Perturbation theory for self-adjoint operators in Krein spaces

Carsten Trunk

TU Berlin

6th International Workshop on Pseudo Hermitian Hamiltonians in Quantum Physics London 2007

Topics

- Operators in Krein spaces
 - PT-symmetric operators
 - Sign types of the spectrum
 - Perturbations
- 2 Indefinite Sturm-Liouville problems
 - Setting
 - Location of the spectrum

Operators in Krein spaces

 $\mathcal{P}\mathcal{T}$ -symmetric operators are often of the form

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V$$

with a PT-symmetric potential V,

$$V(x) = \overline{V(-x)}$$
.

such that H is a self-adjoint operator with respect to

$$[f,g] := \int f(x) \overline{g(-x)} \, \mathrm{d}x, \quad f,g \in L^2.$$

Hence

H is a self-adjoint operator in the Krein $\mathcal{K} = (L^2, [\cdot, \cdot])$.

Operators in Krein spaces

 $\mathcal{P}\mathcal{T}$ -symmetric operators are often of the form

$$H=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+V$$

with a PT-symmetric potential V,

$$V(x) = \overline{V(-x)}$$
.

such that *H* is a self-adjoint operator with respect to

$$[f,g]:=\int f(x)\overline{g(-x)}\,\mathrm{d}x,\quad f,g\in L^2.$$

Hence:

H is a self-adjoint operator in the Krein $\mathcal{K} = (L^2, [\cdot, \cdot])$.

Operators in Krein spaces

 $\mathcal{P}\mathcal{T}$ -symmetric operators are often of the form

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V$$

with a PT-symmetric potential V,

$$V(x) = \overline{V(-x)}$$
.

such that H is a self-adjoint operator with respect to

$$[f,g]:=\int f(x)\overline{g(-x)}\,\mathrm{d}x,\quad f,g\in L^2.$$

Hence:

H is a self-adjoint operator in the Krein $\mathcal{K} = (L^2, [\cdot, \cdot])$.

Sign types of the spectrum

Often: Eigenvalues of positive and negative type interlace

an eigenvalue λ belongs to $\sigma_{++}(H)$ if

[f, f] > 0 for all eigenfunctions to λ .

Stable under some perturbations. Generalize to all spectra:

Definition

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0$.

Approx. Eigensequence

Sign types of the spectrum

Often: Eigenvalues of positive and negative type interlace

an eigenvalue λ belongs to $\sigma_{++}(H)$ if

[f, f] > 0 for all eigenfunctions to λ .

Stable under some perturbations. Generalize to all spectra:

Definition

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0$.

Approx. Eigensequence

Sign types of the spectrum

Often: Eigenvalues of positive and negative type interlace

an eigenvalue λ belongs to $\sigma_{++}(H)$ if

[f, f] > 0 for all eigenfunctions to λ .

Stable under some perturbations. Generalize to all spectra:

Definition

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0$.

Approx. Eigensequence

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0$.

Approx. Eigensequence

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\liminf [f_n, f_n] > 0.$$

$$\infty \in \sigma_{\pi_+}(H) \qquad :\Longleftrightarrow \qquad$$

$$\infty \in \sigma_{++}(H)$$
 : \iff $0 \in \sigma_{++}(H^{-1})$

Similar:
$$\sigma_{-}(H)$$
 $\sigma_{-}(H)$

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $\underbrace{(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0}_{\text{Approx. Eigensequence}}$.

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$.

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\lim \inf [t_n, t_n] > 0.$$

$$\infty \in \sigma_{\pi_+}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{\pi_+}(H^{-1}),$$

$$\infty \in \sigma_{++}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{++}(H^{-1})$$

Similar:
$$\sigma_{--}(H)$$
, $\sigma_{\pi_{-}}(H)$.

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $\underbrace{(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0}_{\text{Approx. Eigensequence}}$.

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$.

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\lim\inf\left[t_n,t_n\right]>0.$$

$$\infty\in\sigma_{\pi_+}(H)\qquad :\Longleftrightarrow \qquad 0\in\sigma_{\pi_+}(H^{-1}),$$

$$\infty\in\sigma_{++}(H)\qquad :\Longleftrightarrow \qquad 0\in\sigma_{++}(H^{-1})$$

Similar: $\sigma_{--}(H)$, $\sigma_{\pi_{-}}(H)$.

