"Relativity principle" and non-Hermitian dynamics

Boris F. Samsonov

"Relativity principle" and non-Hermitian dynamics

Boris F. Samsonov

July 162007

Contents

Contents

Motivation

Contents

Motivation

Equivalence transformations

Contents

Motivation

Equivalence transformations
Equivalent sets of observables

Contents

Motivation

Equivalence transformations
Equivalent sets of observables
Resolution of the identity operator and spectral representation of \boldsymbol{H}

Contents

Motivation

Equivalence transformations
Equivalent sets of observables
Resolution of the identity operator and spectral representation of \boldsymbol{H} Observable quantities

Contents

Motivation

Equivalence transformations
Equivalent sets of observables
Resolution of the identity operator and spectral representation of \boldsymbol{H}
Observable quantities

- Non-Hermitian dynamics

Contents

Motivation

Equivalence transformations
Equivalent sets of observables
Resolution of the identity operator and spectral representation of \boldsymbol{H}
Observable quantities

- Non-Hermitian dynamics
- Non-Hermitian evolution of spin

Contents

Motivation
Equivalence transformations
Equivalent sets of observables
Resolution of the identity operator and spectral representation of H
Observable quantities

- Non-Hermitian dynamics
- Non-Hermitian evolution of spin
- Non-Hermitian brachistocrone problem

Motivation

Motivation

Recently it was observed that a non-Hermitian evolution can go faster than the fastest Hermitian evolution
C. M. Bender, D. C. Brody, H. F. Jones and B. K. Meister, Phys.
Rev. Lett. 98, 040403 (2007)

Motivation

Recently it was observed that a non-Hermitian evolution can go faster than the fastest Hermitian evolution
C. M. Bender, D. C. Brody, H. F. Jones and B. K. Meister, Phys. Rev. Lett. 98, 040403 (2007)

This conclusion was recently questioned
A. Mostafazadeh, arXiv:
0706.3844 v 1 [quant-ph] 26 June 2007

Motivation

In this respect I asked myself

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)
and non-Hermitian (Hamiltonian) observables

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)
and non-Hermitian (Hamiltonian) observables
in the same Hilbert space

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)
and non-Hermitian (Hamiltonian) observables
in the same Hilbert space
But how to choose a proper Hilbert space?

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)
and non-Hermitian (Hamiltonian) observables
in the same Hilbert space
But how to choose a proper Hilbert space?
Does the result depend on the choice of the Hilbert space?

Motivation

In this respect I asked myself
How to describe a non-Hermitian evolution of a Hermitian observable?
For instance, how to find the time necessary for spin flip?
To be able to answer this question we have to accept coexistence of both Hermitian (spin)
and non-Hermitian (Hamiltonian) observables
in the same Hilbert space
But how to choose a proper Hilbert space?
Does the result depend on the choice of the Hilbert space?
Is it possible to keep working in the usual Hilbert space?

Equivalence transformation

Equivalence transformation

Let us have a usual N-dimensional Hilbert space $f, g, \psi \ldots \in \mathcal{H}$

$$
\begin{gathered}
\langle f \mid g\rangle=\sum_{i} f_{i}^{*} g_{i} \quad f=\sum_{i} f_{i} e_{i}, \quad g=\sum_{i} g_{i} e_{i} \\
e_{i} \in \mathcal{H} \quad\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
\end{gathered}
$$

Equivalence transformation

Let us have a usual N-dimensional Hilbert space $f, g, \psi \ldots \in \mathcal{H}$

$$
\begin{gathered}
\langle f \mid g\rangle=\sum_{i} f_{i}^{*} g_{i} \quad f=\sum_{i} f_{i} e_{i}, \quad g=\sum_{i} g_{i} e_{i} \\
e_{i} \in \mathcal{H} \quad\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
\end{gathered}
$$

Consider a non-Hermitian $\boldsymbol{H} \neq \boldsymbol{H}^{+}$acting in \mathcal{H}

$$
\begin{equation*}
H \psi_{i}=E_{i} \psi_{i} \quad \psi_{i} \in \mathcal{H} \quad E_{i} \in \mathbb{R} \tag{2}
\end{equation*}
$$

Equivalence transformation

Let us have a usual N-dimensional Hilbert space $f, g, \psi \ldots \in \mathcal{H}$

$$
\begin{gathered}
\langle f \mid g\rangle=\sum_{i} f_{i}^{*} g_{i} \quad f=\sum_{i} f_{i} e_{i}, \quad g=\sum_{i} g_{i} e_{i} \\
e_{i} \in \mathcal{H} \quad\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
\end{gathered}
$$

Consider a non-Hermitian $\boldsymbol{H} \neq \boldsymbol{H}^{+}$acting in \mathcal{H}

$$
\begin{equation*}
H \psi_{i}=E_{i} \psi_{i} \quad \psi_{i} \in \mathcal{H} \quad E_{i} \in \mathbb{R} \tag{2}
\end{equation*}
$$

In particular \boldsymbol{H} may be $\mathcal{P} \boldsymbol{\mathcal { T }}$-symmetric

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of \boldsymbol{H} in a single matrix Ψ

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of \boldsymbol{H} in a single matrix Ψ

$$
\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}
$$

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of H in a single matrix Ψ

$$
\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}
$$

$$
\begin{equation*}
H \Psi=\Psi \mathbf{E} \quad \Psi^{+} \boldsymbol{H}^{+}=\mathbf{E} \Psi^{+} \tag{3}
\end{equation*}
$$

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of H in a single matrix Ψ
$\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}$

$$
\begin{equation*}
H \Psi=\Psi \mathbf{E} \quad \Psi^{+} \boldsymbol{H}^{+}=\mathbf{E} \Psi^{+} \tag{3}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mathcal{M}=\Psi \Psi^{+} \quad \mathcal{M}=\mathcal{M}^{+} \quad \mathcal{M}>0 \tag{4}
\end{equation*}
$$

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of H in a single matrix Ψ
$\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}$

$$
\begin{equation*}
H \Psi=\Psi \mathbf{E} \quad \Psi^{+} \boldsymbol{H}^{+}=\mathbf{E} \Psi^{+} \tag{3}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mathcal{M}=\Psi \Psi^{+} \quad \mathcal{M}=\mathcal{M}^{+} \quad \mathcal{M}>0 \tag{4}
\end{equation*}
$$

\mathcal{M} is not uniquely defined since the normalization coefficients of the eigenvectors are not fixed

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of H in a single matrix Ψ
$\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}$

$$
\begin{equation*}
H \Psi=\Psi \mathbf{E} \quad \Psi^{+} \boldsymbol{H}^{+}=\mathbf{E} \Psi^{+} \tag{3}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mathcal{M}=\Psi \Psi^{+} \quad \mathcal{M}=\mathcal{M}^{+} \quad \mathcal{M}>0 \tag{4}
\end{equation*}
$$

\mathcal{M} is not uniquely defined since the normalization coefficients of the eigenvectors are not fixed

