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Recent results with S. Graffi and J. Sjostrand:

An example of P7-symmetric Schrodinger-
type operator with real discrete spectrum

which is not diagonalizable is provided. More-

over the class of P7-symmetric Schrodinger
operators with real spectrum is enlarged:
explicit examples are provided in dimension

greater than one, as perturbations of the

harmonic oscillators.



Introduction: Two Mathematical Ques-

tions in P7-symmetry

A basic fact underlying P7-symmetric quan-
tum mechanics is the existence of non self-
adjoint (not even normal) P7-symmetric Schro-
dinger operators which have fully real spec-
trum.

In the general case d > 1 we assign to P its
most general mathematical meaning:
(PY)(@1,. .. 2q) = ((1)12y, ..., (=1)dzy),
Jxr=0,1

reflexion w.r.t. any subset of the coordi-
nates; 7: complex conjugation.

Q1) Conditions for the reality of the spectrum

Recall results by:
- Dorey et al. (2002), Shin (2002): ODE;
- C., Graffi, Sjostrand (2005): Perturbation Th.




Q>) Analyze this phenomenon in terms of

selfadjoint spectral theory
If: H is PT-symmetric, o(H) C R and H is

diagonalizable

Then: H is conjugate to a selfadjoint oper-
ator A:  H=SAS1

Question:

H: PT-symmetric Schrodinger-type, o(H)

real = H is diagonalizable 7

Answers
(C., Graffi, Sjostrand, 2007)
RQ) NO:

we provide an explicit simple example of P7-

symmetric Schrodinger-type operator H: o(H)

real discrete, H is NOT diagonalizable: oc-

curance of Jordan blocks



H(g) := ajai+abaotigatai+1, g€ R,inL?(R?)
where

1 d .1 d
az_\/—§<xz+d—azi>’ a; _\/—§<mz_d—azi>

standard destruction and creation opera-

tors. Then:

1 a2 S 1] d? 5
H(Q)—il—E%‘FCUl]‘FE[—@‘I'xQ]

1 d d
+Zg§ (372_@) (ml—l_El)

IS invariant under the P77 operation:

xp — —Xp, 19 — —1g

More precisely, Vi € L2(R?):

P¢($17 332) — w(xla _CCQ) ) T¢ — ¢



R1) We identify a new class of non self-

adjoint P7-symmetric operators with real
spectrum in L2(R%),d > 1.

First example in d > 1
Example:

Perturbation of harmonic oscillators in d > 1

1 ¢ d? .

H(g) = = Z ——2+ng% +7’gW(:C17“'7CCd)7
2p=1L dzj

W € LOO(Rd; R) W(-z1,...,—xzy3) = —W(x1,...,24),

geR, |g|<p p>0;

Wy = P, rational multiples of a fixed fre-

qk _
quency w > 0 with:

Pr,qr € N both odd, VE =1,...,d.

Cased=2

o(H(g)) real if and only if pg,q, are both

odd (also necessary condition!)




R>) A non diagonalizable P7-symmetric

Schrodinger-type operator with real spec-

trum
H(g) = Hg +igV
1| d? 1[ d?
HO_E[ d:c _I_ 1]+2[ da: + 2]

on D(Hg) = D(A) N D(x3 + x3),

1 d d
v=3(e-a) (i)

Theorem 1

Forg € R, |g| < 2, H(g) is defined on D(Hg)
and:

1) o(H(g)) is discrete,

2) the eigenvalues of H(g) are:
AMm=n—+1,n=0,1,2,... and Vn:

mg(An) = 1 (geometric multiplicity),;
ma(An) = n + 1 (algebraic multiplicity).



More precisely:

oo
L?(R%) = @ Hn
n=0

Hy, is invariant under H(g);

H(g) = @ Hp
n=0

and H,, is represented by the (n+1)x(n+1)

matrix:

Hp = (n+ 1)I(n_|_1) + 19Dn (1)

D, : nilpotent of order n + 1:

[0 Vn 0 - -0
0 0 /2(n—1) 0 .0
p,:=|0 0 0 V3 —-2) - 0
o | | Um
\0 0 .0 )

— pntl — .



Remarks

a) o(H(g)) = N\ {0} is real and indepen-
dent of g;

b) (1) is the Jordan canonical form of Hy;
algebraic multiplicity = n 4+ 1;

Dp 0 = Hpy is not diagonalizable =
neither is H(g);

C) H(g) belongs to the class of block-diagonalizable
Hamiltonians with finite dimensional diago-
nal blocks explored by

- A. Mostafazadeh (2002-2004);

- G. Scolarici, L. Solombrino (2003).
Recent investigations on non diagonalizable
operators also by A. Andrianov, F. Cannata,
A. Sokolov (2007).



Sketch of the proof of the theorem
Step 1
Make use of the Fock-Bargmann represen-

tation:

Ugp: L2(RY) — F, unitary map

F,4: space of entire holomorphic functions
f(2):CT = C, (z ==z +1iy), s.t.
1

|F (N5 = 4 Jp2 F() e PP dedy = (f, f) 7 < +o0

F4is a Hilbert space endowed with the scalar

product:

1 -
(£ 97 =~ | oy F(9@e dway

Bargmann transform Upg:

(Ugy)(z) = #/Rd e‘%(:cQ_Q\/i(x,z}-l-z?)w(m) dz,

Vi € L2(R%), z € C9.
Then: [[Updllr = [l f2(gay-



_ B )
UBCL;FUB]':ZZ’, UBa”LUB]-:£
7

UpN@Dy-l = 0

sV = 2 7y

1=1 [

d
N(d) — Z N,; the total number operator;
i=1
N; == a;a; i-th number operator.

