
PT symmetry in multi-dimensional solvable

quantum potentials
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What is new in higher-dimensional solvable potentials?

Separation of the radial and angular variables

How to chose the angle-dependent potentials in d = 2 and 3 dimensions?

Summary and outlook

Motto: T HOUGH T HIS BE MADNESS,

YET T HERE IS MET HOD IN ′T

W. Shakespeare, Hamlet



What is new in higher-dimensional solvable potentials?

Hermitian PT -symmetric
d = 1 d > 1 d = 1 d > 1

Spectrum real real real+complex ?

Degeneracy no yes (no) ?

Algebra yes yes yes ?

PT -breaking — — yes ?

Pseudo-norm — — indefinite ?

Quasi-parity — — yes ?

Solvable potentials in d > 1

Separation of the variables

– Cartesian coordinates

– Polar coordinates =⇒ non-central potentials

– Parabolic coordinates

– ...

What is seen from the characteristic features in higher dimensions?



PT -symmetric Hamiltonians in various dimensions

H = T + V (r)

T is always PT -symmetric:

T =
p2

2m
= −

h̄2

2m
∆ (take h̄ = 2m = 1 from now on)

What about V (r)? Use polar coordinates PT : r =⇒ −r

d = 1 dimension:
V (x) = PT V (x)(PT )−1 = V ∗(−x)

d = 2 dimensions:

V (ρ, ϕ) = PT V (ρ, ϕ)(PT )−1 = V ∗(ρ, ϕ+ π)

d = 3 dimensions:

V (r, θ, ϕ) = PT V (r, θ, ϕ)(PT )−1 = V ∗(r, π − θ, ϕ+ π)



Central potentials V (r) = V (|r|) are uninteresting: V (r) = V ∗(r)

But special non-central potentials can be interesting:

The typical solutions of centrally symmetric problems reflect PT symmetry:

PT exp(ipϕ) = (−1)p exp(−ipϕ)

PT Ylm(θ, ϕ) = (−1)l+mYl−m(θ, ϕ)

PT symmetry seems to allow special non-central potentials. . .

. . . just like in one dimension



d = 2 in general G. Lévai, J. Phys. A 40 (2007) F273

1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂ϕ2
− V (ρ, ϕ)ψ + Eψ = 0 .

Search for separable variables:

ψ(ρ, ϕ) = ρ−1/2φ(ρ)τ(ϕ)

φ′′τ +
1

ρ2
φτ ′′ −

(

V (ρ, ϕ) −
1

4ρ2
− E

)

φτ = 0 ,

Assume that
τ ′′ = (K(ϕ) − k)τ

Then a radial equation is obtained

−φ′′ +

[

V0(ρ) +
(

k −
1

4

)

1

ρ2

]

φ−Eφ = 0 .

where
V (ρ, ϕ) = V0(ρ) + 1

ρ2K(ϕ)



V (ρ, ϕ) = V0(ρ) + 1
ρ2K(ϕ) is PT -symmetric if

• V0(ρ) is real

• K(ϕ) is PT -symmetric: K∗(ϕ+ π) = K(ϕ)

• k is real/complex =⇒ E is real/complex

spontaneous breakdown of PT symmetry is possible

How to chose K(ϕ) and k?

PT -symmetric d = 1 potentials can be used, but

• K(ϕ) must be 2π-periodic

• Its solutions need not vanish at the boundaries (ϕ = 0, 2π)

• The PT condition is now K∗(ϕ+ π) = K(ϕ), not K∗(−ϕ) = K(ϕ)

• The energy k of the angular problem appears in the radial problem like an angular
momentum

Consider some examples



A simple example with k = 0

This is solvable only for the ground state, but illustrates the most important features

τ(ϕ) = cϕ exp(i sin(pϕ))

For k = 0 this solves

V (ρ, ϕ) = V0(ρ) −
p2

ρ2

[

1
2
cos(2pϕ) + 1

2
+ i sin(pϕ)

