime}(x)+[4 \alpha(\alpha+\beta+1)+\beta+1] \mu^{\prime}(x)^{2} \\
& -F(x)^{2}+\alpha_{\circ}-i \mu(x) F^{\prime}(x) . \tag{14}
\end{align*}
$$

This effective reference/old potential suggests two "user-friendly" forms. The first of which can be achieved through the choice

$$
\begin{equation*}
(\beta+1) \mu(x) \mu^{\prime \prime}(x)+[4 \alpha(\alpha+\beta+1)+\beta+1] \mu^{\prime}(x)^{2}=0 \tag{15}
\end{equation*}
$$

to imply

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(q)=\alpha_{\circ}-F(q)^{2}-i F^{\prime}(q) \tag{16}
\end{equation*}
$$

where

$$
\frac{d F(x)}{d x}=\frac{d F(q(x))}{d x}=\frac{d q(x)}{d x} \frac{d F(q)}{d q}=\frac{1}{\mu(x)} \frac{d F(q)}{d q}
$$

is used. Hence $\mu^{\prime}(x) \mu(x)^{\delta}=$ const. and

$$
\begin{equation*}
\mu(x)=\left[C_{1} x+C_{2}\right]^{1 /(\delta+1)} ; \delta=\left[4 \alpha+1+\frac{4 \alpha^{2}}{\beta+1}\right] \tag{17}
\end{equation*}
$$

where C_{1} and C_{2} are two constants and $C_{1}, C_{2} \in \mathbb{R}$. Nevertheless, one should notice that the Ben Danial's and Duke's $(\alpha=\gamma=0, \beta=-1$) ordering (although $\beta=-1$ is not allowed by (17) but satisfies (15)) has already been discussed by

Mustafa and Mazharimousavi [12]. Hence, the Ben Danial's and Duke's ordering shall not be considered in the forthcoming studies. Moreover, under such mass settings, we may report that; for Gora's and Williams' $(\beta=\gamma=0, \alpha=-1)$ and Li's and Kuhn's $(\beta=\gamma=-1 / 2, \alpha=0)$ orderings $\delta_{G W}=\delta_{L K}=1$, for Zhu's and Kroemer's $(\alpha=\gamma=-1 / 2, \beta=0)$ ordering $\delta_{Z K}=0$, and for Mustafa's and Mazharimousavi's $(\alpha=\gamma=-1 / 4, \beta=-1 / 2)$ ordering $\delta_{M M}=1 / 2$.

The second choice

$$
\begin{equation*}
F(x)=\mu^{\prime}(x) \Longrightarrow \mu(x)=\int^{x} F(y) d y \tag{18}
\end{equation*}
$$

on the other hand, would lead to

$$
\begin{equation*}
\tilde{V}_{e f f, 2}(q)=-i F^{\prime}(q)+(\beta+1) F^{\prime}(q)+[4 \alpha(\alpha+\beta+1)+\beta] F(q)^{2}+\alpha_{\circ} \tag{19}
\end{equation*}
$$

Obviously, a $\beta=-1$ (consequently, $\alpha=\gamma=0$ by the von Roos constraint $\alpha+\beta+\gamma=-1$) would lead to (16) (Ben Danial's and Duke's ordering is to be discarded in the current study for the reasons mentioned above).

3 Isospectral PDMs with $\mu^{\prime}(x) \mu(x)^{\delta}=$ const.

It is evident that the position-dependent-mass $M(x)$ under the current settings is strictly determined through (15) and consequently through (17) to read

$$
\begin{equation*}
M(x)=\mu(x)^{-2}=\left[C_{1} x+C_{2}\right]^{-2 /(\delta+1)} \tag{20}
\end{equation*}
$$

This form identifies a class of isospectral position-dependent-mass functions satisfying the effective reference/old potential $\tilde{V}_{\text {eff,1 }}(q)$ of (16), regardless of the form of the η-weak-pseudo-Hermiticity generator $F(q)$, and implies

$$
q(x)=\int^{x} \mu(y)^{-1} d y= \begin{cases}\frac{(\delta+1)}{\delta C_{1}}\left[C_{1} x+C_{2}\right]^{\delta /(\delta+1)} & ; \text { for } \delta \neq 0 \tag{21}\\ \frac{1}{C_{1}} \ln \left(C_{1} x+C_{2}\right) & ; \text { for } \delta=0\end{cases}
$$

Unlike the case we have very recently considered in [12], where Ben Danial's and Duke's ordering (i.e., $\alpha=\gamma=0, \beta=-1$) was used and the position-dependentmass was left arbitrary instead (but, of course, a positive-valued function).

