Nonlocal Variant of $\mathcal{P} \mathcal{T}$ Symmetric Potential

Barnana Roy
(in collaboration with R.Roychoudhury)
Physics and Applied Mathematics Unit Indian Statistical Institute
Kolkata-700108
INDIA

The time independent Schrödinger equation in the position representation is given by (assuming $\hbar=2 m=1$)

$$
\begin{equation*}
\tilde{H} \psi(x)=E \psi(x) \tag{1}
\end{equation*}
$$

where the Hamiltonian \tilde{H} is given by [Choi et al, Phys.Rev.A60 (1999) 796]

$$
\begin{equation*}
\tilde{H} \psi(x)=-\frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)+\int_{-\infty}^{\infty} d y v(x, y) \psi(y)=E \psi(x) \tag{2}
\end{equation*}
$$

$V(x)$ and $v(x, y)$ being complex local and nonlocal potentials respectively.

We now consider a pair of Hamiltonians $\tilde{H}_{ \pm}$of the form (1) where $\tilde{H}_{+}=A B, \tilde{H}_{-}=B A, A$ and B being linear first order differential operators. Then \tilde{H}_{-}is the isospectral partner of \tilde{H}_{+}.

Correspondingly, the Schrödinger equations for the partner Hamiltonians \tilde{H}_{+}and \tilde{H}_{-}are given by

$$
\begin{align*}
\tilde{H}_{+} \psi_{+}(x) & =-\frac{d^{2} \psi_{+}(x)}{d x^{2}}+V_{+}(x) \psi_{+}(x)+\int_{-\infty}^{\infty} d y v_{+}(x, y) \psi_{+}(y) \\
& =E_{+} \psi_{+}(x) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{H}_{-} \psi_{-}(x) & =-\frac{d^{2} \psi_{-}(x)}{d x^{2}}+V_{-}(x) \psi_{-}(x)+\int_{-\infty}^{\infty} d y v_{-}(x, y) \psi_{-}(y) \\
& =E_{-} \psi_{-}(x) \tag{4}
\end{align*}
$$

Writing [Choi et al, Phys.Rev.A60 (1999) 796]

$$
\begin{align*}
& <x\left|V_{ \pm}(x)\right| \psi_{ \pm}>=V_{ \pm}(x) \psi_{ \pm}(x) \\
& <x\left|v_{ \pm}(x, y)\right| \psi_{ \pm}>=\int_{-\infty}^{\infty} d y v_{ \pm}(x, y) \psi_{ \pm}(y) \tag{5}
\end{align*}
$$

equations (3) and (4) can be cast into the form

$$
\begin{equation*}
\frac{d^{2} \psi_{ \pm}(x)}{d x^{2}}+<x\left|V_{ \pm}(x)\right| \psi_{ \pm}>+<x\left|v_{ \pm}(x, y)\right| \psi_{ \pm}>=E_{ \pm} \psi_{ \pm}(x) \tag{6}
\end{equation*}
$$

Let us write the potentials in operator form as

$$
\begin{align*}
& \hat{V}_{ \pm}=\int_{-\infty}^{\infty} d x\left|x>V_{ \pm}(x)<x\right| \\
& \hat{v}_{ \pm}=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y\left|x>v_{ \pm}(x, y)<y\right| \tag{7}
\end{align*}
$$

Then the partner Hamiltonians \tilde{H}_{+}and \tilde{H}_{-}can be factorized respectively as

$$
\begin{equation*}
\tilde{H}_{+}=\hat{A} \hat{B}=\hat{p}^{2}+\hat{V}_{+}+\hat{v}_{+} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{H}_{-}=\hat{B} \hat{A}=\hat{p}^{2}+\hat{V}_{-}+\hat{v}_{-} \tag{9}
\end{equation*}
$$

where the first order differential operators \hat{B} and \hat{A} are defined by

$$
\begin{align*}
\hat{B} & =-i \hat{p}+\hat{W}+\hat{w} \tag{10}\\
\hat{A} & =i \hat{p}+\hat{W}+\hat{w}
\end{align*}
$$