From (3) it follows

$$
\begin{equation*}
H \mathcal{M}=\mathcal{M} H^{+} \tag{5}
\end{equation*}
$$

Equivalence transformation

Let us collect all eigenvectors ψ_{i} (column-vectors) of \boldsymbol{H} in a single matrix Ψ
$\mathrm{E}=\operatorname{diag}\left\{E_{i}\right\}$

$$
\begin{equation*}
H \Psi=\Psi \mathbf{E} \quad \Psi^{+} \boldsymbol{H}^{+}=\mathbf{E} \Psi^{+} \tag{3}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mathcal{M}=\Psi \Psi^{+} \quad \mathcal{M}=\mathcal{M}^{+} \quad \mathcal{M}>0 \tag{4}
\end{equation*}
$$

\mathcal{M} is not uniquely defined since the normalization coefficients of the eigenvectors are not fixed

From (3) it follows

$$
\begin{equation*}
H \mathcal{M}=\mathcal{M} H^{+} \tag{5}
\end{equation*}
$$

This is a condition that $E_{i} \in \mathbb{R}$

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged

Equivalence transformation

If H is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=A H A^{-1}
$$

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=A H A^{-1}
$$

Both \boldsymbol{H} and $\hat{\boldsymbol{H}}$ "live" in the same Hilbert space \mathcal{H}

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=A \boldsymbol{H} A^{-1}
$$

Both \boldsymbol{H} and $\hat{\boldsymbol{H}}$ "live" in the same Hilbert space \mathcal{H}
Hermiticity of Hamiltonian \boldsymbol{H} is encrypted (Ivanov-Smilga, hep-th/0703038)

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=\boldsymbol{A} \boldsymbol{H} A^{-1}
$$

Both \boldsymbol{H} and $\hat{\boldsymbol{H}}$ "live" in the same Hilbert space \mathcal{H}
Hermiticity of Hamiltonian \boldsymbol{H} is encrypted (Ivanov-Smilga, hep-th/0703038)
Matrix \boldsymbol{A} may be expressed in terms of \mathcal{M}

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=A \boldsymbol{H} A^{-1}
$$

Both \boldsymbol{H} and $\hat{\boldsymbol{H}}$ "live" in the same Hilbert space \mathcal{H}
Hermiticity of Hamiltonian \boldsymbol{H} is encrypted (Ivanov-Smilga, hep-th/0703038)
Matrix \boldsymbol{A} may be expressed in terms of \mathcal{M}
Since $\mathcal{M}>0 \Rightarrow \exists \mathcal{M}^{ \pm 1 / 2}$

Equivalence transformation

If \boldsymbol{H} is diagonalizable and has a purely real spectrum
there exists a similarity transformation
keeping the spectrum unchanged
but reducing H to an equivalent Hermitian matrix

$$
H \sim \hat{H}=\hat{H}^{+}=A \boldsymbol{H} A^{-1}
$$

Both \boldsymbol{H} and $\hat{\boldsymbol{H}}$ "live" in the same Hilbert space \mathcal{H}
Hermiticity of Hamiltonian H is encrypted (Ivanov-Smilga, hep-th/0703038)
Matrix \boldsymbol{A} may be expressed in terms of \mathcal{M}
Since $\mathcal{M}>0 \Rightarrow \exists \mathcal{M}^{ \pm 1 / 2}$ and

$$
\begin{equation*}
A=\mathcal{M}^{-1 / 2} \quad \mathcal{M}=\Psi \Psi^{+} \tag{6}
\end{equation*}
$$

Equivalent sets of observables

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=S^{+}, Q=Q^{+}, P=P^{+}, \ldots$

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=S^{+}, Q=Q^{+}, P=P^{+}, \ldots \quad$ conventional QM is applied

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=S^{+}, Q=Q^{+}, P=P^{+}, \ldots$ conventional QM is applied where different representations ($Q_{-}, P_{-}, E-$, etc) may be used

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as $\operatorname{spin} S$, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=\boldsymbol{S}^{+}, Q=Q^{+}, P=P^{+}, \ldots$ conventional QM is applied where different representations (Q^{-}, P^{-}, E^{-}, etc) may be used
All these representations are unitary equivalent $\hat{R}=U R U^{-1}, U^{-1}=U^{+}$, $R=Q, P, H, \ldots$

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=\boldsymbol{S}^{+}, Q=Q^{+}, P=P^{+}, \ldots$ conventional QM is applied where different representations (Q_{-}^{-}, P_{-}, E_{-}, etc) may be used
All these representations are unitary equivalent $\hat{R}=U R U^{-1}, U^{-1}=U^{+}$, $R=Q, P, H, \ldots$
Physical properties do not depend on the representation used

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=\boldsymbol{S}^{+}, Q=Q^{+}, P=P^{+}, \ldots$ conventional QM is applied where different representations ($Q_{-}^{-}, P_{-}, \boldsymbol{E}$-, etc) may be used
All these representations are unitary equivalent $\hat{R}=U R U^{-1}, U^{-1}=U^{+}$, $R=Q, P, H, \ldots$
Physical properties do not depend on the representation used
Sets $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$ are unitary equivalent

Equivalent sets of observables

Usually for a quantum system being in a pure state ψ
several physical observables can be measured such as spin S, position Q, momentum P, energy E etc

If we are interested in all these observables we have to assume they are living in the same Hilbert space \mathcal{H}

If $S=S^{+}, Q=Q^{+}, P=P^{+}, \ldots$ conventional QM is applied where different representations ($Q_{-}^{-}, P_{-}, \boldsymbol{E}$-, etc) may be used
All these representations are unitary equivalent $\hat{R}=U R U^{-1}, U^{-1}=U^{+}$, $R=Q, P, H, \ldots$
Physical properties do not depend on the representation used
Sets $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$ are unitary equivalent
Two quantum mechanics are unitary equivalent

The first GENERALIZATION ("Relativity principle")

The first GENERALIZATION ("Relativity principle")

Two sets of observables $\{\boldsymbol{H}, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$

The first GENERALIZATION ("Relativity principle")

Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$ related by a non-singular similarity transformation
$\hat{\boldsymbol{R}}=A R A^{-1}, R=H, P, Q \ldots$

The first GENERALIZATION ("Relativity principle")

Two sets of observables $\{\boldsymbol{H}, \boldsymbol{P}, \boldsymbol{Q} \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$ related by a non-singular similarity transformation
$\hat{R}=A R A^{-1}, R=H, P, Q \ldots$
are physically indistinguishable

The first GENERALIZATION ("Relativity principle")

Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$ related by a non-singular similarity transformation
$\hat{\boldsymbol{R}}=A R A^{-1}, R=H, P, Q \ldots$ are physically indistinguishable

They have exactly the same physical properties

The first GENERALIZATION

 ("Relativity principle")Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$
related by a non-singular similarity transformation
$\hat{R}=A R A^{-1}, R=H, P, Q \ldots$
are physically indistinguishable
They have exactly the same physical properties

If $R=R^{+}, \quad R=P, Q, H \ldots, \quad$ in general $\left(A^{-1} \neq A^{+}\right) \quad \hat{R} \neq \hat{R}^{+}$

The first GENERALIZATION

 ("Relativity principle")Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$
related by a non-singular similarity transformation
$\hat{R}=A R A^{-1}, R=H, P, Q \ldots$
are physically indistinguishable
They have exactly the same physical properties