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $\underbrace{(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0}_{\text{Approx. Eigensequence}}$.

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$.

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\liminf [f_n, f_n] > 0.$$

$$\infty \in \sigma_{\pi_+}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{\pi_+}(H^{-1}),$$

$$\infty \in \sigma_{++}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{++}(H^{-1})$$

Similar:
$$\sigma_{--}(H)$$
, $\sigma_{\pi_{-}}(H)$.

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $\underbrace{(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0}_{\text{Approx. Eigensequence}}$.

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$.

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\liminf [f_n, f_n] > 0.$$

$$\infty \in \sigma_{\pi_+}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{\pi_+}(H^{-1}),$$

$$\infty \in \sigma_{++}(H) \qquad :\Longleftrightarrow \qquad 0 \in \sigma_{++}(H^{-1})$$

Similar: $\sigma_{--}(H)$, $\sigma_{\pi_{-}}(H)$.

$$\lambda_0 \in \sigma_{ap}(H)$$
 if exists $\underbrace{(f_n) \in \text{dom } H \text{ with } ||f_n|| = 1, (H - \lambda)f_n \to 0}_{\text{Approx. Eigensequence}}$.

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{++}(H)$ if for all Approx. Eigensequences (f_n) : $\liminf [f_n, f_n] > 0$.

Definition

 $\lambda_0 \in \sigma_{ap}(H)$ belongs to $\sigma_{\pi_+}(H)$ if exists $\mathcal{K}_0 \subset \mathcal{K}$, codim $\mathcal{K}_0 < \infty$, s.t. for all Approx. Eigensequences $(f_n) \in \text{dom } H \cap \mathcal{K}_0$:

$$\lim\inf\left[f_n,f_n\right]>0.$$

$$\infty \in \sigma_{\pi_+}(H)$$
 $:\Longleftrightarrow$ $0 \in \sigma_{\pi_+}(H^{-1}),$

$$\infty \in \sigma_{++}(H)$$
 : \iff $0 \in \sigma_{++}(H^{-1})$

Similar: $\sigma_{--}(H)$, $\sigma_{\pi_{-}}(H)$.

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{++}(\mathsf{H}) \cup \sigma_{--}(\mathsf{H}).$$

Then

$$\sigma(H) \subset \mathbb{R}$$
.

Theorem (AJT '05'

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{\pi_{+}}(\mathsf{H}) \cup \sigma_{\pi_{-}}(\mathsf{H}).$$

$$\sigma(H) \subset \mathbb{R} \cup \{\lambda_1, \overline{\lambda_1}, \dots \lambda_n, \overline{\lambda_n}\}$$

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{++}(\mathsf{H}) \cup \sigma_{--}(\mathsf{H}).$$

Then

$$\sigma(H) \subset \mathbb{R}$$
.

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(\mathcal{K}, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{\pi_{+}}(\mathsf{H}) \cup \sigma_{\pi_{-}}(\mathsf{H}).$$

$$\sigma(H) \subset \mathbb{R} \cup \{\lambda_1, \overline{\lambda_1}, \dots \lambda_n, \overline{\lambda_n}\}$$

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{++}(\mathsf{H}) \cup \sigma_{--}(\mathsf{H}).$$

Then

$$\sigma(H) \subset \mathbb{R}$$
.

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{\pi_{+}}(\mathsf{H}) \cup \sigma_{\pi_{-}}(\mathsf{H}).$$

$$\sigma(H) \subset \mathbb{R} \cup \{\lambda_1, \overline{\lambda_1}, \dots \lambda_n, \overline{\lambda_n}\}$$

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{++}(\mathsf{H}) \cup \sigma_{--}(\mathsf{H}).$$

Then

$$\sigma(H) \subset \mathbb{R}$$
.