Nevertheless, one should notice that the form of our $\tilde{V}_{\text {eff,1}}(q)$ in (16) depends only on the choice of our η-weak-pseudo-Hermiticity generator $F(q)$ (the choice of which should be oriented in such a way that an exactly-solvable η-weak-pseudo-Hermitian reference/old Hamiltonian is obtained). Therefore, a set of exactly-solvable target/new potentials of (14) would obtain and depends only on the class of the strictly determined position-dependent-mass functions in (20). Two illustrative examples are in order.

3.1 A complexified $P T$-symmetric Scarf-II model

Let us recollect (cf., e.g., Mustafa and Mazharimousavi [12]) that an η-weak-pseudo-Hermiticity generator of the form

$$
\begin{equation*}
F(q)=-V_{2} \operatorname{sech} q \Longrightarrow F^{\prime}(q)=V_{2} \operatorname{sech} q \tanh q \tag{22}
\end{equation*}
$$

would yield (with $\alpha_{\circ}=0$) a reference/old effective complexified $P T$-symmetric Scarf-II potential of the form

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(q)=-V_{2}^{2} \operatorname{sech}^{2} q-i V_{2} \operatorname{sech} q \tanh q ; \quad \mathbb{R} \ni V_{2} \neq 0 \tag{23}
\end{equation*}
$$

Which, in turn, would imply a target/new effective potential of the form

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(x)=-4 V_{2}^{2} \frac{f(x)^{2}}{\left(f(x)^{2}+1\right)^{2}} \mp 2 i V_{2} \frac{f(x)\left(f(x)^{2}-1\right)}{\left(f(x)^{2}+1\right)^{2}}, \tag{24}
\end{equation*}
$$

where $f(x)= \pm \exp [q(x)]$, with $q(x)$ given in (21). In this case, the target/new effective potentials in (24) form a set of isospectral potentials the eigenvalues of which are readily reported in $[12,17]$ as

$$
\begin{equation*}
E_{n}=-\left[\left|V_{2}\right|-n-\frac{1}{2}\right]^{2} ; n=0,1,2, \cdots, n_{\max }<\left(\left|V_{2}\right|-1 / 2\right) \tag{25}
\end{equation*}
$$

3.2 A periodic-type $P T$-symmetric Samsonov-Roy model

We may also recycle our η-weak-pseudo-Hermiticity generator

$$
\begin{equation*}
F(q)=-\frac{4}{3 \cos ^{2} q-4}-\frac{5}{4}, \tag{26}
\end{equation*}
$$

that implies (with $\alpha_{\circ}=0$) an effective periodic-type $P T$-symmetric Samsonov's and Roy's $[12,14]$ reference/old potential

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(q)=-\frac{6}{[\cos q+2 i \sin q]^{2}}-\frac{25}{16} ; \quad \mathbb{R} \ni q \in(-\pi, \pi) \tag{27}
\end{equation*}
$$

This results, in effect, a target/new effective potential of the form

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(x)=-\frac{6}{\left[g(x)-2 i \mu(x) g^{\prime}(x)\right]^{2}}-\frac{25}{16}, \tag{28}
\end{equation*}
$$

where $g(x)=\cos (q(x)), \mu(x)$ and $q(x)$ are as given in (17) and (21), respectively. Hence, the set of target/new effective potentials in (28) are isospectral and the corresponding eigenvalues $[12,14]$ are given by

$$
\begin{equation*}
E_{n}=\frac{n^{2}}{4}-\frac{25}{16} ; \quad n=1,3,4,5, \cdots, \tag{29}
\end{equation*}
$$

with a missing $n=2$ state (the details of which can be found in Samsonov and Roy [14]).

