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Ay, Ag selfadjoint in Hilbert space H, (A; — A\~ — (4 =N~ e &
Describe e_itA%b with e_itAOgbi for t — +o00, i.e.
le "y — e Mg || — 0, ¢ — doo.

The scattering operator is
S HI(Ag) — HE(Ay), b b (= WEW p)
In direct integral representation
AglH™ (Ag) =X HY(Ag) = L¥(04c(Ag), dA, H)),
scattering operator .5 turns into multiplication with {.S(A)}\eq,.(4,):

Scattering matrix {S(\)}: H -valued function with unitary values

Conversely: Each operator function S(-) with unitary values S()\) is the

scattering matrix of some scattering system { A, Ag}.
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Dissipative scattering systems

What if A\ — S()) is not unitary but contraction-valued?

Theorem [N89] Each operator function S(-) with contractive values S(\)
is the scattering matrix of a dissipative scattering system {Ap, Ag}.

Ap selfadjoint, Ap maximal dissipative operator in H:
Im (Apx,z) <0, r € dom Ap.

e~ 4D dynamics of open quantum system {Ap, H}.
Note: e 4D not unitary and possibly |[e~*#4Dp| — 0.

Corollary Every contractive matrix function S(-) is the scattering matrix

of a dissipative scattering system {Ap, Ag}, where Ap and A are ex-

tensions of a symmetric operator A with finite defect.
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Open quantum systems

Assume A C A" of defect n and A selfadjoint extension, Ay maximal

dissipative extension (pseudo-Hamiltonian).
Open quantum system {Ap, H} can be embedded into closed system:

Proposition Exists selfadjoint dilation X of Ap in H @& L*(R, C"):
Py(K =N "' ly=(Ap—-N"",  xecCh.

K singular perturbation of Ky := Ay ® —1 d

%1
(K —XN)"'=(Ky—A)~! finite rank (< 2n).

~

Note R = 0(—@%) = 0(Ky) = o(K), physical interpretation 777

Example Ap = _dd_;? +V in H = L*Ry) with b.c. #/(0) = —if(0)
Then K = —f" + Vf & —ig in L2(R,) & L3(R), where

f@gedomK < f(0)£if(0)=—iv2g(F0) (interaction)
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Scattering in open quantum systems

Connection between scattering processes of { K, K} in the closed system

and scattering processes of {AD, AO} in the open quantum system ?

Theorem Scattering matrix of {K, K} is

S _ [ S S12(A)
S(A\) = <521()\> SLP()\)> fora.e. A € R,

{S(A\)} scattering matrix of dissipative scattering system {Ap, Ay},
S(A) = I+ 2i\/Im M(X) (D — M(X) ™ /Im M(N);
M (-) "abstract” Titchmarsh-Weyl function of A, Ay,

Ap < D :n X n-matrix, "abstract” boundary condition

Summary Simple model for open quantum system, scattering theory works,

but Hamiltonians f?, K in the closed system are NOT semibounded.
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Open quantum system described by a family {A(A)}, A € C4, of
maximal dissipative operators in H.

Assume { A()\)} extensions of symmetric operator A with finite defect.

Theorem There exists symmetric operator 1" in Hilbert space K and a
selfadjoint extension L of A® T in 'H & IC such that

Pr(L =X "= (AN =N, recC.

2
Example A(\) = —% +V regular Sturm-Liouville operators in L*(a, b)

dom A(\) = {f e H*(a,b) : f]g%j;ti/—m}{é? } .

~ 72 ) - { V(a) x€(—00,al
Then L = ——— + Vin L(R), where V(z) =< V(z) z€(ab) .
V(b) xz€lb,00)

Quantum-transmitting Schrodinger Poisson system: Model for carrier transport in semiconductors
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L selfadjoint extension of A® T with Py/(L — X))y = (A\) — \) L.
Let Lo := Ay & 1y, where A, 1| selfadjoint extensions of A and 7.

Observations (i) L, Ly semibounded <= A, T semibounded
(i) Scattering matrix {S(A\)} of {L, Ly} is 2 x 2 block matrix fct.

Theorem For fixed 1 € R { A(p+10), Ag} is a "simple” scattering system

as in Part Il and fora.e. 1 € R

~

S(n) = Suln)
where {gﬂ()\)} scattering matrix of simple system {[?M, Ay D —i%};
K, dilation of A(y + i0) in H & L*(R,C").

— If S(\) ~ §M()\) for A € (u— 9, + 6),then {gﬂ()\)} locally good

approximation of “real” scattering matrix



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated

e Hamiltonians L, L in the closed quantum system can be semibounded

(depends on family A()\)), good for physical interpretation



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated

e Hamiltonians L, L in the closed quantum system can be semibounded

(depends on family A()\)), good for physical interpretation

e [ describes interaction of inner and outer system, L no interaction



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated

e Hamiltonians L, L in the closed quantum system can be semibounded

(depends on family A()\)), good for physical interpretation
e I describes interaction of inner and outer system, L no interaction

o Scattering matrix {S(\)} of {L, Ly} coincides pointwise with scatter-
ing matrices of “simple” scattering systems { K, Ay ® —z%}



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated

e Hamiltonians L, L in the closed quantum system can be semibounded

(depends on family A()\)), good for physical interpretation
e I describes interaction of inner and outer system, L no interaction

o Scattering matrix {S(\)} of {L, Ly} coincides pointwise with scatter-
ing matrices of “simple” scattering systems { K, Ay ® —z%}

e The “simple” model locally is a good approximation of the " real world”



Conclusions and Summary

e Open quantum system described by dissipative operators { A(\)} can

be embedded into a closed system, but the outer system is complicated

e Hamiltonians L, L in the closed quantum system can be semibounded

(depends on family A()\)), good for physical interpretation
e I describes interaction of inner and outer system, L no interaction

o Scattering matrix {S(\)} of {L, Ly} coincides pointwise with scatter-
ing matrices of “simple” scattering systems { K, Ay ® —z%}

e The “simple” model locally is a good approximation of the " real world”

o Inverse problems: {S(\)} can be recovered from “simple” scattering

matrices {gu()\)}