Theorem (AJT '05)

Let H be a self-adjoint operator in a Krein space $(K, [\cdot, \cdot])$ with

$$\sigma_{\mathsf{e}}(\mathsf{H}) = \sigma_{\pi_{+}}(\mathsf{H}) \cup \sigma_{\pi_{-}}(\mathsf{H}).$$

$$\sigma(H) \subset \mathbb{R} \cup \{\lambda_1, \overline{\lambda_1}, \dots \lambda_n, \overline{\lambda_n}\}.$$

Compact perturbations

Theorem 1 [AJT '05]

Let H_0 , H_1 be self-adjoint operators in a Krein space with

$$(H_0 - \lambda)^{-1} - (H_1 - \lambda)^{-1}$$
 is compact.

$$\sigma_{\pi_{+}}(H_0) \cup \rho(H_0) = \sigma_{\pi_{+}}(H_1) \cup \rho(H_1).$$

Compact perturbations

Theorem 1 [AJT '05]

Let H_0 , H_1 be self-adjoint operators in a Krein space with

$$(H_0 - \lambda)^{-1} - (H_1 - \lambda)^{-1}$$
 is compact.

$$\sigma_{\pi_{+}}(H_0) \cup \rho(H_0) = \sigma_{\pi_{+}}(H_1) \cup \rho(H_1).$$

The gap between two subspaces M and N is defined by

$$\hat{\delta}(M,N) = \|P_M - P_N\|.$$

Theorem 2 [ABJT '08]

Let H_0 , H_1 be self-adjoint operators in a Krein space. Let $F \subset \mathbb{C} \cup \{\infty\}$ compact with

$$F \subset \sigma_{++}(H_0) \cup \rho(H_0).$$

Exists $\gamma > 0$ such that for all H_1 with $\hat{\delta}(\operatorname{graph} H_0, \operatorname{graph} H_1) < \gamma$:

$$F \subset \sigma_{++}(H_1) \cup \rho(H_1)$$

The gap between two subspaces M and N is defined by

$$\hat{\delta}(M,N) = \|P_M - P_N\|.$$

Theorem 2 [ABJT '08]

Let H_0 , H_1 be self-adjoint operators in a Krein space. Let $F \subset \mathbb{C} \cup \{\infty\}$ compact with

$$F \subset \sigma_{++}(H_0) \cup \rho(H_0).$$

Exists $\gamma > 0$ such that for all H_1 with $\hat{\delta}(\operatorname{graph} H_0, \operatorname{graph} H_1) < \gamma$:

$$F \subset \sigma_{++}(H_1) \cup \rho(H_1).$$

The gap between two subspaces M and N is defined by

$$\hat{\delta}(M,N) = \|P_M - P_N\|.$$

Theorem 2 [ABJT '08]

Let H_0 , H_1 be self-adjoint operators in a Krein space. Let $F \subset \mathbb{C} \cup \{\infty\}$ compact with

$$F \subset \sigma_{++}(H_0) \cup \rho(H_0).$$

Exists $\gamma > 0$ such that for all H_1 with $\hat{\delta}(\operatorname{graph} H_0, \operatorname{graph} H_1) < \gamma$:

$$F \subset \sigma_{++}(H_1) \cup \rho(H_1).$$

The gap between two subspaces M and N is defined by

$$\hat{\delta}(M,N) = \|P_M - P_N\|.$$

Theorem 2 [ABJT '08]

Let H_0 , H_1 be self-adjoint operators in a Krein space. Let $F \subset \mathbb{C} \cup \{\infty\}$ compact with

$$F \subset \sigma_{++}(H_0) \cup \rho(H_0).$$

Exists $\gamma > 0$ such that for all H_1 with $\hat{\delta}(\operatorname{graph} H_0, \operatorname{graph} H_1) < \gamma$:

$$F \subset \sigma_{++}(H_1) \cup \rho(H_1).$$

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \quad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product. BUTself-adjoint with respect to L^2 Krein space inner product:

$$[f,g]:=\int_{\mathbb{R}}f(x)\overline{g(x)}\operatorname{sgn}x\,\mathrm{d}x,\quad f,g\in L^2(\mathbb{R}).$$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \qquad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product. BUTself-adjoint with respect to L^2 Krein space inner product:

$$[f,g]:=\int_{\mathbb{R}}f(x)\overline{g(x)}\operatorname{sgn}x\operatorname{d}x,\quad f,g\in L^2(\mathbb{R}).$$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \qquad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product.