4 Concluding remarks

As long as η-weak-pseudo-Hermitian Hamiltonians are in point, their solvabilitynature/type (i.e., e.g., exact-, quasi-exact-, conditionally-exact-, etc.) is still fresh and not yet adequately explored. Amongst is the η-weak-pseudo-Hermitian von Roos PDM-Hamiltonian. In this work, we tried to (at least) partially fill this gap and add a flavour into such solvability territories of the η-weak-pseudoHermitian Hamiltonians associated with position-dependent-mass settings.

We have suggested two "user-friendly" forms for the reference/old η-weak-pseudo-Hermitian PDM-Hamiltonians' map. Only one of which (i.e., $\tilde{V}_{e f f, 1}(q)$ of (16)) is exemplified through a non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Scarf II and a non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Samsonov-Roy periodic-type models. It is observed that for each of these models there is a set of exactly-solvable isospectral target/new η-weak-pseudo-Hermitian PDM-Hamiltonians (documented in (24) for Scarf II and in (28) for Samsonov-Roy). However, we were unlucky to find any illustrative example that can be classified as "successful" for the "userfriendly" form $\tilde{V}_{\text {eff,2 }}(q)$ in (19). Nonetheless, the corresponding target/new isospectral set of η-weak-pseudo-Hermitian PDM-Hamiltonians is anticipated to be feasibly large (as documented by (18)) and not restricted to the position-dependent-mass form (unlike the case of $\tilde{V}_{e f f, 1}(q)$ in (16), which is restricted to the position-dependent-mass function $M(x)$ in (20)).

Moreover, we may report that a generating function $F(q)=a \exp (-q)$ would lead to (with $\alpha_{\circ}=0$) to

$$
\begin{equation*}
\tilde{V}_{e f f, 1}(q)=-a^{2} \exp (-2 q)+i a \exp (-q) \tag{30}
\end{equation*}
$$

of (16), and

$$
\begin{equation*}
\tilde{V}_{e f f, 2}(q)=a^{2}[4 \alpha(\alpha+\beta+1)+\beta] \exp (-2 q)-a(\beta+1-i) \exp (-q) \tag{31}
\end{equation*}
$$

of (19). The bound-states of the former (30) (a non-Hermitian Morse model) are reported to form an empty set of eigenvalues and, hence, labeled as "unfortunate" for it leads to an empty set of "unfortunate" isospectral η-weak-pseudoHermitian target PDM-Hamiltonians (cf., e.g., Mustafa and Mazharimousavi [12], Bagchi and Quesne [23], and Ahmed [24]). The latter (31), on the other hand, does not fit into any of the "so-far-known" exactly-solvable non-Hermitian Morse-type models, to the best of our knowledge.

Finally, one may add that the current strictly-determined set of target/new effective potentials $\tilde{V}_{\text {eff,1 }}(x)$ in (24) forms a subset of the target/new effective potentials reported in equations (25) and (26) by Mustafa and Mazharimousavi [12]. Similar trend is also observed for $\tilde{V}_{e f f, 1}(x)$ in (28) as it forms a subset of the effective potentials in equations (34) and (35) of [12]. Hence, the scenario of the energy-levels crossing and the feasible manifestation of the flown away states discussed in [12] remains effective, as long as the our two illustrative examples are concerned.

References

[1] Quesne C 2006 Ann. Phys. 3211221
Quesne C and Tkachuk V M 2004 J. Phys. A; Math and Gen 374267
Tanaka T 2006 J. Phys. A; Math and Gen 39219
von Roos O 1983 Phys. Rev. B 277547
Gang C 2004 Phys Lett A 32922
Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345279
Mustafa O and Mazharimousavi S H 2006 Phys. Lett. A 358259 (arXiv: quant-ph/0603134)
[2] Mustafa O and Mazharimousavi S H 2006 J. Phys. A: Math. Gen. 3910537 (arXiv: math-ph/0602044)
Alhaidari A D 2003 Int. J. Theor. Phys. 42 (2003) 2999
Alhaidari A D 2002 Phys. Rev. A 66042116
[3] Puente A and Casas M 1994 Comput. Mater Sci. 2441
Mustafa O and Mazharimousavi S H 2007 Int. J. Theor. Phys. in press (arXiv: quant-ph/0607158)
[4] Bastard G: "Wave Mechanics Applied to Semiconductor Heterostructures" , (1988) Les Editions de Physique, Les Ulis
[5] Serra L I and Lipparini E 1997 Europhys. Lett. 40667
[6] Einevoll G. T. and Hemmer P. C. 1988 J. Phys. C: Solid State Phys. 21 L1193.

