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∼ Baby ODE/IM correspondence

Consider the QES model (Turbiner, Ushveridze,
Bender-Dunne..)

HQES = − d2

dx2
+ x6 − αx2

with α = 2J +1 or J = 0,1,2, . . . . Look for eigen-
functions of HQES with zero-monodromy:

ψ(x) =

[
N∏

i=1

(x− εi)

]
exp (−x4/4)

then N = J +1, plus a set of non-linear constraints
on {εi}

∑

j 6=i

2

εj − εi
+ εi − 3

2εi
= 0

and En ≡ En({εi}) n = 1, . . . N . This set of con-
straints coincides with the Bethe ansatz equations
for the (generalised) Gaudin model!! (An finite
N-site quantum spin chain). ODE/IM is a corre-
spondence between

Quantum Integrable Hamiltonians

and

ODEs+zero-monodromy conditions

(On the ODEs, except x = 0 and x = ∞). It is the
quantum version of

Gaudin models ↔ Classical zero-monodromy Opers

(Feigin and Frenkel [arXiv:0705.2486]).
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The 6V model the BAE and, PT-symmetric QM

Consider N ×M lattice model with periodic BCs
and N/2 even. On each link of the lattice, we
place a spin

A) Only those configurations of spins which preserve the ‘flux’
of arrows through each vertex are allowed.

B) We shall only consider the zero field 6-V model which has
an additional ‘4-spin reversal’ symmetry. Locally this gives
six options:

W

[ ↑
→ →

↑

]
= W

[ ↓
← ←

↓

]
= a

W

[ ↓
→ →

↓

]
= W

[ ↑
← ←

↑

]
= b

W

[ ↑
→ ←

↓

]
= W

[ ↓
← →

↑

]
= c
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The overall normalisation factors out trivially from
all calculations, and we can parametrise the re-
maining two degrees of freedom using:

ν (the spectral parameter)
η (the anisotropy)

as

a = sinh(iη − ν) , b = sinh(iη + ν) , c = sinh(2iη)

To calculate the partition function Z , define the
transfer matrix , T :

T
{α′}
{α} (ν) =

∑
{βi}

W

[
β1

α′1
α1

β2

]
W

[
β2

α′2
α2

β3

]
. . . W

[
βN

α′N
αN

β1

]
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In terms of T the partition function is

Z = Trace
[
TM

]
.

The free energy per site in the limit M → ∞ can
be obtained as

f = 1
NM

lnZ = 1
NM

lnTrace
[
TM

] ∼ 1
N

ln t0 ,

where t0 ≡ t is the ground-state eigenvalue of T .
Baxter’s T-Q relation : there exists an auxiliary
function q(ν)

q(ν) =

N/2−1∏
n=0

sinh(ν − νl) ,

such that

t(ν)q(ν) = a(ν, η)Nq(ν + 2iη) + b(ν, η)Nq(ν − 2iη)

BAE then emerge as a consequence of the fact
that both t0 and q are entire. Setting

q(νi) = 0 ,

we find

−1 =
aN(νi, η)

bN(νi, η)

q(νi + 2iη)

q(νi − 2iη)
.
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ν ν ν ν ν ν ν ν0 1 2 3 4 5 6 7

ν

The conformal limit is achieved by sending

N →∞ and a = eπν/2η → 0 ,

with aN finite. Defining

λi = e2νi , Ω = ei4η ,

the λi ’s for i ¿ lnN rescale to zero as

λi ∼ Eia
4η/π ∼ EiN

−4η/π ,

and the BAE becomes for π/4 < η < π/2

−1 =
∞∏

n=0

(En − EiΩ)

(En − EiΩ−1)
.

Twisted BCs:

−1 =⇒ −e2iφ

and the T-Q relation becomes

t(E, φ)q(E, φ) = eiφq(ω2E, φ) + e−iφq(ω−2E, φ) ,
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ODE/IM result:

t(−E, φ) ↔ Spect. det. PT-symmetric QM

for

HM,l = p2 − (ix)2M + l(l+1)/x2

(M and l real, M > 0.)

This amounts to studying the effect of an angular-
momentum-like term l(l+1)x−2 on the Bender-Boettcher
problem.

 
 

 

x

 

Re

Im
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Integrable
Model

Schrödinger
equation

ν ↔ Energy
η ↔ Mπ /(2M+2)

φ ↔ (2l+1)π /(2M+2)

t ↔ Lateral spectral prob-
lems defined at |x|=∞

q ↔
Radial spectral prob-
lems linking |x|=∞ and
|x|=0

At M = 1

t(−E, l) =
2π

Γ(1
2
+ 2l+1−E

4 )Γ(1
2
− 2l+1+E

4 )

and the ‘PT-Harmonic oscillator’ spectrum is real

E ∈ {3 + 2l + 4n} ∪ {1− 2l + 4n} (n = 0,1, . . .) .

Consider [
− d2

dx2
+

1

4
(x2 − λ)

]
ψ(x) = 0

impose vanishing BCs at x → +∞
ψ(x)x→∞ ∼ x−

1

2
+λe−

1

2
x2

and set

Ψ(x, λ, λ′) = ψ(x, λ)ψ(x, λ′)
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Two possible behaviors as x → −∞. In general

ψ(x, λ)x→−∞ ∼ (−x)−
1

2
−λ exp(+

1

2
x2)

exceptionally at λi = λ ∈ {3+4n} ∪ {1+4n} (n =
0,1, . . .)