If
$$a = \int f(x) \overline{g(x)} dx$$
, $f(x) = \int f(x) \overline{g(x)} dx$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \qquad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product. BUTself-adjoint with respect to L^2 Krein space inner product:

$$[f,g]:=\int_{\mathbb{R}}f(x)\overline{g(x)}\operatorname{sgn}x\operatorname{d}x,\quad f,g\in L^2(\mathbb{R}).$$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \qquad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product. BUTself-adjoint with respect to L^2 Krein space inner product:

$$[f,g]:=\int_{\mathbb{R}}f(x)\overline{g(x)}\operatorname{sgn}x\operatorname{d}x,\quad f,g\in L^2(\mathbb{R}).$$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

We consider:

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)), \qquad \operatorname{dom} H = \mathcal{D}_{\max},$$

where $x \in \mathbb{R}$, $q \in L^1_{loc}(\mathbb{R})$ real and LP at $\pm \infty$.

NOT self-adjoint with respect to L^2 Hilbert space inner product. BUTself-adjoint with respect to L^2 Krein space inner product:

$$[f,g]:=\int_{\mathbb{R}}f(x)\overline{g(x)}\operatorname{sgn}x\operatorname{d}x,\quad f,g\in L^2(\mathbb{R}).$$

- Spectrum and essential spectrum,
- Accumulation of non-real eigenvalues.

Non-real accumulation

Theorem (KT '07)

There exists a potential q, such that $(i\epsilon_k) \subset \sigma(H)$, $\epsilon_k \to 0$.

Indefinite Sturm-Liouville operators

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)) \quad x \in \mathbb{R}, \quad \operatorname{dom} H = \mathcal{D}_{\max}.$$

Set

$$H_{-} := \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y'_{-}(0) = 0\}, \text{ self-adjoint in } L^2(\mathbb{R}^-),$$

$$H_+:=-rac{d^2}{dx^2}+q_+ \
vert \{y_+'(0)=0\}, \quad ext{self-adjoint in} \quad L^2(\mathbb{R}^+).$$

Theorem (KM '07, KT '07

Then $\rho(H) \neq \emptyset$. H and $H_- \times H_+$ differ by one dimension and

$$\sigma_{\mathrm{ess}}(H) = \sigma_{\mathrm{ess}}(H_{-} \times H_{+}) \subset \mathbb{R}$$

Indefinite Sturm-Liouville operators

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)) \quad x \in \mathbb{R}, \quad \operatorname{dom} H = \mathcal{D}_{\max}.$$

Set

$$H_{-} := \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y'_{-}(0) = 0\}, \text{ self-adjoint in } L^2(\mathbb{R}^-),$$

$$H_+ := -\frac{d^2}{dx^2} + q_+ \upharpoonright \{y'_+(0) = 0\}, \text{ self-adjoint in } L^2(\mathbb{R}^+).$$

Theorem (KM '07, KT '07

Then $\rho(H) \neq \emptyset$. H and $H_- \times H_+$ differ by one dimension and

$$\sigma_{\mathrm{ess}}(H) = \sigma_{\mathrm{ess}}(H_{-} \times H_{+}) \subset \mathbb{R}$$

Indefinite Sturm-Liouville operators

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x)) \quad x \in \mathbb{R}, \quad \operatorname{dom} H = \mathcal{D}_{\max}.$$

Set

$$H_{-} := \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y'_{-}(0) = 0\}, \text{ self-adjoint in } L^2(\mathbb{R}^-),$$

$$H_+ := -\frac{d^2}{dx^2} + q_+ \upharpoonright \{y'_+(0) = 0\}, \text{ self-adjoint in } L^2(\mathbb{R}^+).$$

Theorem (KM '07, KT '07)

Then $\rho(H) \neq \emptyset$. H and $H_- \times H_+$ differ by one dimension and

$$\sigma_{\text{ess}}(H) = \sigma_{\text{ess}}(H_{-} \times H_{+}) \subset \mathbb{R}.$$

