$\mathcal{P}T$ -symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum

Emanuela Caliceti

Recent results with S. Graffi and J. Sjöstrand:

An example of $\mathcal{P}T$ -symmetric Schrödinger-type operator with real discrete spectrum which is <u>not diagonalizable</u> is provided. Moreover the class of $\mathcal{P}T$ -symmetric Schrödinger operators with real spectrum is enlarged: explicit examples are provided in dimension greater than one, as perturbations of the harmonic oscillators.

Introduction: Two Mathematical Questions in $\mathcal{P}\mathcal{T}$ -symmetry

A basic fact underlying $\mathcal{P}T$ -symmetric quantum mechanics is the existence of non selfadjoint (not even normal) $\mathcal{P}T$ -symmetric Schrödinger operators which have fully real spectrum.

In the general case $d \geq 1$ we assign to \mathcal{P} its most general mathematical meaning:

$$(\mathcal{P}\psi)(x_1,\ldots,x_d) = ((-1)^{j_1}x_1,\ldots,(-1)^{j_d}x_d),$$

 $j_k = 0,1$

reflexion w.r.t. <u>any</u> subset of the coordinates; \mathcal{T} : complex conjugation.

- \mathbf{Q}_1) Conditions for the reality of the spectrum Recall results by:
- Dorey et al. (2002), Shin (2002): ODE;
- C., Graffi, Sjöstrand (2005): Perturbation Th.

 \mathbf{Q}_2) Analyze this phenomenon in terms of selfadjoint spectral theory

If: H is $\mathcal{P}\mathcal{T}$ -symmetric, $\sigma(H)\subset\mathbf{R}$ and H is diagonalizable

Then: H is conjugate to a selfadjoint operator A: $H = SAS^{-1}$

Question:

 $H: \mathcal{P}T$ -symmetric Schrödinger-type, $\sigma(H)$ real $\Rightarrow H$ is diagonalizable ?

Answers

(C., Graffi, Sjöstrand, 2007)

R₂) **NO**:

we provide an explicit simple example of $\mathcal{P}T$ symmetric Schrödinger-type operator H: $\sigma(H)$ real discrete, H is NOT diagonalizable: occurance of **Jordan blocks**

$$H(g):=a_1^*a_1+a_2^*a_2+iga_2^*a_1+1, \quad g\in \mathbf{R}, \text{in}L^2(\mathbf{R}^2)$$
 where

$$a_i = \frac{1}{\sqrt{2}} \left(x_i + \frac{d}{dx_i} \right), \quad a_i^* = \frac{1}{\sqrt{2}} \left(x_i - \frac{d}{dx_i} \right)$$

standard **destruction** and **creation** operators. Then:

$$H(g) = \frac{1}{2} \left[-\frac{d^2}{dx_1^2} + x_1^2 \right] + \frac{1}{2} \left[-\frac{d^2}{dx_2^2} + x_2^2 \right]$$
$$+ig\frac{1}{2} \left(x_2 - \frac{d}{dx_2} \right) \left(x_1 + \frac{d}{dx_1} \right)$$

is invariant under the $\mathcal{P}\mathcal{T}$ operation:

$$x_2 \to -x_2$$
, $ig \to -ig$

More precisely, $\forall \psi \in L^2(\mathbf{R}^2)$:

$$\mathcal{P}\psi(x_1,x_2) = \psi(x_1,-x_2), \quad \mathcal{T}\psi = \overline{\psi}$$

 \mathbf{R}_1) We identify a <u>new class</u> of non self-adjoint $\mathcal{P}\mathcal{T}$ -symmetric operators with <u>real</u> spectrum in $L^2(\mathbf{R}^d), d>1$.

First example in d > 1

Example:

Perturbation of harmonic oscillators in d > 1

$$H(g) = \frac{1}{2} \sum_{k=1}^{d} \left[-\frac{d^2}{dx_k^2} + \omega_k^2 x_k^2 \right] + igW(x_1, \dots, x_d),$$

$$W \in L^{\infty}(\mathbf{R}^d; \mathbf{R}), W(-x_1, \dots, -x_d) = -W(x_1, \dots, x_d),$$

 $g \in \mathbf{R}, |g| < \rho, \rho > 0;$

 $\omega_k = \frac{p_k}{q_k}\omega$: rational multiples of a fixed frequency $\omega >$ 0 with:

$$p_k, q_k \in \mathbb{N}$$
 both odd, $\forall k = 1, \dots, d$.