]

which is PT -symmetric, if p is odd

Note the different periodicity of the real and imaginary potential components

The PT -normalization of τ(ϕ) is

cϕ = [2πJ0(2)]−1/2 (Bessel function) irrespective of p

PT transformation property:

PT τ(ϕ) = τ(ϕ)

Combine this with V0(ρ) being the H.O., Coulomb, square well, QES, . . . potentials



An example: radial harmonic oscillator

V0(ρ) = ω2ρ2 with ω = 20
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The wavefunctions with n = 0 and n = 1 belong to E0 = ω = 20, and E1 = 3ω = 60
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Further choices of fully solvable K(ϕ) potentials

Shape-invariant potentials defined on a finite domain

PT -symmetric Rosen–Morse I and Scarf I (trigonometric) potentials

Consider the Scarf I potential in some detail

G. Lévai, J. Phys. A 39 (2006) 10161

K(ϕ) = V (ϕ) =
(

α2+β2

2
− 1

4

)

1
cos2(ϕ)

− α2−β2

2
sin(ϕ)
cos2(ϕ)

ϕ ∈ (−π/2, π/2)

k = En =

(

n+
α + β + 1

2

)2

τn(ϕ) = cn(1 − sinϕ)
α
2
+ 1

4 (1 + sinϕ)
β

2
+ 1

4P (α,β)
n (sinϕ)



α = β∗ = 0.5 + i 0.4:

weakly singular attractive real potential component; two regular solutions
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Note again the different periodicity of the real and imaginary potential components



Main features in d = 1:

• PT -symmetric if β∗ = ±α =⇒ real/complex En

• Singular at ϕ = ±π/2:

V (ϕ→ −
π

2
) ∼ (β2 −

1

4
)(π/2 + ϕ)−2 V (ϕ→

π

2
) ∼ (α2 −

1

4
)(π/2 − ϕ)−2

• Two solutions behaving at the boundaries as

lim
ϕ→−π/2

ψ(±)(ϕ) ∼ (π/2 + ϕ)±β+ 1

2 lim
ϕ→π/2

ψ(±)(ϕ) ∼ (π/2 − ϕ)±α+ 1

2 ,

• ”quasi”-quasi-parity q = ±1: V (ϕ) is insensitive to α, β =⇒ −α, −β

• BUT only one of the solutions is allowed for |αR|, |βR| >
1
2

• and also for |αR|, |βR| ≤
1
2

as ψ(+) and ψ(−) are not PT -orthogonal

• The sign of the pseudo-norm oscillates as (−1)n

• The spontaneous breakdown of PT symmetry cannot be defined

Novelties in the d > 1 case:

• Extended domain: ϕ ∈ [−π/2, 3π/2]

• Solutions with finite value at the boundaries are allowed



β∗ = α: real energies

V (ρ, ϕ) = V0(ρ) +
1

ρ2

[

(

α2
R − α2

I −
1

4

)

1

cos2(ϕ)
− 2iαRαI

sin(ϕ)

cos2(ϕ)

]

Radial equation:

−φ′′ +

[

V0(ρ) +
(k + αR + 1/2)2 − 1/4

ρ2

]

φ(ρ) − Eφ(ρ) = 0

αR = −1
2

=⇒ Simulates real potentials in d = 2

〈τ |P|τ〉 = (−1)k oscillates

β∗ = −α: complex energies

complex “angular momentum”

like in the case of the H.O. with spontaneously broken PT symmetry



Further solvable periodic potentials:

Composition of step functions, δ functions, Lamé-type potentials. . .

Consider a simple step potential in some detail

following V. Jakubský and M. Znojil, Czech. J. Phys. 37 (2004)

K(ϕ) = V (ϕ) = iZ π−ϕ
|π−ϕ|

ϕ ∈ (0, 2π)

Main features in d = 1:

• As Z increases, the low-lying levels merge pairwise and their energies become complex
conjugate at critical values of Z

spontaneous breakdown of PT symmetry

• The energies of higher levels are close to those of the real square well

Novelties in the d = 2 case:

• The energies of the d = 1 angular potential act as angular momenta in the radial
potential

• When combined with some radial potentials a whole sequence of levels merge at the
same time, at various real energies



d = 3 in general G. Lévai, J. Phys. A 40 (2007) F273

1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
1

r2

∂2ψ

∂θ2
+

1

r2
cot(θ)

∂ψ

∂θ
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
− V (r, θ, ϕ)ψ + Eψ = 0 .

