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The matrix case

Strongly preferred is the Jordan-block complexification. The reason in 2x2
case 1s that the diagonalisability of the matrix Hamiltonian of the type H = H,
+ cV at the exceptional point would imply the commutativity of /,, and V.
This 1s clearly not satisfied in most realistic situations. In more than 2
dimensions the situation is more complicated, however the “diagonalisable”
complexification is still prohibited. It is the same reason as the prohibition of
level crossings for Hermitean operators.

Energy dependence near the exceptional point is usually well approximated by
the square-root function.

Example: 2x2 matrix pseudo-Hermitean with respect to o;:
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Schrodinger case

An exceptional point
without complexification:
parametrically dependent

boundary conditions
(Krejcitik et al.):

V(0) + (B +ia)d(0) =0

— ' (d) + (8 —ia)¥(d) =0

e For f different from 0 a
standard complexification
occurs.

The nonusual behaviour 1s
singular.




Relativistic systems — a motivation to study

 The radial Coulomb Hamiltonian is

» The spectrum for k =1, 2, 3 (ie. s, p, d-states) looks like this (color
distinguishes the principal quantum number)




Complexification occurs for all eigenvalues with a given x Simultaneously.

The structure of the spectrum near the exceptional point is square-root-
like.

Why is H not self-adjoint? The problem is in the origin (» = 0). Square
integrability of Hy forces y(0) =0 for w in Dom H, but only if 2> 1/2.

There is only one real eigenvalue (but two complex) near the EP!



Square well - The Klein & Gordon case

* One dimensional Klein-Gordon equation

((E + Cxqo,a(®))* — 82 — M*)(z) =0

«  We put M = 1, and the real secular equation we get is,

arctan

(1+ E)1 - E) ;o _
C+E-DC+E+1) ° (C+ E) mod 3

complexification occurs in a
standard way with pair
eigenvalues rising from the lower
continuum. On the fig. there is c-

dependence of the lowest pair for
fixedd =1.5.




Square well - The Dirac case

* One dimensional Dirac Hamiltonian with square-well potential

He [ M+ Cxe,0) —i8, )
—id, - M+ Cx0,q (%) |

Dom H={¢ € Ly(R) @ Ly(R)|¢)' € L2(R) & L2 (R)}

» After scaling out the mass M to be equal to 1, the energies are solutions of the
equations

¢ 1s purely imaginary if and only if o is, i.e.
the energy lies between 1 and 1-C for C > 0.
The charge-conjugation symmetry for

C — -C, E — -F exists.




We get a real equation

T Q1+E)C+E-1) d ,
— — arcte —_- — .: E:ﬁ_l l
5 — arctan I-E)C+E+D 2\/((+ ) mod 7

Number of existing eigenvalues for particular C, d can be deduced from above,
one gets following picture (eigenstates labelled 0, 1, 2 ...)




» Parametric dependence — the eigenvalues emerge from the upper continuum
and sink eventually in the lower as the width and depth rise, but only if the
depth |C| > 2.

» Typical behaviour of the eigenvalues, c- and d- dependence:

* No square-root singularity!

* No complex eigenvalues for strong coupling!



Limit case — delta interaction (Dirac)

¢ — 00, c¢d — const.

only one energy, exactly solvable

FE = cosed

Non-analytic behaviour
Impossible for KG, analogous limit would result in a trivial system
For large ¢ the KG still maintains square-root EP




Summary

There are different types of complexification.

Square-root EP is strongly preferred and typical for most Hamiltonians
(mechanism similar to the “no crossing theorem”).

Dirac Hamiltonians can exhibit PT-symmetrically counter-intuitive behaviour.
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