If $R=R^{+}, \quad R=P, Q, H \ldots, \quad$ in general $\left(A^{-1} \neq A^{+}\right) \quad \hat{R} \neq \hat{R}^{+}$ Hermiticity of $\hat{P}, \hat{Q}, \hat{H}, \ldots$ is encrypted and

The first GENERALIZATION

 ("Relativity principle")Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$
related by a non-singular similarity transformation
$\hat{\boldsymbol{R}}=\mathrm{ARA}^{-1}, \boldsymbol{R}=\boldsymbol{H}, P, Q \ldots$
are physically indistinguishable
They have exactly the same physical properties

If $R=R^{+}, \quad R=P, Q, H \ldots, \quad$ in general $\left(A^{-1} \neq A^{+}\right) \quad \hat{R} \neq \hat{R}^{+}$ Hermiticity of $\hat{P}, \hat{Q}, \hat{H}, \ldots$ is encrypted and such a non-Hermitian QM is completely equivalent to the conventional QM

The first GENERALIZATION

 ("Relativity principle")Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$
related by a non-singular similarity transformation
$\hat{\boldsymbol{R}}=\mathrm{ARA}^{-1}, \boldsymbol{R}=\boldsymbol{H}, P, Q \ldots$
are physically indistinguishable
They have exactly the same physical properties

If $R=R^{+}, \quad R=P, Q, H \ldots, \quad$ in general $\left(A^{-1} \neq A^{+}\right) \quad \hat{R} \neq \hat{R}^{+}$ Hermiticity of $\hat{P}, \hat{Q}, \hat{H}, \ldots$ is encrypted and such a non-Hermitian QM is completely equivalent to the conventional QM

Non-Hermitian character of obtained QM is only due to

The first GENERALIZATION

 ("Relativity principle")Two sets of observables $\{H, P, Q \ldots\}$ and $\{\hat{H}, \hat{P}, \hat{Q} \ldots\}$
related by a non-singular similarity transformation
$\hat{\boldsymbol{R}}=\mathrm{ARA}^{-1}, \boldsymbol{R}=\boldsymbol{H}, P, Q \ldots$
are physically indistinguishable
They have exactly the same physical properties

If $R=R^{+}, \quad R=P, Q, H \ldots, \quad$ in general $\left(A^{-1} \neq A^{+}\right) \quad \hat{R} \neq \hat{R}^{+}$ Hermiticity of $\hat{P}, \hat{Q}, \hat{H}, \ldots$ is encrypted and such a non-Hermitian QM is completely equivalent to the conventional QM

Non-Hermitian character of obtained QM is only due to
a "bad reference frame" (i.e. equivalence class) used

This generalization has a sense only if another generalization is assumed

The second GENERALIZATION (non-Hermitian QM)

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$ may be represented by non-Hermitian diagonalizable operators

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators
provided they have a purely real spectrum

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators
provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q or in properties of a subset of observables
which become Hermitian under the same similarity transformation

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q or in properties of a subset of observables
which become Hermitian under the same similarity transformation we will not see in such a QM any new property compared to the conventional QM

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q or in properties of a subset of observables
which become Hermitian under the same similarity transformation we will not see in such a QM any new property compared to the conventional QM

An equivalence class ("reference frame")

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q or in properties of a subset of observables
which become Hermitian under the same similarity transformation we will not see in such a QM any new property compared to the conventional QM

An equivalence class ("reference frame")
where they all are Hermitian

The second GENERALIZATION (non-Hermitian QM)

Some physical observables in a set $\{P, Q, H \ldots\}$
may be represented by non-Hermitian diagonalizable operators provided they have a purely real spectrum
so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q or in properties of a subset of observables
which become Hermitian under the same similarity transformation we will not see in such a QM any new property compared to the conventional QM

An equivalence class ("reference frame")
where they all are Hermitian
being used leads just to the conventional QM description

One may expect appearing something new

One may expect appearing something new

if one Hermitian observable and one non-Hermitian observable

One may expect appearing something new

if one Hermitian observable and one non-Hermitian observable are involved into the same physical process

One may expect appearing something new

if one Hermitian observable and one non-Hermitian observable are involved into the same physical process

For instance

One may expect appearing something new
if one Hermitian observable and one non-Hermitian observable are involved into the same physical process

For instance
something new may appear
in a non-Hermitian evolution of a Hermitian observable

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$
Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

$$
\begin{equation*}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} \quad\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j} \quad \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=I \tag{7}
\end{equation*}
$$

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

$$
\begin{array}{ccc}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} & \left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j} & \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=I \\
H \psi_{i}=E_{i} \psi_{i} & \psi_{i}=\mathcal{M}^{1 / 2} \varphi_{i} & \left\langle\psi_{i}\right| \mathcal{M}^{-1}\left|\psi_{j}\right\rangle=\delta_{i j} \tag{8}
\end{array}
$$

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} \boldsymbol{H} \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

$$
\begin{array}{ccc}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} & \left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j} & \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=I \\
H \psi_{i}=E_{i} \psi_{i} & \psi_{i}=\mathcal{M}^{1 / 2} \varphi_{i} & \left\langle\psi_{i}\right| \mathcal{M}^{-1}\left|\psi_{j}\right\rangle=\delta_{i j} \tag{8}
\end{array}
$$

$\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1}=\mathcal{M}^{-1} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\mathcal{M}^{-1 / 2} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1 / 2}=I$

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

$$
\begin{array}{ccc}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} & \left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j} & \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=I \\
H \psi_{i}=E_{i} \psi_{i} & \psi_{i}=\mathcal{M}^{1 / 2} \varphi_{i} & \left\langle\psi_{i}\right| \mathcal{M}^{-1}\left|\psi_{j}\right\rangle=\delta_{i j} \tag{8}
\end{array}
$$

$$
\begin{equation*}
\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1}=\mathcal{M}^{-1} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\mathcal{M}^{-1 / 2} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1 / 2}=I \tag{9}
\end{equation*}
$$

From spectral representation of \hat{H}

$$
\begin{equation*}
\hat{H}=\sum_{i} E_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=\mathcal{M}^{-1 / 2} \sum_{i} E_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1 / 2}=: \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} \tag{10}
\end{equation*}
$$

Resolution of the identity operator and spectral

 representation of $H \neq H^{+}$Let us have $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

$$
\hat{H}=\mathcal{M}^{-1 / 2} \boldsymbol{H} \mathcal{M}^{1 / 2}=\hat{H}^{+} \sim H
$$

$$
\begin{gather*}
\hat{H} \varphi_{i}=E_{i} \varphi_{i} \quad\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j} \quad \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=I \tag{7}\\
H \psi_{i}=E_{i} \psi_{i} \quad \psi_{i}=\mathcal{M}^{1 / 2} \varphi_{i} \quad\left\langle\psi_{i}\right| \mathcal{M}^{-1}\left|\psi_{j}\right\rangle=\delta_{i j} \tag{8}\\
\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1}=\mathcal{M}^{-1} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\mathcal{M}^{-1 / 2} \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1 / 2}=I \tag{9}
\end{gather*}
$$

From spectral representation of \hat{H}

$$
\begin{equation*}
\hat{H}=\sum_{i} E_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=\mathcal{M}^{-1 / 2} \sum_{i} E_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1 / 2}=: \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} \tag{10}
\end{equation*}
$$

one derives the spectral representation of \boldsymbol{H}

$$
\begin{equation*}
H=\sum_{i} E_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \mathcal{M}^{-1} \tag{11}
\end{equation*}
$$