And

$$
\begin{align*}
\hat{W} & =\int_{-\infty}^{\infty} d x|x>W(x)<x| \\
\hat{w} & =\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y|x>w(x, y)<y| \tag{11}
\end{align*}
$$

The potentials $V_{ \pm}$and $v_{ \pm}$are written in terms of the factorization potentials $W(x)$ and $w(x, y)$ as

$$
\begin{align*}
V_{ \pm}(x)= & {[W(x)]^{2} \pm \frac{d W(x)}{d x} } \\
v_{ \pm}(x, y)= & \int_{-\infty}^{\infty} d u w(x, u) w(u, y)+[W(x)+W(y)] w(x, y) \\
& \pm\left[\frac{\partial w(x, y)}{\partial x}+\frac{\partial w(x, y)}{\partial y}\right] \tag{12}
\end{align*}
$$

It is to be mentioned here that in models with local potentials, there is a one-to-one relationship between the ground state and the factorization potential $W(x)$ but it is not so with non local potentials. In non local models, given the factorization potentials $W(x)$ and $w(x, y)$, the zero-energy ground state $\psi_{0}(x)$ is obtained from the integro-differential equation

$$
\begin{equation*}
\frac{d \psi_{0}(x)}{d x}+W(x) \psi_{0}(x)+\int_{-\infty}^{\infty} d y w(x, y) \psi_{0}(y)=0 \tag{13}
\end{equation*}
$$

We shall now construct a class of exactly solvable models with both complex local and nonlocal potentials starting from any exactly solvable local model with factorization potential $W_{0}(x)$ and to this end we choose

$$
\begin{align*}
W(x) & =(1-c) W_{0}(x) \\
w(x, y) & =C_{1} \frac{\partial}{\partial x} \delta(x-y) \tag{14}
\end{align*}
$$

where C_{1} is a parameter of nonlocality and c is a constant.

Substituting $W(x)$ and $w(x, y)$ we obtain

$$
\begin{align*}
V_{ \pm}(x)= & (1-c)^{2}\left[W_{0}(x)\right]^{2} \pm(1-c) \frac{d W_{0}(x)}{d x} \\
\int_{-\infty}^{\infty} d y v_{ \pm}(x, y) \psi_{ \pm}(y)= & C_{1}^{2} \frac{d^{2} \psi_{ \pm}(x)}{d x^{2}}+2 C_{1}(1-c) W_{0}(x) \frac{d \psi_{ \pm}(x)}{d x} \\
& \pm(1-c) C_{1} \frac{d W_{0}(x)}{d x} \psi_{ \pm}(x) \tag{15}
\end{align*}
$$

Consequently the eigenvalue equations for the Hamiltonians $\tilde{H}_{ \pm}$are written as

$$
\begin{equation*}
\tilde{H}_{ \pm} \psi_{ \pm}=E_{ \pm} \psi_{ \pm} \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{H}_{ \pm} & =-\left(1-C_{1}^{2}\right) \frac{d^{2}}{d x^{2}}+2 C_{1}(1-c) W_{0}(x) \frac{d}{d x} \\
& +(1-c)\left(C_{1} \pm 1\right) \frac{d W_{0}(x)}{d x}+(1-c)^{2} W_{0}^{2}(x) \tag{17}
\end{align*}
$$

To solve this eigenvalue problem our strategy would be to find a similarity transformation mapping the Hamiltonians $\tilde{H}_{ \pm}$into standard form.
To this end we make the transformation

$$
\begin{equation*}
\psi_{ \pm}(x)=e^{-\frac{1}{2} \int f(x) d x} \phi_{ \pm}(x)=\eta \phi_{ \pm}(x) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta=e^{-\frac{1}{2} \int f(x) d x} \\
& f(x)=-\frac{2 C_{1}(1-c)}{\left(1-C_{1}^{2}\right)} W_{0}(x) \tag{19}
\end{align*}
$$