Search for separable variables:

ψ(r, θ, ϕ) = r−1φ(r)χ(θ)τ(ϕ)

φ′′χτ +
1

r2
(χ′′ + cot(θ)χ′) +

1

r2 sin2 θ
φχτ ′′ − (V (r, θ, ϕ) − E)φχτ = 0

Assume that
τ ′′ = (K(ϕ) − k)τ as in d = 2

χ′′ + cot(θ)χ′ = (Q(θ) − q)χ

Then a radial equation is obtained

−φ′′ +
[

V0(r) +
q

r2

]

φ−Eφ = 0

where

V (r, θ, ϕ) = V0(r) + 1
r2

(

Q(θ) + K(ϕ)−k
sin2(θ)

)

.



A trivial solution for χ(θ) is in terms of associated Legendre functions P µ
ν (cos(θ)) if

Q(θ) = µ2 sin−2(θ) , q = ν(ν + 1)

PT -normalization of χ(θ) is possible, if ν = n, µ = m ≤ n:

χnm(θ) = in+m

[

(

n+
1

2

)

(n−m)!

(n +m)!

]1/2

Pm
n (cos(θ))

With this PT χ(θ) = χ(θ) 〈χ|P|χ〉 = (−1)n+m

V (r, θ, ϕ) = V0(r) +
1

r2 sin2(θ)
(K(ϕ) − k +m2) .

is PT -symmetric if

• V0(r) is real

• K(ϕ) is PT -symmetric: K∗(ϕ+ π) = K(ϕ)

• k is real

• State-independence of V (r, θ, ϕ) requires m2 − k = c = const.

BUT: q = ν(ν + 1) is real =⇒ E is also real =⇒ unbroken PT symmetry

V0(r) and K(ϕ) can be chosen the same as in the d = 2 case



A more general solution of (Q(θ) − q)χ(θ) is also possible

Q(θ) = C sin−2(θ) + iD cot(θ)

C =
(

n +
1

2
(αn + βn + 1)

)2

= const. D =
1

2
(αn − βn)(αn + βn) = const.

q =
1

4
[(αn + βn)2 + (αn − βn)2 − 1)

This introduces an imaginary component in the potential:

V (r, θ, ϕ) = V0(r) + 1
r2 sin2(θ)

(K(ϕ) − k + C) + 1
r2 iD cot(θ)

Apart from a factor of sin1/2(θ) the solutions are those of the Rosen–Morse I potential:

χn(θ) = cn(1 + i cot θ)
αn
2

+ 1

4 (1 − i cot θ)
βn
2

+ 1

4P (αn,βn)
n (−i cot θ)

With this non-Hermiticity can enter through the polar angle component too

q can be complex =⇒ spontaneous breakdown of PT symmetry becomes possible



Summary and outlook

• Exact solution of PT -symmetric potential for d = 2 and 3

Potential terms tailored to the structure of the kinetic term...

• Separation of the variables

• Choice for K(ϕ): 2π periodic PT -symmetric: e.g. Scarf I, step, δ, Lamé...

• Choice for Q(θ): from the d.e. of the Pm
n (cos(θ)), Rosen–Morse I

• Choice for V0(r): any solvable radial potential (Coulomb too!)

• Non-Hermiticity enters through the angular equations

• Complex energies originate from complex “angular momenta”

• The sign of the pseudo-norm oscillates here too

• Degeneracies can occur for d ≥ 1 as in the Hermitian case

Similar algebras can also occur

• The method and the results can be generalized in several ways

Alternative choice for τ(ϕ), χ(θ)

Higher dimensions?

The importance of θϕ