Observable quantities

Observable quantities

The spectral set of $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$coincides with the spectral set of $\hat{H}\left(=\hat{H}^{+}\right)$

Observable quantities

The spectral set of $H\left(\neq H^{+}\right)$coincides with the spectral set of $\hat{H}\left(=\hat{H}^{+}\right)$
Therefore according to "relativity principle"

Observable quantities

The spectral set of $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$coincides with the spectral set of $\hat{H}\left(=\hat{H}^{+}\right)$
Therefore according to "relativity principle" only spectral points of H may be observed

Observable quantities

The spectral set of $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$coincides with the spectral set of $\hat{H}\left(=\hat{H}^{+}\right)$
Therefore according to "relativity principle" only spectral points of H may be observed while measuring the observable \boldsymbol{H} (energy in particular)

Let a system be in a pure state ψ in a "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$

Let a system be in a pure state ψ in a "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$
In "reference frame" where $\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}^{+}$the same state is described by the vector $\varphi=\mathcal{M}^{-1 / 2} \psi$

Let a system be in a pure state ψ in a "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$
In "reference frame" where $\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}^{+}$the same state is described by the vector $\varphi=\mathcal{M}^{-1 / 2} \psi$

When measuring H we are interested in the probability p_{i} to find a particular value \boldsymbol{E}_{i}

Let a system be in a pure state ψ in a "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$
In "reference frame" where $\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}^{+}$the same state is described by the vector $\varphi=\mathcal{M}^{-1 / 2} \psi$

When measuring H we are interested in the probability p_{i} to find a particular value \boldsymbol{E}_{i}

$$
\begin{equation*}
H \psi_{i}=E_{i} \psi_{i} \tag{12}
\end{equation*}
$$

Let a system be in a pure state ψ in a "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$
In "reference frame" where $\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}^{+}$the same state is described by the vector $\varphi=\mathcal{M}^{-1 / 2} \psi$

When measuring H we are interested in the probability p_{i} to find a particular value E_{i}

$$
\begin{equation*}
H \psi_{i}=E_{i} \psi_{i} \tag{12}
\end{equation*}
$$

Relativity principle gives:

$$
\begin{gather*}
p_{i}=\frac{\left|\left\langle\varphi_{i} \mid \varphi\right\rangle\right|^{2}}{\left\langle\varphi_{i} \mid \varphi_{i}\right\rangle\langle\varphi \mid \varphi\rangle}=\frac{\left.\left|\left\langle\psi_{i}\right| \mathcal{M}^{-1}\right| \psi\right\rangle\left.\right|^{2}}{\left\langle\psi_{i}\right| \mathcal{M}^{-1}\left|\psi_{i}\right\rangle\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{13}\\
\varphi=\mathcal{M}^{-1 / 2} \psi \quad \varphi_{i}=\mathcal{M}^{-1 / 2} \psi_{i} \quad \hat{H} \varphi_{i}=E_{i} \varphi_{i} \tag{14}\\
\sum_{i} p_{i}=1 \tag{15}
\end{gather*}
$$

$$
\begin{equation*}
\langle H\rangle_{\psi}:=\langle\hat{H}\rangle_{\varphi}=\frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\langle\psi| \mathcal{M}^{-1} H|\psi\rangle}{\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{1}
\end{equation*}
$$

Variance of H :

$$
\begin{equation*}
\left\langle(\Delta H)^{2}\right\rangle_{\psi}=\left\langle H^{2}\right\rangle_{\psi}-\langle H\rangle_{\psi}^{2} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\langle H\rangle_{\psi}:=\langle\hat{H}\rangle_{\varphi}=\frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\langle\psi| \mathcal{M}^{-1} H|\psi\rangle}{\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{16}
\end{equation*}
$$

Variance of H :

$$
\begin{equation*}
\left\langle(\Delta \boldsymbol{H})^{2}\right\rangle_{\psi}=\left\langle H^{2}\right\rangle_{\psi}-\langle\boldsymbol{H}\rangle_{\psi}^{2} \tag{17}
\end{equation*}
$$

Observable \boldsymbol{H}^{+}

$$
\begin{equation*}
\left\langle\boldsymbol{H}^{+}\right\rangle_{\psi}=\frac{\langle\psi| \mathcal{M} \boldsymbol{H}^{+}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle}=\frac{\langle\psi| \boldsymbol{H} \mathcal{M}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle} \neq\langle\boldsymbol{H}\rangle_{\psi} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\langle H\rangle_{\psi}:=\langle\hat{H}\rangle_{\varphi}=\frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\langle\psi| \mathcal{M}^{-1} H|\psi\rangle}{\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{16}
\end{equation*}
$$

Variance of \boldsymbol{H} :

$$
\begin{equation*}
\left\langle(\Delta H)^{2}\right\rangle_{\psi}=\left\langle H^{2}\right\rangle_{\psi}-\langle H\rangle_{\psi}^{2} \tag{17}
\end{equation*}
$$

Observable \boldsymbol{H}^{+}

$$
\begin{equation*}
\left\langle\boldsymbol{H}^{+}\right\rangle_{\psi}=\frac{\langle\psi| \mathcal{M} \boldsymbol{H}^{+}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle}=\frac{\langle\psi| \boldsymbol{H} \mathcal{M}|\psi\rangle}{\langle\boldsymbol{\mathcal { M }} \mid \psi\rangle} \neq\langle\boldsymbol{H}\rangle_{\psi} \tag{18}
\end{equation*}
$$

Difference between observables H and H^{+}is detectable

$$
\begin{equation*}
\langle H\rangle_{\psi}:=\langle\hat{H}\rangle_{\varphi}=\frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\langle\psi| \mathcal{M}^{-1} H|\psi\rangle}{\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{16}
\end{equation*}
$$

Variance of \boldsymbol{H} :

$$
\begin{equation*}
\left\langle(\Delta H)^{2}\right\rangle_{\psi}=\left\langle H^{2}\right\rangle_{\psi}-\langle H\rangle_{\psi}^{2} \tag{17}
\end{equation*}
$$

Observable \boldsymbol{H}^{+}

$$
\begin{equation*}
\left\langle\boldsymbol{H}^{+}\right\rangle_{\psi}=\frac{\langle\psi| \mathcal{M} \boldsymbol{H}^{+}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle}=\frac{\langle\psi| \boldsymbol{H} \mathcal{M}|\psi\rangle}{\langle\boldsymbol{\mathcal { M }} \mid \psi\rangle} \neq\langle\boldsymbol{H}\rangle_{\psi} \tag{18}
\end{equation*}
$$

Difference between observables H and \boldsymbol{H}^{+}is detectable

There exists a link between these averages

$$
\begin{equation*}
\langle\boldsymbol{H}\rangle_{\psi}=\left\langle\boldsymbol{H}^{+}\right\rangle_{\mathcal{M}^{-1} \psi} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\langle\boldsymbol{H}\rangle_{\psi}:=\langle\hat{H}\rangle_{\varphi}=\frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\langle\psi| \mathcal{M}^{-1} H|\psi\rangle}{\langle\psi| \mathcal{M}^{-1}|\psi\rangle} \tag{16}
\end{equation*}
$$