so that the transformed Hamiltonians $\bar{H}_{ \pm}=\eta^{-1} \tilde{H}_{ \pm} \eta$ are given by

$$
\begin{align*}
\bar{H}_{ \pm} \phi_{ \pm}(x)= & -\left(1-C_{1}^{2}\right) \frac{d^{2} \phi_{ \pm}(x)}{d x^{2}}+\frac{(1-c)^{2}}{\left(1-C_{1}^{2}\right)} W_{0}^{2}(x) \phi_{ \pm}(x) \\
& \pm(1-c) W_{0}^{\prime}(x) \phi_{ \pm}(x)=E_{ \pm} \phi_{ \pm}+(x) \tag{20}
\end{align*}
$$

It is to be noted that $\bar{H}_{ \pm}$can be factorised as

$$
\begin{equation*}
\bar{H}_{+}=C D \quad \bar{H}_{-}=D C \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
C & =\left(1+C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1-C_{1}\right)} W_{0}(x) \\
D & =\left(1-C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1+C_{1}\right)} W_{0}(x) \tag{22}
\end{align*}
$$

For the special case $C_{1}^{2}=c$, the Hamiltonians $\bar{H}_{ \pm}$can be written in terms of the local Hamiltonians $\bar{H}_{ \pm \text {,local }}$ as

$$
\begin{equation*}
\bar{H}_{ \pm}=(1-c) \bar{H}_{ \pm, \text {local }} \tag{23}
\end{equation*}
$$

Then it can be shown that

$$
\begin{align*}
\phi_{ \pm} & =\chi_{ \pm} \tag{24}\\
E_{ \pm} & =(1-c) E_{ \pm, \mathrm{local}}
\end{align*}
$$

Now to find eigenvalues $E_{ \pm}$and eigenfunctions $\psi_{ \pm}$of the Schroedinger equation (16), we proceed as follows: For local
Hamiltonians we already have

$$
\begin{equation*}
\bar{H}_{ \pm, \text {local }} \quad \chi_{ \pm, \text {local }}=E_{ \pm, \text {local }} \quad \chi_{ \pm, \text {local }} \tag{25}
\end{equation*}
$$

where $\chi_{ \pm}$, local are the eigenfunctions of the local Hamiltonians. Therefore

$$
\begin{equation*}
\bar{H}_{ \pm} \quad \chi_{ \pm, \text {local }}=(1-c) \bar{H}_{ \pm, \text {local }} \quad \chi_{ \pm, \text {local }}=(1-c) E_{ \pm, \text {local }} \quad \chi_{ \pm, \text {local }} \tag{26}
\end{equation*}
$$

Putting (18) into (16) we have

$$
\begin{align*}
\tilde{H}_{ \pm} \eta \phi_{ \pm} & =E_{ \pm} \eta \phi_{ \pm} \tag{27}\\
& =\eta E_{ \pm} \phi_{ \pm}
\end{align*}
$$

Operating η^{-1} from the left of the above equation, we get

$$
\begin{align*}
\bar{H}_{ \pm} \phi_{ \pm} & =E_{ \pm} \phi_{ \pm} \tag{28}\\
& =(1-c) \bar{H}_{ \pm, \text {local }} \phi_{ \pm}
\end{align*}
$$

Comparing (28) with (26) we have

$$
\begin{align*}
\phi_{ \pm} & =\chi_{ \pm} \tag{29}\\
E_{ \pm} & =(1-c) E_{ \pm, \text {local }}
\end{align*}
$$

Example 1.