Assume

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

and
$$H_{+} = -\frac{d^{2}}{dx^{2}} + q_{+} \upharpoonright \{y_{+}(0) = 0\}, \quad \sigma(H_{+}):$$

 $\sigma(H_- \times H_+)$:

$$\sigma_{--}(H_- \times H_+)$$

Assume

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

and
$$H_{+} = -\frac{d^{2}}{dx^{2}} + q_{+} \upharpoonright \{y_{+}(0) = 0\}, \quad \sigma(H_{+}):$$

$$\sigma(H_- \times H_+)$$
:

$$\sigma_{--}(H_- \times H_+)$$

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \uparrow \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \uparrow \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

and
$$H_{+} = -\frac{d^{2}}{dx^{2}} + q_{+} \upharpoonright \{y_{+}(0) = 0\}, \quad \sigma(H_{+}):$$

$$\sigma(H_{-} \times H_{+}) = \sigma_{--}(H_{-} \times H_{+}) \cup \sigma_{++}(H_{-} \times H_{+}) \setminus \{\infty\}:$$

$$\sigma_{--}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. H and $H_- \times H_+$ differ by one dimension.

$$\sigma(H_{-} \times H_{+}) = \sigma_{--}(H_{-} \times H_{+}) \cup \sigma_{++}(H_{-} \times H_{+}) \setminus \{\infty\}:$$

$$\sigma_{--}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. H and $H_- \times H_+$ differ by one dimension.

$$\sigma(H_{-} \times H_{+}) = \sigma_{--}(H_{-} \times H_{+}) \cup \sigma_{++}(H_{-} \times H_{+}) \setminus \{\infty\}:$$

$$\sigma_{--}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. H and $H_- \times H_+$ differ by one dimension.

$$\sigma(H_{-} \times H_{+}) = \sigma_{--}(H_{-} \times H_{+}) \cup \sigma_{++}(H_{-} \times H_{+}) \setminus \{\infty\}:$$

$$\sigma_{--}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. H and $H_- \times H_+$ differ by one dimension.

 $\sigma_{--}(H)$

$$\sigma(H_{-} \times H_{+}) = \sigma_{--}(H_{-} \times H_{+}) \cup \sigma_{++}(H_{-} \times H_{+}) \setminus \{\infty\}:$$

$$\sigma_{--}(H_{-} \times H_{+})$$

$$\sigma_{++}(H_{-} \times H_{+})$$

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. H and $H_- \times H_+$ differ by one dimension.

Theorem (Spectrum of H:) CASE 4 [BMT]: Up to three eigenvalues in the gap

Let H_{-} and H_{+} be as above. Let m_{\pm} be the classical Titchmarsh-Weyl functions of H_{+} and H_{-} . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0):=\infty$, $M(\infty):=-\infty$). Then

H has only real spectrum

$$au < M(\infty)$$
 OR $au > M(0)$

Let H_{-} and H_{+} be as above. Let m_{\pm} be the classical Titchmarsh-Weyl functions of H_{+} and H_{-} . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0):=\infty$, $M(\infty):=-\infty$). Then

H has only real spectrum

$$au < M(\infty)$$
 OR $au > M(0)$

Let H_{-} and H_{+} be as above. Let m_{\pm} be the classical Titchmarsh-Weyl functions of H_{+} and H_{-} . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0) := \infty$, $M(\infty) := -\infty$). Then

H has only real spectrum

$$au \leq M(\infty)$$
 OR $au \geq M(0)$

Let H_{-} and H_{+} be as above. Let m_{\pm} be the classical Titchmarsh-Weyl functions of H_{+} and H_{-} . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0):=\infty$, $M(\infty):=-\infty$). Then

H has only real spectrum

$$\tau \leq M(\infty)$$
 OR $\tau \geq M(0)$

$$H_{-} = \frac{d^{2}}{dx^{2}} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

$$H_{-} = \frac{d^{2}}{dx^{2}} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

$$H_{-} = \frac{d^2}{dx^2} - q_{-} \upharpoonright \{y_{-}(0) = 0\}, \quad \sigma(H_{-}):$$