Variance of \boldsymbol{H} :

$$
\begin{equation*}
\left\langle(\Delta H)^{2}\right\rangle_{\psi}=\left\langle H^{2}\right\rangle_{\psi}-\langle H\rangle_{\psi}^{2} \tag{17}
\end{equation*}
$$

Observable \boldsymbol{H}^{+}

$$
\begin{equation*}
\left\langle H^{+}\right\rangle_{\psi}=\frac{\langle\psi| \mathcal{M} H^{+}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle}=\frac{\langle\psi| \boldsymbol{H} \mathcal{M}|\psi\rangle}{\langle\psi| \mathcal{M}|\psi\rangle} \neq\langle\boldsymbol{H}\rangle_{\psi} \tag{18}
\end{equation*}
$$

Difference between observables H and H^{+}is detectable

There exists a link between these averages

$$
\begin{equation*}
\langle\boldsymbol{H}\rangle_{\psi}=\left\langle\boldsymbol{H}^{+}\right\rangle_{\mathcal{M}^{-1} \psi} \tag{19}
\end{equation*}
$$

The closer \boldsymbol{H} is to an exceptional point where \mathcal{M} is singular the more this difference becomes visible

Non-Hermitian dynamics

Non-Hermitian dynamics

The Hamiltonian \boldsymbol{H} plays a very special role in quantum mechanics

Non-Hermitian dynamics

The Hamiltonian \boldsymbol{H} plays a very special role in quantum mechanics since it is responsible for the dynamical evolution of a system

Non-Hermitian dynamics

The Hamiltonian \boldsymbol{H} plays a very special role in quantum mechanics since it is responsible for the dynamical evolution of a system

We assume $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$time independent

Non-Hermitian dynamics

The Hamiltonian \boldsymbol{H} plays a very special role in quantum mechanics since it is responsible for the dynamical evolution of a system

We assume $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$time independent and choose a "reference frame" where $\hat{H}=\hat{H}^{+}$and evolution is unitary ("unitary evolution reference frame")

Non-Hermitian dynamics

The Hamiltonian \boldsymbol{H} plays a very special role in quantum mechanics since it is responsible for the dynamical evolution of a system

We assume $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$time independent and choose a "reference frame" where $\hat{H}=\hat{H}^{+}$and evolution is unitary ("unitary evolution reference frame")

$$
\begin{equation*}
i \dot{\varphi}(t)=\hat{H} \varphi(t) \quad \varphi(0)=\varphi_{0} \quad \varphi(t)=e^{-i \hat{H} t} \varphi_{0} \tag{20}
\end{equation*}
$$

Non-Hermitian dynamics

The Hamiltonian H plays a very special role in quantum mechanics since it is responsible for the dynamical evolution of a system

We assume $\boldsymbol{H}\left(\neq \boldsymbol{H}^{+}\right)$time independent and choose a "reference frame" where $\hat{H}=\hat{H}^{+}$and evolution is unitary ("unitary evolution reference frame")

$$
\begin{equation*}
i \dot{\varphi}(t)=\hat{H} \varphi(t) \quad \varphi(0)=\varphi_{0} \quad \varphi(t)=e^{-i \hat{H} t} \varphi_{0} \tag{20}
\end{equation*}
$$

With the help of \mathcal{M} we can go to the "reference frame" where $\boldsymbol{H} \neq \boldsymbol{H}^{+}$and evolution is non-unitary $\varphi=\mathcal{M}^{1 / 2} \psi \quad \mathcal{M}$ is time independent

$$
\begin{equation*}
i \dot{\psi}(t)=H \psi(t) \quad \psi(0)=\psi_{0}=\mathcal{M}^{-1 / 2} \varphi_{0} \tag{21}
\end{equation*}
$$

$$
\begin{gather*}
\hat{U}(t)=\hat{U}^{+}(t)=e^{-i \hat{H} t}=e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t}=: \mathcal{M}^{-1 / 2} U(t) \mathcal{M}^{1 / 2} \tag{22}\\
U(t)=\mathcal{M}^{1 / 2} e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t} \mathcal{M}^{-1 / 2}=e^{-i H t} \neq U^{+}(t) \tag{23}
\end{gather*}
$$

$$
\begin{gather*}
\hat{U}(t)=\hat{U}^{+}(t)=e^{-i \hat{H} t}=e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t}=: \mathcal{M}^{-1 / 2} U(t) \mathcal{M}^{1 / 2} \tag{22}\\
U(t)=\mathcal{M}^{1 / 2} e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t} \mathcal{M}^{-1 / 2}=e^{-i H t} \neq U^{+}(t) \\
U(t)=\sum_{i}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1}=\sum_{i} e^{-i E_{i} t}\left|\psi_{i}(0)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1} \tag{24}
\end{gather*}
$$

$$
\begin{gather*}
\hat{U}(t)=\hat{U}^{+}(t)=e^{-i \hat{H} t}=e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t}=: \mathcal{M}^{-1 / 2} U(t) \mathcal{M}^{1 / 2} \tag{22}\\
U(t)=\mathcal{M}^{1 / 2} e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t} \mathcal{M}^{-1 / 2}=e^{-i H t} \neq U^{+}(t) \\
U(t)=\sum_{i}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1}=\sum_{i} e^{-i E_{i} t}\left|\psi_{i}(0)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1} \tag{24}\\
\psi(t)=U(t) \psi(0) \quad i \dot{\psi}=H \psi \tag{25}
\end{gather*}
$$

$$
\begin{gather*}
\hat{U}(t)=\hat{U}^{+}(t)=e^{-i \hat{H} t}=e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t}=: \mathcal{M}^{-1 / 2} U(t) \mathcal{M}^{1 / 2} \tag{22}\\
U(t)=\mathcal{M}^{1 / 2} e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t} \mathcal{M}^{-1 / 2}=e^{-i H t} \neq U^{+}(t) \tag{23}\\
U(t)=\sum_{i}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1}=\sum_{i} e^{-i E_{i} t}\left|\psi_{i}(0)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1} \tag{24}\\
\psi(t)=U(t) \psi(0) \quad i \dot{\psi}=H \psi \tag{25}
\end{gather*}
$$

According to the "relativity principle" the choice of either unitary or non-unitary "reference frame" is only the question of calculational advantages

$$
\begin{gather*}
\hat{U}(t)=\hat{U}^{+}(t)=e^{-i \hat{H} t}=e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t}=: \mathcal{M}^{-1 / 2} U(t) \mathcal{M}^{1 / 2} \tag{22}\\
U(t)=\mathcal{M}^{1 / 2} e^{-i \mathcal{M}^{-1 / 2} H \mathcal{M}^{1 / 2} t} \mathcal{M}^{-1 / 2}=e^{-i H t} \neq U^{+}(t) \tag{23}\\
U(t)=\sum_{i}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1}=\sum_{i} e^{-i E_{i} t}\left|\psi_{i}(0)\right\rangle\left\langle\psi_{i}(0)\right| \mathcal{M}^{-1} \tag{24}\\
\psi(t)=U(t) \psi(0) \quad i \dot{\psi}=H \psi \tag{25}
\end{gather*}
$$