Here we shall apply the above formalism to obtain eigenvalues and eigenfunctions of a nonlocal variant of the $\mathcal{P} \mathcal{T}$ symmetric Rosen Morse potential [Znojil, J.Phys. A33, (2000) L61]

In this case the factoriozation potential is taken as

$$
\begin{equation*}
W_{0}(x)=i \frac{B}{A}+\operatorname{Atanh} x \tag{30}
\end{equation*}
$$

Then $\tilde{H}_{ \pm}$are given by

$$
\begin{align*}
& \tilde{H}_{ \pm}=-\left(1-C_{1}^{2}\right) \frac{d^{2} \phi_{ \pm}(x)}{d x^{2}}+C_{1}(1-c)\left(\frac{i B}{A}+A \tanh x\right) \frac{d}{d x} \\
& +(1-c)\left(C_{1} \pm 1\right) A \operatorname{sech}^{2} x+(1-c)^{2} A^{2} \operatorname{sech}^{4} x \tag{31}
\end{align*}
$$

With $f(x)=-\frac{2 C_{1}(1-c)}{\left(1-C_{1}^{2}\right)}\left(i \frac{B}{A}+\operatorname{Atanh} x\right)$ the transformed
Hamiltonians are given by

$$
\begin{equation*}
\bar{H}_{ \pm}=-\left(1-C_{1}^{2}\right) \frac{d^{2}}{d x^{2}}+\frac{(1-c)^{2}}{\left(1-C_{1}^{2}\right)^{2}}\left(\frac{i B}{A}+\tanh x\right)^{2} \pm(1-c) \operatorname{sech}^{2} x \tag{32}
\end{equation*}
$$

These two Hamiltonians admit the factorisations

$$
\begin{gather*}
\bar{H}_{ \pm}=\left[\left(1+C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1 \mp C_{1}\right)}\left(\frac{i B}{A}+\operatorname{Atanh} x\right)\right] \tag{33}\\
\left.\left[\mp\left(1 \mp C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1 \pm C_{1}\right)}\left(\frac{i B}{A}+\operatorname{Atanh} x\right)\right)\right]
\end{gather*}
$$

With $C_{1}^{2}=c$, the eigenvalue equations for $\bar{H}_{ \pm}$can be written as

$$
\begin{align*}
& \bar{H}_{ \pm} \phi_{ \pm}(x)=(1-c)\left[-\frac{d^{2} \phi_{ \pm}(x)}{d x^{2}}+\left(\frac{i B}{A}+\operatorname{Atanh} x\right)^{2} \phi_{ \pm}(x)\right. \tag{34}\\
& \left. \pm\left(A \operatorname{sech}^{2} x\right) \phi_{ \pm}(x)\right]=E_{ \pm} \phi_{ \pm}(x)
\end{align*}
$$

The eigenvalues and eigenfunctions can be written using the results of corresponding local model [Levai, J.Phys. A22, (1989) 689, Znojil, J.Phys. A33, (2000) L61] For unbroken $\mathcal{P} \mathcal{T}$ symmetry

$$
\begin{gather*}
\psi_{-}(x)=\frac{1}{(\cosh x)^{A(1-\sqrt{c})}-n} e^{i B x\left(\frac{\sqrt{c}}{A}-\frac{1}{A-n}\right)} \tag{35}\\
P_{n}^{A-n+\frac{i B}{A-n}, A-n-\frac{i B}{A-n}}(\tanh x)
\end{gather*}
$$

where $P_{n}^{\alpha, \beta}$ is the Jacobi polynomial.

$$
\begin{equation*}
E_{-}=(1-c)\left[A^{2}-\frac{B^{2}}{A^{2}}-(A-n)^{2}+\frac{B^{2}}{(A-n)^{2}}\right] \tag{36}
\end{equation*}
$$

where $n=0,1,2 \cdots<A(1-\sqrt{c})$
And

$$
\begin{gather*}
\psi_{+}(x)=\frac{1}{(\cosh x)^{(A-1)(1-\sqrt{c})}-n} e^{i B x\left(\frac{\sqrt{c}}{A-1}-\frac{1}{A-1-n}\right)} \tag{37}\\
P_{n}^{A-1-n+\frac{i B}{A-1-n}, A-1-n-\frac{i B}{A-1-n}}(\tanh x) \\
E_{+}=(1-c)\left[\left(A^{2}-\frac{B^{2}}{A^{2}}-(A-1-n)^{2}+\frac{B^{2}}{(A-1-n)^{2}}\right]\right. \tag{38}
\end{gather*}
$$

where $n=0,1,2 \cdots<(A-1)(1-\sqrt{c})$

Example 2. Scarf Potential

In this case the factorisation potential is taken as

$$
\begin{equation*}
W_{0}(x)=\lambda \tanh x+i \mu \operatorname{sech} x \tag{39}
\end{equation*}
$$