T hen:

2
Ho= Y afa;+1=N2 41;
=1

H(g) = N + 1+ igaja;

and

Q(9) := Ug(H(9)-1)Ug' = Up(NP+igaba;)Ug!

0 0 - 0 ._ -
= 21p5,; -+ 225, —+ 19225, = Qo + i gW



Remark

c(Qo) = a(N(2) ={0,1,...,n,...} and
mg(n) = mg(n) =n+ 1.

Step 3

Yr(x): k-th normalized eigenvector of the
one-dimensional harmonic oscillator in L2(R).
(Yo(z) = n~1/4e=o7/2)

Then:
Sk
(UB¢k><Z) = ek(z) :\/—H’ k:O,l,
fnn(z1,22) i=ep_p(22)ep(21), h=0,...,n

Set Kyp:=Span{f,;,:h=0,...,n}

= Span{e;, (22)e;,(21) 1 l1 + 1o =n}

T hen:

dmK,=n+1;, K, LK, n#l

oo

n=0



Lemma?2
1) Forany n=0,1,... and h=0,...,n:

Q(9) frn = nfnp +igyh(n —h+1)frp 1.
2) ICn, reduces Q(g): Q(g)Kn C Kn.
Set Q(g9)n := Q(g)|x,,- Then:

Q9) = B A9)n
n=0

and Q(g)n = nl(py1y + igDn with:

[0 Vn 0 - -0
0 0 /2(n-1) 0 .0
p,:=|0 0 0 J3(n—-2) - 0
o | | Jm
\0 0 .0 )

T hen:

o
L?(R?) = @ Hn, Hn=Ug'Kn
n=0

H(g)= @ Hyn, Hn=Ug(Q(g)n+ 1)Ug?
n=0



More precisely, to obtain 1):

Q(9) fr = fnp +igyh(n — h+ 1) frp_1
compute the action of

Q(g) = Qo +igW on f, 1

0 0
Qofnh = (z17— + 207—)ep_n(22)ep(21)
0z1 0zo
= (n —h)e,_p(22)ep(z1) + he,_p(22)ep(21)
— nfn,h
since
0 0 z? 2N
— — —hL —p
2w en(21) L N en(z1)
while
o0
Wfnn = ZQa—en—h(ZQ)eh(Zl)
21
I I

_22

J/(n— r)10z1Vh!
n—(h=1) _(h-1)

— i 2 1
\/(n—h)! V'h!

= \/h(n—h+1)fpp1.




R1) A class of non selfadjoint P7-symmetric
operators with real spectrum

Assumptions

- Hy: selfadjoint in L2(R%),d > 1, bounded

below (positive), with compact resolvents
(= discrete spectrum: 0 < A1 < Ao < ... :
increasing sequence of eigenvalues),

Hg is P-symmetric:

PHy = HoP

-P:. standard parity operator defined by:

(PY)(z) =¢(-z), o€ L*(R%), z€R
and Hg is also 7-symmetric:
Hoy = Hoy;
-my. Multiplicity of Ar;
~rs,s = 1,...,my: linearly independent eigen-
functins of A,

-My = Span{yrs:s=1,...,my}: eigenspace



of \r.

Definitions

1) M, is even (odd) if the basis vectors Yy s
are all even (odd):

Pirs =rs, Vs =1,...,my

(Pirs = —rs, Vs =1,...,mp).

2) \r is even (odd) if M, is even (odd).

Let W € L°(R%) be an odd real function,
I.e.

W(z) = —W(—=z), Vz € R%.

Then

H(g) = Ho + igW

on D(Hp) is P7T-symmetric for all g € R and

has discrete spectrum.




Theorem 3
Under the above assumptions assume fur-

ther:
1.
(A1) 6:= 5 inf(Ar41—Ar) >0,

(A>) Vr, \r is even or odd.

Then: for |g] < , the spectrum of

| W loo
H(g) is purely real.

In 2005 we proved the result for d =1 and
announced the generalization for d > 1.
Recently (2007) we have proved the result
in the general case d > 1 and we have pro-
vided a class of examples for Hg, i.e. con-
ditions for (A1) and (A») to hold.




T heorem4

Let
0—=735 T o T Wk
2,1 dxg
wkz%w, k=1,...,d
dk

PL,qr: relatively prime natural numbers.
Then (A1) holds. Moreover:

(i) If p;, and q;, are both odd, for all k

= (A>) holds;

(ii) If d = 2, (A>) holds if and only if p;
and q;. are both odd, Vk.

Proposition
Hy satisfies (A) if and only if:
Vk € Z4\ {0} s. t. thek;, i=1,...,d, have

no common divisors and
(@, k) == wiki+...Fwgky =0 (resonant index)

the number O(k) of odd k; is even.