According to the "relativity principle" the choice of either unitary or non-unitary "reference frame" is only the question of calculational advantages

The choice of a particular element from all equivalent Hamiltonians is similar to placing an observer in either one or another reference frame

Consider dynamics of $\boldsymbol{A}=\boldsymbol{A}^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

Consider dynamics of $A=A^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{26}
\end{equation*}
$$

Consider dynamics of $A=A^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{2}
\end{equation*}
$$

Whatever is the state vector $|\psi(t)\rangle$
only a_{i} may be observed while measuring \boldsymbol{A} with the probabilities

Consider dynamics of $A=A^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{2}
\end{equation*}
$$

Whatever is the state vector $|\psi(t)\rangle$ only a_{i} may be observed while measuring A with the probabilities

$$
\begin{equation*}
p_{i}(t)=\frac{\left\langle\psi(t) \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi(t)\right\rangle}{\langle\psi(t) \mid \psi(t)\rangle} \tag{27}
\end{equation*}
$$

Consider dynamics of $\boldsymbol{A}=\boldsymbol{A}^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{26}
\end{equation*}
$$

Whatever is the state vector $|\psi(t)\rangle$ only a_{i} may be observed while measuring A with the probabilities

$$
\begin{equation*}
p_{i}(t)=\frac{\left\langle\psi(t) \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi(t)\right\rangle}{\langle\psi(t) \mid \psi(t)\rangle} \tag{27}
\end{equation*}
$$

Condition

$$
\begin{equation*}
\sum_{i} p_{i}(t)=1 \tag{28}
\end{equation*}
$$

follows from the completeness of the set of eigenvectors of \boldsymbol{A}

Consider dynamics of $\boldsymbol{A}=\boldsymbol{A}^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{26}
\end{equation*}
$$

Whatever is the state vector $|\psi(t)\rangle$
only a_{i} may be observed while measuring \boldsymbol{A} with the probabilities

$$
\begin{equation*}
p_{i}(t)=\frac{\left\langle\psi(t) \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi(t)\right\rangle}{\langle\psi(t) \mid \psi(t)\rangle} \tag{27}
\end{equation*}
$$

Condition

$$
\begin{equation*}
\sum_{i} p_{i}(t)=1 \tag{28}
\end{equation*}
$$

follows from the completeness of the set of eigenvectors of \boldsymbol{A}

$$
\begin{equation*}
\langle A\rangle_{\psi(t)}=\frac{\langle\psi(t)| A|\psi(t)\rangle}{\langle\psi(t) \mid \psi(t)\rangle}=\sum_{i} a_{i} p_{i}(t) \tag{29}
\end{equation*}
$$

Consider dynamics of $\boldsymbol{A}=\boldsymbol{A}^{+}$for a system being in the state $\psi(t)=U(t) \psi(0) \quad U^{+}(t) \neq U^{-1}(t)$

$$
\begin{equation*}
A\left|a_{i}\right\rangle=a_{i}\left|a_{i}\right\rangle \quad\left\langle a_{i} \mid a_{j}\right\rangle=\delta_{i, j} \quad \sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|=1 \tag{26}
\end{equation*}
$$

Whatever is the state vector $|\psi(t)\rangle$
only a_{i} may be observed while measuring A with the probabilities

$$
\begin{equation*}
p_{i}(t)=\frac{\left\langle\psi(t) \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi(t)\right\rangle}{\langle\psi(t) \mid \psi(t)\rangle} \tag{27}
\end{equation*}
$$

Condition

$$
\begin{equation*}
\sum_{i} p_{i}(t)=1 \tag{28}
\end{equation*}
$$

follows from the completeness of the set of eigenvectors of \boldsymbol{A}

$$
\begin{gather*}
\langle A\rangle_{\psi(t)}=\frac{\langle\psi(t)| A|\psi(t)\rangle}{\langle\psi(t) \mid \psi(t)\rangle}=\sum_{i} a_{i} p_{i}(t) \tag{29}\\
\partial_{t}\langle A\rangle_{\psi}=\frac{1}{i} \frac{\langle\psi| A H-H^{+} A|\psi\rangle}{\langle\psi \mid \psi\rangle}-\frac{1}{i} \frac{\langle\psi| H-H^{+}|\psi\rangle}{\langle\psi \mid \psi\rangle^{2}} \tag{30}
\end{gather*}
$$

Non-Hermitian evolution of spin

Non-Hermitian evolution of spin

Consider Hamiltonian

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s \\
s & r e^{-i \theta}
\end{array}\right)
$$

Bender C M, Brody D C Jones
H F and Meister B K 2007
Phys. Rev. Lett. 98040403

Non-Hermitian evolution of spin

Consider Hamiltonian

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s \tag{31}\\
s & r e^{-i \theta}
\end{array}\right)
$$

Bender C M, Brody D C Jones
H F and Meister B K 2007
Phys. Rev. Lett. 98040403

Time interval necessary for evolution from $\left|\psi_{I}\right\rangle=(1,0)^{T}$

Non-Hermitian evolution of spin

Consider Hamiltonian

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s \\
s & r e^{-i \theta}
\end{array}\right)
$$

Bender C M, Brody D C Jones
H F and Meister B K 2007
Phys. Rev. Lett. 98040403

Time interval necessary for evolution from $\left|\psi_{I}\right\rangle=(1,0)^{T}$ to $\left|\psi_{F}\right\rangle \sim(0,1)^{T}$

Non-Hermitian evolution of spin

Consider Hamiltonian

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s \\
s & r e^{-i \theta}
\end{array}\right)
$$

Bender C M, Brody D C Jones
H F and Meister B K 2007
Phys. Rev. Lett. 98040403

Time interval necessary for evolution from $\left|\psi_{I}\right\rangle=(\mathbf{1}, \mathbf{0})^{T}$
to $\left|\psi_{F}\right\rangle \sim(0,1)^{T}$
may become infinitesimal (C. Bender et al.)

Non-Hermitian evolution of spin

$$
\begin{gather*}
\left|E_{+}\right\rangle=\binom{1}{e^{-i \alpha}} \quad\left|E_{-}\right\rangle=\binom{1}{-e^{i \alpha}} \sin (\alpha)=\frac{r}{s} \sin (\theta) \tag{32}\\
E_{ \pm}=r \cos (\theta) \pm \sqrt{s^{2}-r^{2} \sin ^{2}(\theta)}=r \cos \theta \pm s \cos \alpha \tag{33}
\end{gather*}
$$

Non-Hermitian evolution of spin

$$
\begin{gather*}
\left|E_{+}\right\rangle=\binom{1}{e^{-i \alpha}} \quad\left|E_{-}\right\rangle=\binom{1}{-e^{i \alpha}} \sin (\alpha)=\frac{r}{s} \sin (\theta) \tag{32}\\
E_{ \pm}=r \cos (\theta) \pm \sqrt{s^{2}-r^{2} \sin ^{2}(\theta)}=r \cos \theta \pm s \cos \alpha \tag{33}
\end{gather*}
$$