ψ(x, λ)x→−∞ ∼ (−x)−
1

2
+λi exp(−1

2
x2)

therefore

Ψ(x, λi, λ
′) = ψ(x, λi)ψ(x, λ′)

can be (ε-regularised) Fourier transformed

Ψ̃(k) = F[Ψ(x)] = lim
ε→0+

∫ ∞

−∞
dθ Ψ(x)e−ikx+εx .

Let’s see what kind of ODE Ψ(x, λ, λ′) satisfies:

Ψ′′′ = (x2 − λ̄)Ψ′ + xΨ− (∆λ)2

4

(
d

dx

)−1

Ψ

where

λ̄ = (λ + λ′)/2 , ∆λ = (λ− λ′)/2

where the pseudo-differential operator (introduced
for later convenience) is defined by its formal action

(
d

dx

)−1

xs =
xs+1

s + 1
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Fourier transforming the final equation and, after
gauge transformation

− d2

dp2
+ (p2 − λ̄) +

(∆λ)2 − 1

4x2

this is our initial PT-symmetric HO with

E = (λ + λ′)/2

l = 1/2(−1−λ/2+λ′/2) or l = 1/2(−1−λ′/2+λ/2) .

The PT-spectral determinant is

t(−E, λ, λ′) =
2π

Γ(1
2
− λ

4)Γ(1
2
− λ′

4 )
.

Starting from
[
−d2

x2
+

1

4
(x2 − λ +

k

x2
)

]
ψ(x, λ, k) = 0

and setting

Ψ(x, λ, ρ, σ) = ψ(x, λ, ρ)ψ(x, λ, σ)

the resulting pseudo-differential operator has a term

−(ρ− σ)2

16x2
(

d

dx
)−1 1

x2
.

This case is related to a SO(4) particular in a
SO(2n) family of high-order ordinary pseudo-differential
equations (Dorey, Dunning, Masoero, Suzuki, Tateo
(2006)).
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What we have learned?

• The seemingly unphysical initial problem has a
nice interpretation in terms of a pair of stan-
dard Harmonic oscillators

(∼ Pais-Uhlenbeck oscillator model studied by
Bender and Mannheim in arXiv:0706.0207 [hep-
th] ).

• Certain high-order ODEs with real spectra should
be considered more seriously!
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ABCD Bethe ansatz models and (pseudo) ODEs

For the A to G simple Lie algebras, the general
CFT Bethe ansatz equations are

r∏

b=1

ΩCabγb
Q(b)(ΩCabE(b)

i , γ)

Q(b)(Ω−CabE(b)
i , γ)

= −1 , i = 1,2, . . .

where r = rank(g) (g ∈ {An, . . . , G2 }), Cab is the
matrix

Cab =
〈a|b〉

〈max|max〉 ,

|a〉 and |b〉 are simple roots and

〈max|max〉 = Max(〈j|j〉) (j = 1, . . . , r) .

We parametrise Ω in terms of a real number µ > 0
as

Ω = exp

(
i
2π

h∨µ

)
.

The roots of the BAE split into ‘multiplets’ with
equal |E(a)

i | (strings).

The ground-state of the original quantum spin chain
usually corresponds to pure configurations with ‘mul-
tiplets’ of the same dimension d ( d -strings).

In the spin-j su(2) quantum chains d = 2j .
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We first introduce the nth -order differential oper-
ator

Dn(g) = D(gn−1 − (n−1)) . . . D(g1 − 1)D(g0) ,

D(g) =

(
d

dx
− g

x

)
,

g = {gn−1, . . . , g1, g0} , g† = {n−1−g0, . . . , n−1−gn−1} ,

and

PK(E, x) = (xh∨M/K − E)K .

PS: K > 1 in A1 , d = K = 2j : Lukyanov’s idea!

In general

d = K/C11 .
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The relevant pseudo-differential equations are:

su(n):

((−1)nDn(g)− PK)ψ(x) = 0 ;

so(2n):
(

Dn(g
†)

(
d

dx

)−1

Dn(g)−
√

PK

(
d

dx

) √
PK

)
ψ(x) = 0 ;

so(2n+1):
(

Dn(g
†)Dn(g) +

√
PK

(
d

dx

) √
PK

)
ψ(x) = 0 ;

sp(2n):
(

Dn(g
†)

(
d

dx

)
Dn(g)− PK

(
d

dx

)−1

PK

)
ψ(x) = 0 ;
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A3 ⇐⇒ D3

D2 ⇐⇒ A1 ⊕A1

B1 ⇐⇒ A1 (K even)

( gi = i, M = 2
h∨

, K = 1) Dn, Bn ⇐⇒ A1

B2 ⇐⇒ C2

Dualities

A−n ↔ An (K ↔ −K)

and

D−n ↔ Cn (K ↔ −K/2)

similar to W-algebra dualities (Hornfeck 1994)

ŝu(−n)K × ŝu(−n)µ

ŝu(−n)K+µ

↔ ŝu(n)−K × ŝu(n)µ̄

ŝu(n)−K+µ̄

ŝo(−2n)K × ŝo(−2n)µ

ŝo(−2n)K+µ

↔ ŝp(2n)−K/2 × ŝp(2n)µ̄

ŝp(2n)−K/2+µ̄

(see also Cvitanovic E-book)
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Lowest three functions Ψ(x, E) for a D4 pseudo-
differential equation.
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Complex E-plane: the eigenvalues for the SU(2)
model with M = 3, g0 = 0 for K = 2, 3 and 4
respectively.
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Conclusions

Maths: connection with classical W-algebras, Op-
ers in generalised KdV equations.

Physics: PT-symmetric QM, applications to condensed-
matter physics.
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