Complexification of Energies for Relativistic Hamiltonians

Hynek Bíla, ÚJF Řež

The matrix case

- Strongly preferred is the Jordan-block complexification. The reason in 2×2 case is that the diagonalisability of the matrix Hamiltonian of the type $H=H_{0}$ $+c V$ at the exceptional point would imply the commutativity of H_{0} and V. This is clearly not satisfied in most realistic situations. In more than 2 dimensions the situation is more complicated, however the "diagonalisable" complexification is still prohibited. It is the same reason as the prohibition of level crossings for Hermitean operators.
- Energy dependence near the exceptional point is usually well approximated by the square-root function.
- Example: 2×2 matrix pseudo-Hermitean with respect to σ_{3} :

$$
E=\begin{array}{ll}
\frac{a+b \pm S}{2} & \text { for } T>2 c \\
\frac{a+b \pm i S}{2} & \text { for } T<2 c
\end{array}
$$

$$
T=|a-b| \quad S=\left|\sqrt{T^{2}-4 c^{2}}\right|
$$

Schrödinger case

- An exceptional point without complexification: parametrically dependent boundary conditions (Krejčiřík et al.):

$$
\begin{aligned}
\psi^{\prime}(0)+(\beta+i \alpha) \psi(0) & =0 \\
-\psi^{\prime}(d)+(\beta-i \alpha) \psi(d) & =0
\end{aligned}
$$

- For β different from 0 a standard complexification occurs.
- The nonusual behaviour is singular.

Relativistic systems - a motivation to study

- The radial Coulomb Hamiltonian is

$$
\begin{gathered}
\mathrm{H}=\left(\begin{array}{cc}
-\frac{Z}{r}-M & -\partial_{r}-\frac{\kappa}{r} \\
\partial_{r}-\frac{\kappa}{r} & -\frac{Z}{r}+M
\end{array}\right) \\
\operatorname{Dom} \mathrm{H} \in\left\{\psi \in L_{2}\left(\mathbb{R}^{+}\right) \oplus L_{2}\left(\mathbb{R}^{+}\right) \mid \psi^{\prime} \in L_{2}\left(\mathbb{R}^{+}\right) \oplus L_{2}\left(\mathbb{R}^{+}\right)\right\}
\end{gathered}
$$

- The spectrum for $\kappa=1,2,3$ (ie. s, p, d-states) looks like this (color distinguishes the principal quantum number)

- Complexification occurs for all eigenvalues with a given κ simultaneously.
- The structure of the spectrum near the exceptional point is square-rootlike.

- Why is H not self-adjoint? The problem is in the origin $(r=0)$. Square integrability of $H \psi$ forces $\psi(0)=0$ for ψ in Dom H, but only if $\gamma^{2}>1 / 2$.
- There is only one real eigenvalue (but two complex) near the EP!

Square well - The Klein \& Gordon case

- One dimensional Klein-Gordon equation

$$
\left(\left(E+C \chi_{(0, d)}(x)\right)^{2}-\partial_{x}^{2}-M^{2}\right) \psi(x)=0
$$

- We put $\mathrm{M}=1$, and the real secular equation we get is,

$$
\arctan \sqrt{\frac{(1+E)(1-E)}{(C+E-1)(C+E+1)}}=\frac{d}{2} \sqrt{(C+E)^{2}-1} \bmod \frac{\pi}{2}
$$

complexification occurs in a standard way with pair eigenvalues rising from the lower continuum. On the fig. there is c dependence of the lowest pair for fixed $d=1.5$.

Square well - The Dirac case

- One dimensional Dirac Hamiltonian with square-well potential

$$
\mathrm{H}=\left(\begin{array}{cc}
M+C \chi_{(0, d)}(x) & -\mathrm{i} \partial_{x} \\
-\mathrm{i} \partial_{x} & -M+C \chi_{(0, d)}(x)
\end{array}\right)
$$

```
Dom H}={\psi\in\mp@subsup{L}{2}{}(\mathbb{R})\oplus\mp@subsup{L}{2}{}(\mathbb{R})|\mp@subsup{\psi}{}{\prime}\in\mp@subsup{L}{2}{}(\mathbb{R})\oplus\mp@subsup{L}{2}{}(\mathbb{R})
```

- After scaling out the mass M to be equal to 1 , the energies are solutions of the equations

$$
(1+\xi) \mathrm{e}^{\omega d}=1-\xi
$$

$$
\begin{aligned}
\rho_{ \pm} & =\sqrt{1 \pm(C+E)} \\
P_{ \pm} & =\sqrt{1 \pm E} \\
\omega & =\rho_{+} \rho_{-} \\
\xi & =\frac{P_{-} \rho_{+}}{P_{+} \rho_{-}}
\end{aligned}
$$

ξ is purely imaginary if and only if ω is, i.e. the energy lies between 1 and $1-C$ for $C>0$. The charge-conjugation symmetry for $C \rightarrow-C, E \rightarrow-E$ exists.

- We get a real equation

$$
\frac{\pi}{2}-\arctan \sqrt{\frac{(1+E)(C+E-1)}{(1-E)(C+E+1)}}=\frac{d}{2} \sqrt{(C+E)^{2}-1} \bmod \pi
$$

- Number of existing eigenvalues for particular C, d can be deduced from above, one gets following picture (eigenstates labelled $0,1,2 \ldots$)

- Parametric dependence - the eigenvalues emerge from the upper continuum and sink eventually in the lower as the width and depth rise, but only if the depth $|C|>2$.
- Typical behaviour of the eigenvalues, c - and d - dependence:

- No square-root singularity!
- No complex eigenvalues for strong coupling!
- Limit case - delta interaction (Dirac)

$$
\mathrm{c} \rightarrow \infty, c d \rightarrow \text { const. }
$$

- only one energy, exactly solvable

$$
E=\cos c d
$$

- Non-analytic behaviour
- Impossible for KG, analogous limit would result in a trivial system
- For large c the KG still maintains square-root EP

$$
E=\frac{-c^{3} d^{2}+2 \sqrt{4+c^{2} d^{2}\left(1-c^{2}\right)}}{4+c^{2} d^{2}}
$$

Summary

- There are different types of complexification.
- Square-root EP is strongly preferred and typical for most Hamiltonians (mechanism similar to the "no crossing theorem").
- Dirac Hamiltonians can exhibit PT-symmetrically counter-intuitive behaviour.