Evolution operator

$$
\begin{align*}
U(t) & =\frac{e^{-i r t \cos \theta}}{\cos \alpha}\left(\begin{array}{cc}
\cos \left(\frac{\omega t}{2}-\alpha\right) & -i \sin \left(\frac{\omega t}{2}\right) \\
-i \sin \left(\frac{\omega t}{2}\right) & \cos \left(\frac{\omega t}{2}+\alpha\right)
\end{array}\right) \neq U^{+}(t) \tag{34}\\
\omega & =2 \sqrt{s^{2}-r^{2} \sin ^{2} \theta}=2 s|\cos \alpha|=E_{+}-E_{-} \equiv \Delta E
\end{align*}
$$

Non-Hermitian evolution of spin

$$
\begin{gather*}
\left|E_{+}\right\rangle=\binom{1}{e^{-i \alpha}} \quad\left|E_{-}\right\rangle=\binom{1}{-e^{i \alpha}} \sin (\alpha)=\frac{r}{s} \sin (\theta) \tag{32}\\
E_{ \pm}=r \cos (\theta) \pm \sqrt{s^{2}-r^{2} \sin ^{2}(\theta)}=r \cos \theta \pm s \cos \alpha \tag{33}
\end{gather*}
$$

Evolution operator

$$
\begin{align*}
U(t) & =\frac{e^{-i r t \cos \theta}}{\cos \alpha}\left(\begin{array}{cc}
\cos \left(\frac{\omega t}{2}-\alpha\right) & -i \sin \left(\frac{\omega t}{2}\right) \\
-i \sin \left(\frac{\omega t}{2}\right) & \cos \left(\frac{\omega t}{2}+\alpha\right)
\end{array}\right) \neq U^{+}(t) \tag{34}\\
\omega & =2 \sqrt{s^{2}-r^{2} \sin ^{2} \theta}=2 s|\cos \alpha|=E_{+}-E_{-} \equiv \Delta E
\end{align*}
$$

For $\alpha= \pm \pi / 2$ both eigenvalues and eigenvectors coalesce

Non-Hermitian evolution of spin

$$
\begin{gather*}
\left|E_{+}\right\rangle=\binom{1}{e^{-i \alpha}} \quad\left|E_{-}\right\rangle=\binom{1}{-e^{i \alpha}} \sin (\alpha)=\frac{r}{s} \sin (\theta) \tag{32}\\
E_{ \pm}=r \cos (\theta) \pm \sqrt{s^{2}-r^{2} \sin ^{2}(\theta)}=r \cos \theta \pm s \cos \alpha \tag{33}
\end{gather*}
$$

Evolution operator

$$
\begin{align*}
U(t) & =\frac{e^{-i r t \cos \theta}}{\cos \alpha}\left(\begin{array}{cc}
\cos \left(\frac{\omega t}{2}-\alpha\right) & -i \sin \left(\frac{\omega t}{2}\right) \\
-i \sin \left(\frac{\omega t}{2}\right) & \cos \left(\frac{\omega t}{2}+\alpha\right)
\end{array}\right) \neq U^{+}(t) \tag{34}\\
\omega & =2 \sqrt{s^{2}-r^{2} \sin ^{2} \theta}=2 s|\cos \alpha|=E_{+}-E_{-} \equiv \Delta E
\end{align*}
$$

For $\alpha= \pm \pi / 2$ both eigenvalues and eigenvectors coalesce
Hence
These are exceptional points
i.e. the points where Hamiltonian \boldsymbol{H} becomes non-diagonalizable and \mathcal{M} singular

Non-Hermitian evolution of spin

("spin observer reference frame")
We study evolution of spin flip $\sigma_{z}=\sigma_{z}^{+}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{gather*}
\sigma_{z}|\uparrow\rangle=|\uparrow\rangle \quad \sigma_{z}|\downarrow\rangle=-|\downarrow\rangle \tag{35}\\
|\psi(t)\rangle=U(t)|\psi(0)\rangle \quad|\psi(0)\rangle=|\uparrow\rangle \quad U^{+}(t) \neq U^{-1}(t) \tag{36}
\end{gather*}
$$

Non-Hermitian evolution of spin

("spin observer reference frame")
We study evolution of spin flip $\sigma_{z}=\sigma_{z}^{+}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{gather*}
\sigma_{z}|\uparrow\rangle=|\uparrow\rangle \quad \sigma_{z}|\downarrow\rangle=-|\downarrow\rangle \tag{35}\\
|\psi(t)\rangle=U(t)|\psi(0)\rangle \quad|\psi(0)\rangle=|\uparrow\rangle \quad U^{+}(t) \neq U^{-1}(t) \tag{36}\\
|\psi(t)\rangle=\frac{e^{-i r t} \cos \theta}{\cos \alpha}\binom{\cos \left(\frac{\omega t}{2}-\alpha\right)}{-i \sin \frac{\omega t}{2}} \tag{37}\\
\omega=2 \sqrt{s^{2}-r^{2} \sin ^{2} \theta}=2 s|\cos \alpha|=E_{+}-E_{-} \equiv \Delta E \tag{38}
\end{gather*}
$$

$$
\begin{aligned}
p_{\uparrow} & =\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
p_{\downarrow}+p_{\uparrow} & =1
\end{aligned}
$$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \quad \Longleftrightarrow \quad \begin{array}{l}
\frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \\
\\
t_{+N}=\frac{1}{\omega}(\pi+2 \alpha+2 N \pi)
\end{array}
\end{align*}
$$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \\
& p_{\uparrow}=1, p_{\downarrow}=0 \quad \Longleftrightarrow \quad \frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \tag{40}\\
& \\
& \tag{41}
\end{align*}
$$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \\
& p_{\uparrow}=1, p_{\downarrow}=0 \quad \Longleftrightarrow \quad \begin{array}{l}
\frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \\
\end{array} \tag{40}\\
& \\
& \tag{41}
\end{align*}
$$

$|\uparrow\rangle \rightarrow|\downarrow\rangle$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \\
& p_{\uparrow}=1, p_{\downarrow}=0 \quad \Longleftrightarrow \quad \begin{array}{l}
\frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \\
\end{array} \\
& \tag{40}\\
&
\end{align*}
$$

$|\uparrow\rangle \rightarrow|\downarrow\rangle \quad$ at every time moment $t_{+N}, N=0,1, \ldots$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \\
& \\
& p_{\uparrow}=1, p_{\downarrow}=0 \quad \Longleftrightarrow \quad \frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \tag{40}\\
&
\end{align*}
$$

$|\uparrow\rangle \rightarrow|\downarrow\rangle \quad$ at every time moment $t_{+N}, N=0,1, \ldots$
$|\downarrow\rangle \rightarrow|\uparrow\rangle$

$$
\begin{align*}
& p_{\uparrow}=\frac{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)}, \quad p_{\downarrow}=\frac{\sin ^{2}\left(\frac{\omega t}{2}\right)}{\cos ^{2}\left(\frac{\omega t}{2}-\alpha\right)+\sin ^{2}\left(\frac{\omega t}{2}\right)} \\
& p_{\downarrow}+p_{\uparrow}=1 \\
& p_{\uparrow}=0, p_{\downarrow}=1 \\
& p_{\uparrow}=1, p_{\downarrow}=0 \quad \Longleftrightarrow \quad \begin{array}{l}
\frac{\omega t}{2}-\alpha=\frac{\pi}{2}+N \pi, \quad N=0,1, \ldots \\
\end{array} \\
& \tag{40}\\
&
\end{align*}
$$