Case d=2

 $\sigma(H(g))$ real <u>if and only if</u> p_k, q_k are both odd (also necessary condition!)

R_2) A non diagonalizable $\mathcal{P}\mathcal{T}$ -symmetric Schrödinger-type operator with real spectrum

$$H(g) = H_0 + igV$$

$$H_0 = \frac{1}{2} \left[-\frac{d^2}{dx_1^2} + x_1^2 \right] + \frac{1}{2} \left[-\frac{d^2}{dx_2^2} + x_2^2 \right]$$
on $D(H_0) = D(\Delta) \cap D(x_1^2 + x_2^2)$,
$$V = \frac{1}{2} \left(x_2 - \frac{d}{dx_2} \right) \left(x_1 + \frac{d}{dx_1} \right)$$

Theorem 1

For $g \in \mathbf{R}$, |g| < 2, H(g) is defined on $D(H_0)$ and:

- 1) $\sigma(H(g))$ is discrete;
- 2) the eigenvalues of H(g) are:

$$\lambda_n = n + 1, n = 0, 1, 2, \dots$$
 and $\forall n$:

 $m_g(\lambda_n) = 1$ (geometric multiplicity);

 $m_a(\lambda_n) = n + 1$ (algebraic multiplicity).

More precisely:

$$L^2(\mathbf{R}^2) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$$

 \mathcal{H}_n is invariant under H(g);

 $H_n := H(g)|_{\mathcal{H}_n}$, then

$$H(g) = \bigoplus_{n=0}^{\infty} H_n$$

and H_n is represented by the $(n+1)\times(n+1)$ matrix:

$$H_n = (n+1)I_{(n+1)} + igD_n$$
 (1)

 D_n : nilpotent of order n+1:

$$\Longrightarrow D_n^{n+1}=0.$$

Remarks

- **a)** $\sigma(H(g)) = \mathbb{N} \setminus \{0\}$ is real and independent of g;
- **b)** (1) is the Jordan canonical form of H_n ; algebraic multiplicity = n + 1;
- $D_n \neq 0 \implies H_n$ is <u>not</u> diagonalizable \implies neither is H(g);
- **c)** H(g) belongs to the class of block-diagonalizable Hamiltonians with finite dimensional diagonal blocks explored by
- A. Mostafazadeh (2002-2004);
- G. Scolarici, L. Solombrino (2003).

 Recent investigations on non diagonalizable operators also by A. Andrianov, F. Cannata, A. Sokolov (2007).

Sketch of the proof of the theorem Step 1

Make use of the Fock-Bargmann representation:

$$U_B:L^2(\mathbf{R}^d) o \mathcal{F}_d$$
 unitary map

 \mathcal{F}_d : space of entire holomorphic functions

$$f(z): \mathbf{C}^d \to \mathbf{C}, \ (z = x + iy), \text{ s.t.}$$

$$||f(z)||_{\mathcal{F}}^2 := \frac{1}{\pi^d} \int_{\mathbf{R}^{2d}} |f(z)|^2 e^{-|z|^2} dx dy = \langle f, f \rangle_{\mathcal{F}} < +\infty$$

 \mathcal{F}_d is a Hilbert space endowed with the scalar product:

$$\langle f, g \rangle_{\mathcal{F}} = \frac{1}{\pi^d} \int_{\mathbf{R}^{2d}} f(z) \overline{g(z)} e^{-|z|^2} dx dy$$

Bargmann transform U_B :

$$(U_B \psi)(z) = \frac{1}{\pi^{d/4}} \int_{\mathbf{R}^d} e^{-\frac{1}{2}(x^2 - 2\sqrt{2}\langle x, z \rangle + z^2)} \psi(x) \, dx,$$

$$\forall \psi \in L^2(\mathbf{R}^d), z \in \mathbf{C}^d.$$

Then: $||U_B\psi||_{\mathcal{F}} = ||\psi||_{L^2(\mathbf{R}^d)}$.

Step 2

$$U_B a_i^* U_B^{-1} = z_i, \quad U_B a_i U_B^{-1} = \frac{\partial}{\partial z_i}$$
$$U_B N^{(d)} U_B^{-1} = \sum_{i=1}^d z_i \frac{\partial}{\partial z_i}$$

 $N^{(d)} := \sum_{i=1}^{d} N_i$ the total number operator; $N_i := a_i^* a_i$ i-th number operator.