Number of negative squares of H

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. Then H and $H_- \times H_+$ differ by one dimension. We have

$$[H \cdot, \cdot]$$

has finitely many negative squares $\tilde{\kappa}$. Spectrum $\sigma(H)$:

Number of negative squares of H

$$Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$$
. Then H and $H_- \times H_+$ differ by one dimension. We have

$$[H \cdot, \cdot]$$

has finitely many negative squares $\tilde{\kappa}$. Spectrum $\sigma(H)$:

Number of negative squares of H

 $Hy(x) = (\operatorname{sgn} x)(-y''(x) + q(x)y(x))$. Then H and $H_- \times H_+$ differ by one dimension. We have

$$[H \cdot, \cdot]$$

has finitely many negative squares $\tilde{\kappa}$. Spectrum $\sigma(H)$:

Assume, in addition, $\sigma_p(H_-) \cap \sigma_p(H_+) = \emptyset$ and $\kappa > 0$. Let m_\pm be the classical Titchmarsh-Weyl functions of H_+ and H_- . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0):=\infty$, $M(\infty):=-\infty$). Then

H has $\widetilde{\kappa} = \kappa + \Delta_0 + \Delta_{\infty}$ negative squares,

$$\Delta_0 := \left\{ \begin{array}{cc} 0, & \text{if } 0 < M(0), \\ -1, & \text{otherwise,} \end{array} \right. \quad \text{and} \quad \Delta_\infty := \left\{ \begin{array}{cc} 1, & \text{if } M(\infty) < 0, \\ 0, & \text{otherwise.} \end{array} \right.$$

Assume, in addition, $\sigma_p(H_-) \cap \sigma_p(H_+) = \emptyset$ and $\kappa > 0$. Let m_\pm be the classical Titchmarsh-Weyl functions of H_+ and H_- . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0):=\infty$, $M(\infty):=-\infty$). Then

H has $\widetilde{\kappa} = \kappa + \Delta_0 + \Delta_{\infty}$ negative squares,

$$\Delta_0 := \left\{ \begin{array}{ll} 0, & \text{if } 0 < M(0), \\ -1, & \text{otherwise,} \end{array} \right. \quad \text{and} \quad \Delta_\infty := \left\{ \begin{array}{ll} 1, & \text{if } M(\infty) < 0, \\ 0, & \text{otherwise.} \end{array} \right.$$

Assume, in addition, $\sigma_p(H_-) \cap \sigma_p(H_+) = \emptyset$ and $\kappa > 0$. Let m_\pm be the classical Titchmarsh-Weyl functions of H_+ and H_- . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0) := \infty$, $M(\infty) := -\infty$). Then

H has
$$\widetilde{\kappa} = \kappa + \Delta_0 + \Delta_{\infty}$$
 negative squares,

$$\Delta_0 := \left\{ \begin{array}{ll} 0, & \text{if } 0 < M(0), \\ -1, & \text{otherwise}, \end{array} \right. \quad \text{and} \quad \Delta_\infty := \left\{ \begin{array}{ll} 1, & \text{if } M(\infty) < 0, \\ 0, & \text{otherwise}. \end{array} \right.$$

Assume, in addition, $\sigma_p(H_-) \cap \sigma_p(H_+) = \emptyset$ and $\kappa > 0$. Let m_\pm be the classical Titchmarsh-Weyl functions of H_+ and H_- . Set

$$M=m_+-m_-.$$

Let M(0), $M(\infty)$ exist. (Else $M(0) := \infty$, $M(\infty) := -\infty$). Then

H has
$$\widetilde{\kappa} = \kappa + \Delta_0 + \Delta_\infty$$
 negative squares,

$$\Delta_0 := \left\{ \begin{array}{ll} 0, & \text{if } 0 < M(0), \\ -1, & \text{otherwise}, \end{array} \right. \quad \text{and} \quad \Delta_\infty := \left\{ \begin{array}{ll} 1, & \text{if } M(\infty) < 0, \\ 0, & \text{otherwise}. \end{array} \right.$$

Thank you