Then $\tilde{H}_{ \pm}$are given by

$$
\begin{gather*}
\tilde{H}_{ \pm}=-\left(1-C_{1}^{2}\right) \frac{d^{2}}{d x^{2}}+2 C_{1}(1-c)(\lambda \tanh x+i \mu \operatorname{sech} x) \frac{d}{d x} \tag{40}\\
+(1-c)\left(C_{1} \pm 1\right)\left(\lambda \operatorname{sech}^{2} x-i \mu \operatorname{sech} x \tanh x\right) \\
+(1-c)^{2}(\lambda \tanh x+i \mu \operatorname{sech} x)^{2}
\end{gather*}
$$

With $f(x)=-\frac{2 C_{1}(1-c)}{\left(1-C_{1}^{2}\right)}(\lambda \tanh x+i \mu \operatorname{sech} x)$ the transformed Hamiltonians are given by

$$
\begin{gather*}
\bar{H}_{ \pm}=-\left(1-C_{1}^{2}\right) \frac{d^{2}}{d x^{2}}+\frac{(1-c)^{2}}{\left(1-C_{1}^{2}\right)^{2}}(\lambda \tanh x+i \mu \operatorname{sech} x)^{2} \tag{41}\\
\pm(1-c)\left(\lambda \operatorname{sech}^{2} x-i \mu \operatorname{sechxtanh} x\right)
\end{gather*}
$$

These two Hamiltonians admit the factorisations

$$
\begin{align*}
\tilde{H}_{ \pm} & =\left[\pm\left(1 \pm C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1 \mp C_{1}\right)}(\lambda \tanh x+i \mu \operatorname{sech} x)\right] \tag{42}\\
& {\left[\mp\left(1 \mp C_{1}\right) \frac{d}{d x}+\frac{(1-c)}{\left(1 \pm C_{1}\right)}(\lambda \tanh x+i \mu \operatorname{sech} x)\right] }
\end{align*}
$$

With $C_{1}^{2}=c$, the eigenvalue equations for $\bar{H}_{ \pm}$can be written as

$$
\begin{align*}
& \bar{H}_{ \pm} \phi_{ \pm}(x)=(1-c)\left[-\frac{d^{2} \phi_{ \pm}(x)}{d x^{2}}+(\lambda \tanh x+i \mu \operatorname{sech} x)^{2} \phi_{ \pm}(x)\right. \\
& \left. \pm\left(\lambda \operatorname{sech}^{2} x-i \mu \operatorname{sech} x \tanh x\right) \phi_{ \pm}(x)\right]=E_{ \pm} \phi_{ \pm}(x) \tag{43}
\end{align*}
$$

The eigenvalues and eigenfunctions can be written using the results of the corresponding local model [Z.Ahmed, Phys.Letts. A282 (2001) 343, A287 (2001) 295].

If the potential in the above equation is written as $V(x)=V_{1} \operatorname{sech}^{2} x+i V_{2} \operatorname{sech} x t a n h x$, then for unbroken $\mathcal{P} \mathcal{T}$ symmetry $\left|V_{2}\right| \leq V_{1}+\frac{1}{4}, V_{1}, V_{2}$ being given in the following equations. Three cases will arise