Then:

$$H_0 = \sum_{i=1}^{2} a_i^* a_i + 1 = N^{(2)} + 1;$$

$$H(g) = N^{(2)} + 1 + iga_2^* a_1$$

and

$$Q(g) := U_B(H(g)-1)U_B^{-1} = U_B(N^{(2)} + iga_2^*a_1)U_B^{-1}$$
$$= z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} + igz_2 \frac{\partial}{\partial z_1} := Q_0 + igW$$

Remark

$$\sigma(Q_0) = \sigma(N^{(2)}) = \{0, 1, \dots, n, \dots\}$$
 and $m_q(n) = m_a(n) = n + 1.$

Step 3

 $\psi_k(x)$: k-th normalized eigenvector of the one-dimensional harmonic oscillator in $L^2(\mathbf{R})$. $(\psi_0(x) = \pi^{-1/4}e^{-x^2/2})$

$$(\psi_0(x) = \pi^{-1/1}e^{-x^2/2}$$

Then:

$$(U_B \psi_k)(z) := e_k(z) = \frac{z^k}{\sqrt{k!}}, \quad k = 0, 1, \dots$$

 $f_{n,h}(z_1, z_2) := e_{n-h}(z_2)e_h(z_1), \ h = 0, \dots, n$

Set
$$\mathcal{K}_n := \operatorname{Span}\{f_{n,h} : h = 0, \dots, n\}$$

= $\operatorname{Span}\{e_{l_1}(z_2)e_{l_2}(z_1) : l_1 + l_2 = n\}$

Then:

$$\dim \mathcal{K}_n = n+1; \quad \mathcal{K}_n \perp \mathcal{K}_l, \ n \neq l;$$

$$\bigoplus_{n=0}^{\infty} \mathcal{K}_n = \mathcal{F}_2$$

Lemma2

1) For any n = 0, 1, ... and h = 0, ..., n:

$$Q(g)f_{n,h} = nf_{n,h} + ig\sqrt{h(n-h+1)}f_{n,h-1}.$$

2) \mathcal{K}_n reduces Q(g): $Q(g)\mathcal{K}_n \subset \mathcal{K}_n$.

Set $Q(g)_n := Q(g)|_{\mathcal{K}_n}$. Then:

$$Q(g) = \bigoplus_{n=0}^{\infty} Q(g)_n$$

and $Q(g)_n = nI_{(n+1)} + igD_n$ with:

$$D_n := \left(egin{array}{cccccc} 0 & \sqrt{n} & 0 & & \cdot & & \cdot & 0 \\ 0 & 0 & \sqrt{2(n-1)} & 0 & & \cdot & 0 \\ 0 & 0 & 0 & \sqrt{3(n-2)} & \cdot & 0 \\ & \cdot & \cdot & & \cdot & & \cdot & \cdot \\ & \cdot & \cdot & & \cdot & & \cdot & \sqrt{n} \\ 0 & 0 & & \cdot & & \cdot & & 0 \end{array}
ight)$$

Then:

$$L^2(\mathbf{R}^2) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n, \quad \mathcal{H}_n = U_B^{-1} \mathcal{K}_n$$

$$H(g) = \bigoplus_{n=0}^{\infty} H_n, \quad H_n = U_B(Q(g)_n + 1)U_B^{-1}$$

More precisely, to obtain 1):

$$Q(g)f_{n,h} = nf_{n,h} + ig\sqrt{h(n-h+1)}f_{n,h-1}$$

compute the action of

$$Q(g) = Q_0 + igW$$
 on $f_{n,h}$:

$$Q_0 f_{n,h} = (z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2}) e_{n-h}(z_2) e_h(z_1)$$

$$= (n-h) e_{n-h}(z_2) e_h(z_1) + h e_{n-h}(z_2) e_h(z_1)$$

$$= n f_{n,h}$$

since

$$z_1 \frac{\partial}{\partial z_1} e_h(z_1) = z_1 \frac{\partial}{\partial z_1} \frac{z_1^h}{\sqrt{h!}} = h \frac{z_1^h}{\sqrt{h!}} = h e_h(z_1)$$

while

$$Wf_{n,h} = z_2 \frac{\partial}{\partial z_1} e_{n-h}(z_2) e_h(z_1)$$
$$= z_2 \frac{z_2^{(n-h)}}{\sqrt{(n-h)!}} \frac{\partial}{\partial z_1} \frac{z_1^h}{\sqrt{h!}}$$

$$= h \frac{z_2^{n-(h-1)}}{\sqrt{(n-h)!}} \frac{z_1^{(h-1)}}{\sqrt{h!}} = \sqrt{h(n-h+1)} f_{n,h-1}.$$