$|\uparrow\rangle \rightarrow|\downarrow\rangle \quad$ at every time moment $t_{+N}, N=0,1, \ldots$
$|\downarrow\rangle \rightarrow|\uparrow\rangle \quad$ at every time moment $t_{-M}, M=1,2, \ldots$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E}
$$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E}
$$

At $\omega=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \mathbf{0}$ (cf. C. Bender et al)

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E}
$$

At $\omega=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \mathbf{0}$ (cf. C. Bender et al) but $s, r \rightarrow \infty$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\begin{equation*}
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E} \tag{43}
\end{equation*}
$$

At $\omega=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \mathbf{0}$ (cf. C. Bender et al) but $s, r \rightarrow \infty$

At $s=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \Delta t_{1 \text { min }}=\frac{1}{s}$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E}
$$

At $\omega=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \mathbf{0}$ (cf. C. Bender et al) but $s, r \rightarrow \infty$

At $s=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \Delta t_{1 \text { min }}=\frac{1}{s}$
Variance of energy at state $\psi(t), \quad \sigma_{E}=\frac{1}{2} \Delta E=s \cos \alpha \rightarrow 0$

Time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle$:

$$
\begin{equation*}
\Delta t_{1}=t_{+0}=\frac{\pi+2 \alpha}{\omega}=\frac{\pi+2 \alpha}{2 s|\cos \alpha|}=\frac{\pi+2 \alpha}{\Delta E} \tag{42}
\end{equation*}
$$

Time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle$:

$$
\Delta t_{2}=t_{-1}-t_{+0}=\frac{\pi-2 \alpha}{\omega}=\frac{\pi-2 \alpha}{2 s|\cos \alpha|}=\frac{\pi-2 \alpha}{\Delta E}
$$

At $\omega=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \mathbf{0}$ (cf. C. Bender et al) but $s, r \rightarrow \infty$

At $s=$ const and $\alpha \rightarrow-\pi / 2$ one has $\Delta t_{1} \rightarrow \Delta t_{1 \text { min }}=\frac{1}{s}$
Variance of energy at state $\psi(t), \quad \sigma_{E}=\frac{1}{2} \Delta E=s \cos \alpha \rightarrow 0$
The closer the Hamiltonian is to a non-diagonalizable matrix
(i.e. $\alpha \rightarrow-\pi / 2, \Delta E$ fixed)
the more the time interval Δt_{1} reduces

Hermitian limit

$$
\begin{gathered}
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \\
s & r
\end{array}\right)=H^{+} \\
p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)
\end{gathered}
$$

Hermitian limit

$$
\begin{aligned}
& \alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{ll}
r & s \\
s & r
\end{array}\right)=H^{+} \\
& \begin{array}{l}
\boldsymbol{p}_{\downarrow}(t)=\sin ^{2}(s t) \quad \underset{\text { p }}{ }(t)=\cos ^{2}(s t) \\
\text { time interval necessary for }|\uparrow\rangle \rightarrow|\downarrow\rangle=
\end{array}
\end{aligned}
$$

Hermitian limit

$$
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \tag{44}\\
s & r
\end{array}\right)=H^{+}
$$

$p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)$
time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle=$
time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle=$

Hermitian limit

$$
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \tag{44}\\
s & r
\end{array}\right)=H^{+}
$$

$p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)$ time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle=$
time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle=$

$$
\begin{equation*}
\Delta \widetilde{t}=\frac{\pi}{\Delta E}=\frac{\pi}{2 s}=\frac{\pi}{2} \Delta t_{1 m i n} \tag{45}
\end{equation*}
$$

It minimizes the Aharonov-Anandan time-energy uncertainty relation

Hermitian limit

$$
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \tag{44}\\
s & r
\end{array}\right)=H^{+}
$$

$p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)$
time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle=$
time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle=$

$$
\begin{equation*}
\Delta \tilde{t}=\frac{\pi}{\Delta E}=\frac{\pi}{2 s}=\frac{\pi}{2} \Delta t_{1 \min } \tag{45}
\end{equation*}
$$

It minimizes the Aharonov-Anandan time-energy uncertainty relation
This means that Hamiltonian (44) realizes an optimal Hermitian evolution between given states.

Hermitian limit

$$
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \tag{44}\\
s & r
\end{array}\right)=H^{+}
$$

$p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)$
time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle=$
time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle=$

$$
\begin{equation*}
\Delta \tilde{t}=\frac{\pi}{\Delta E}=\frac{\pi}{2 s}=\frac{\pi}{2} \Delta t_{1 \min } \tag{45}
\end{equation*}
$$

It minimizes the Aharonov-Anandan time-energy uncertainty relation
This means that Hamiltonian (44) realizes an optimal Hermitian evolution between given states.

For a given eigen-energies difference ΔE
the ratio of non-Hermitian time evolution and the sharpest Hermitian time evolution is

$$
\begin{equation*}
\frac{\Delta t_{1}}{\Delta \widetilde{t}}=\frac{\pi+2 \alpha}{\Delta E}: \frac{\pi}{\Delta E}=1+\frac{2 \alpha}{\pi} \tag{46}
\end{equation*}
$$

Hermitian limit

$$
\alpha=0 \Rightarrow \theta=0 \quad H=\left(\begin{array}{cc}
r & s \tag{44}\\
s & r
\end{array}\right)=H^{+}
$$

$p_{\downarrow}(t)=\sin ^{2}(s t) \quad p_{\uparrow}(t)=\cos ^{2}(s t)$
time interval necessary for $|\uparrow\rangle \rightarrow|\downarrow\rangle=$
time interval necessary for $|\downarrow\rangle \rightarrow|\uparrow\rangle=$

$$
\begin{equation*}
\Delta \widetilde{t}=\frac{\pi}{\Delta E}=\frac{\pi}{2 s}=\frac{\pi}{2} \Delta t_{1 \text { min }} \tag{45}
\end{equation*}
$$

It minimizes the Aharonov-Anandan time-energy uncertainty relation
This means that Hamiltonian (44) realizes an optimal Hermitian evolution between given states.

For a given eigen-energies difference ΔE
the ratio of non-Hermitian time evolution and the sharpest Hermitian time evolution is

$$
\begin{equation*}
\frac{\Delta t_{1}}{\Delta \widetilde{t}}=\frac{\pi+2 \alpha}{\Delta E}: \frac{\pi}{\Delta E}=1+\frac{2 \alpha}{\pi} \tag{46}
\end{equation*}
$$

We conclude that for any Hermitian Hamiltonian of type (44) its non-Hermitian deformation towards one EP accelerates the flip of spin from up to down while the deformation towards the other EP decelerates it

Conjecture

For any physical process described with the help of a Hermitian operator and any Hermitian Hamiltonian
there exists a non-Hermitian deformation of the Hamiltonian leading to an acceleration of the process

Non-Hermitian brachistochrone problem

Non-Hermitian brachistochrone problem

Hamiltonian

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s \tag{47}\\
s & r e^{-i \theta}
\end{array}\right)
$$

solves non-Hermitian brachistochrone problem for the states $\psi_{I}=(1,0)^{T}$ and $\psi_{F}=(0,1)^{T}$

The End