Case 1. Positive square roots taken in both t and s (given in the following equations). In this case the eigenvalues are given by

$$
\begin{equation*}
E_{ \pm, n^{+}}=(1-c)\left[\lambda^{2}-\left\{n^{+}+\frac{1}{2}-\frac{1}{2}(t+s)\right\}^{2}\right] \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
n^{+} & =0,1,2 \cdots<\frac{s+t-1}{2} \\
V_{1} & =\left(\lambda^{2}+\mu^{2}\right) \mp \lambda \\
V_{2} & = \pm \mu-2 \lambda \mu \tag{45}\\
t & =\sqrt{\frac{1}{4}+V_{1}-V_{2}} \\
s & =\sqrt{\frac{1}{4}+V_{1}+V_{2}}
\end{align*}
$$

and the eigenfunctions corresponding to these real eigenvalues are

$$
\begin{align*}
& \psi_{ \pm, n^{+}}(x)=(\operatorname{sech} x) \frac{(1-\sqrt{c})(s+t)-(1 \pm \sqrt{c})}{2} \tag{46}\\
& \exp \left[\frac{i}{2}(1+\sqrt{c})(t-s) \tan ^{-1}(\sinh x)\right] P_{n}^{(-t,-s)}(i \sinh x)
\end{align*}
$$

where $P_{n}^{(-t,-s)}$ denotes Jacobi polynomial.

Case 2. $V_{2}>0$, positive square root in s and negative square root in t.

In this case

$$
\begin{equation*}
E_{ \pm, n^{-}}=(1-c)\left[\lambda^{2}-\left\{n^{-}+\frac{1}{2}-\frac{1}{2}(s-t)\right\}^{2}\right] \tag{47}
\end{equation*}
$$

where

$$
\begin{align*}
n^{-} & =0,1,2 \cdots<\frac{s-t-1}{2} \\
V_{1} & =\left(\lambda^{2}+\mu^{2}\right) \mp \lambda \\
V_{2} & = \pm \mu-2 \lambda \mu \tag{48}\\
t & =-\sqrt{\frac{1}{4}+V_{1}-V_{2}} \\
s & =\sqrt{\frac{1}{4}+V_{1}+V_{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \psi_{ \pm, n^{-}}(x)=(\operatorname{sech} x) \frac{(1-\sqrt{c})(s-t)-(1 \pm \sqrt{c})}{2} \tag{49}\\
& \exp \left[-\frac{i}{2}(1-\sqrt{c})(t+s) \tan ^{-1}(\sinh x)\right] P_{n}^{(t,-s)}(i \sinh x)
\end{align*}
$$

Case 3. $V_{2}<0$, positive square root taken in t and negative square root in s.
In this case

$$
\begin{equation*}
E_{+, n^{-}}=(1-c)\left[\lambda^{2}-\left\{n^{-}+\frac{1}{2}-\frac{1}{2}(t-s)\right\}^{2}\right] \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
n^{-} & =0,1,2 \cdots<\frac{t-s-1}{2} \\
V_{1} & =\left(\lambda^{2}+\mu^{2}\right) \mp \lambda \\
V_{2} & = \pm \mu-2 \lambda \mu \tag{51}\\
t & =\sqrt{\frac{1}{4}+V_{1}-V_{2}} \\
s & =-\sqrt{\frac{1}{4}+V_{1}+V_{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \psi_{ \pm, n^{-}}(x)=(\operatorname{sech} x) \frac{(1-\sqrt{c})(t-s)-(1 \pm \sqrt{c})}{2} \tag{52}\\
& \exp \left[\frac{i}{2}(1+\sqrt{c})(t+s) \tan ^{-1}(\sinh x)\right] P_{n}^{(-t, s)}(i \sinh x)
\end{align*}
$$

Conclusion

1.The complex factorization approach is formally extended to complex nonlocal Hamiltonians. Many theoretical questions for nonlocal potentials are yet to be resolved e.g. inner product for $\mathcal{P} \mathcal{T}$ symmetric nonlocal systems, formulation of nonlocal $\mathcal{P} \mathcal{T}$ symmetric supersymmetry and pseudo-supersymmetry
2. However the present framework provides a link, albeit for special value of the nonlocal parameter, the nonlocal potential to a corresponding local $\mathcal{P} \mathcal{T}$ symmetric potential.