R_1) A class of non selfadjoint $\mathcal{P}\mathcal{T}$ -symmetric operators with real spectrum

Assumptions

- H_0 : selfadjoint in $L^2(\mathbf{R}^d), d \geq 1$, bounded below (positive), with compact resolvents (\Rightarrow discrete spectrum: $0 \leq \lambda_1 < \lambda_2 < \ldots$: increasing sequence of eigenvalues),

 H_0 is \mathcal{P} -symmetric:

$$\mathcal{P}H_0 = H_0\mathcal{P}$$

 $-\mathcal{P}$: standard parity operator defined by:

$$(\mathcal{P}\psi)(x) = \psi(-x), \quad \psi \in L^2(\mathbf{R}^d), \ x \in \mathbf{R}^d$$

and H_0 is also \mathcal{T} -symmetric:

$$\overline{H_0\psi} = H_0\overline{\psi};$$

- - m_r : multiplicity of λ_r ;
- $-\psi_{r,s}, s=1,\ldots,m_r$: linearly independent eigenfunctins of λ_r ;
- $-\mathcal{M}_r := \operatorname{Span}\{\psi_{r,s} : s = 1, ..., m_r\}$: eigenspace

of λ_r .

Definitions

1) \mathcal{M}_r is even (odd) if the basis vectors $\psi_{r,s}$ are all even (odd):

$$\mathcal{P}\psi_{r,s} = \psi_{r,s}, \forall s = 1, \dots, m_r$$

 $(\mathcal{P}\psi_{r,s} = -\psi_{r,s}, \forall s = 1, \dots, m_r).$

2) λ_r is even (odd) if \mathcal{M}_r is even (odd).

Let $W \in L^{\infty}(\mathbf{R}^d)$ be an <u>odd</u> real function, i.e.

$$W(x) = -W(-x), \forall x \in \mathbf{R}^d.$$

Then

$$H(g) = H_0 + igW$$

on $D(H_0)$ is $\mathcal{P}\mathcal{T}$ -symmetric for all $g \in \mathbf{R}$ and has discrete spectrum.

Theorem 3

Under the above assumptions assume further:

(A₁)
$$\delta := \frac{1}{2} \inf_{r} (\lambda_{r+1} - \lambda_r) > 0;$$

(A₂**)** $\forall r, \lambda_r$ is even or odd.

<u>Then</u>: for $|g|<\frac{\delta}{\|W\|_{\infty}}$, the spectrum of H(g) is purely real.

In 2005 we proved the result for d=1 and announced the generalization for d>1.

Recently (2007) we have proved the result in the general case $d \ge 1$ and we have provided a class of examples for H_0 , i.e. conditions for (A_1) and (A_2) to hold.

Theorem4

Let

$$H_0 = \frac{1}{2} \sum_{k=1}^{d} \left[-\frac{d^2}{dx_k^2} + \omega_k^2 x_k^2 \right]$$

$$\omega_k = \frac{p_k}{q_k}\omega, \quad k = 1, \dots, d$$

 p_k,q_k : relatively prime natural numbers.

Then (A_1) holds. Moreover:

- (i) If p_k and q_k are both odd, for all $k \Rightarrow (A_2)$ holds;
- (ii) If d=2, (A_2) holds if and only if p_k and q_k are both odd, $\forall k$.

Proposition

 H_0 satisfies (A_2) if and only if:

 $\forall \vec{k} \in \mathbf{Z}^d \setminus \{0\}$ s. t. the $k_i, i = 1, \ldots, d$, have no common divisors and

 $\langle \vec{\omega}, \vec{k} \rangle := \omega_1 k_1 + \ldots + \omega_d k_d = 0$ (resonant index) the number $O(\vec{k})$ of odd k_i is **even**.