Burt M. G. 1992 J. Phys. Condens. Matter 46651.
Geller M. R. and Kohn W. 1993 Phys. Rev. Lett. 703103.
Einevoll G. T. 1990 Phys. Rev. B 423497
Borges J Sá et al 1988 Phys. Rev. A 383101
Koç R., Şahinoĝlu G. and Koca M. 2005, Eur. Phys. J. B 48583 (arXive: quant-ph/0510172)
[7] de Souza Dutra A and Almeida C A S 2000 Phys Lett. A 27525
[8] Gora T and Williams F 1969 Phys. Rev. 1771179.
[9] Ben Danial D. J. and Duke C. B. 1966 Phys. Rev. 152683
[10] Zhu Q.-G. and Kroemer H. 1983 Phys. Rev. B 273519.
[11] Li T. and Kuhn K. J. 1993 Phys. Rev. B 4712760
[12] Mustafa O and Mazharimousavi S H 2007 Int. J. Theor. Phys. in press (arXiv: quant-ph/0607030)
[13] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 402201
Bagchi B, Cannata F and Quesne C 2000 Phys. Lett. A 26979
Ahmed Z 2001 Phys. Lett. A 282343
Ahmed Z 2001 Phys. Lett. A 287295
Ahmed Z 2007 Phys. Lett. A in press.
[14] Khare A and Mandal B P 2000 Phys. Lett. A 27253
Buslaev V and Grecchi V 1993 J. Phys. A: Math. Gen. 265541
Znojil M and Lévai G 2000 Phys. Lett. A 271327
Bagchi B, Mallik S, Quesne C and Roychoudhury R 2001 Phys. Lett. A 28934

Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 45679
Kretschmer R and Szymanowski L 2004 Czech. J.Phys 5471
Znojil M, Gemperle F and Mustafa O 2002 J. Phys. A: Math. Gen. 355781
Mustafa O and Znojil M 2002 J. Phys. A: Math. Gen. 358929
Samsonov B F and Roy P 2005 J. Phys. A: Math. Gen. 38 L249.
[15] Mostafazadeh A 2002 J. Math. Phys. 432814
Mostafazadeh A 2002 Nucl.Phys. B 640419
Mostafazadeh A 2002 J. Math. Phys. 43205
Mostafazadeh A 2002 J. Math. Phys. 433944
Mostafazadeh A 2003 J. Math. Phys. 44974
Mostafazadeh A 2005 J. Phys. A: Math. Gen. 383213
[16] Sinha A and Roy P 2004 Czech. J. Phys. 54129
Jiang L, Yi L Z and Jia C S 2005 Phys Lett A 345279
Mandal B P 2005 Mod. Phys. Lett. A 20655
Znojil M, Bíla H and Jakubsky V 2004 Czech. J. Phys. 541143
Mostafazadeh A and Batal A 2004 J. Phys.A: Math. Gen. 3711645
[17] Bagchi B and Quesne C 2002 Phys. Lett. A 301173
[18] Solombrino L 2002 J. Math. Phys. 435439
[19] Fityo T V 2002 J. Phys. A: Math. Gen. 355893
[20] Mustafa O and Mazharimousavi S H 2006 Czech. J. Phys. 56967 (arXiv: quant-ph/0603237)
Mustafa O and Mazharimousavi S H 2006 Phys. Lett. A 357295 (arXiv: quant-ph/0604106)
[21] Mustafa O and Mazharimousavi S H 2006 (arXiv: hep-th/0601017)
[22] Bagchi B and Quesne C 2002 Phys. Lett. A 300173
[23] Ahmed Z 2001 Phys. Lett. A 29019

