Pseudo-differential equations, generalised eigenvalue problems and the Bethe Ansatz

Roberto Tateo (Turin)
(P.E.Dorey, C.T.Dunning, D.Masoero, J.Suzuki)

Dipartimento di Fisica Teorica Università di Torino

OUTLINE

- ~ Baby ODE/IM correspondence
- The 6V model, the BAE and PT-symmetric QM
- High-order differential equations from the Harmonic oscillator
- ABCD Bethe ansatz models and (pseudo)-differential equations.
- Conclusions

References

- A. Voros: Commun. Math. Phys. 110 (1987) 439 .
- Y. Sibuya: 'Global theory of a second-order linear ordinary differential equation with polynomial coefficient', (Amsterdam North-Holland 1975).
- P. Dorey, R. Tateo: J. Phys. A32 (1999) L419 [hepth/9812211].
- V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov: J. Stat. Phys. 102 (2001) 567 [hep-th/9812247].
- C.M. Bender, S. Boettcher: Phys. Rev. Lett. 80 (1998) 5243, [hep-th/9712001].
- C.M. Bender, S. Boettcher, P.N. Meisinger: J. Math. Phys. 40 (1999) 2201, [quant-ph/9809072].
- P. Dorey, C. Dunning, R. Tateo "The ODE/IM correspondence" [hep-th/0703066], J. Phys. A (to appear)
- P. Dorey, C. Dunning, D. Masoero, J. Suzuki, R. Tateo, [hep-th/hep-th/0612298] NPB.

~ Baby ODE/IM correspondence

Consider the $Q E S$ model (Turbiner, Ushveridze, Bender-Dunne..)

$$
H_{Q E S}=-\frac{d^{2}}{d x^{2}}+x^{6}-\alpha x^{2}
$$

with $\alpha=2 J+1$ or $J=0,1,2, \ldots$. Look for eigenfunctions of $H_{Q E S}$ with zero-monodromy:

$$
\psi(x)=\left[\prod_{i=1}^{N}\left(x-\varepsilon_{i}\right)\right] \exp \left(-x^{4} / 4\right)
$$

then $N=J+1$, plus a set of non-linear constraints on $\left\{\varepsilon_{i}\right\}$

$$
\sum_{j \neq i} \frac{2}{\varepsilon_{j}-\varepsilon_{i}}+\varepsilon_{i}-\frac{3}{2 \varepsilon_{i}}=0
$$

and $E_{n} \equiv E_{n}\left(\left\{\varepsilon_{i}\right\}\right) \quad n=1, \ldots N$. This set of constraints coincides with the Bethe ansatz equations for the (generalised) Gaudin model!! (An finite N-site quantum spin chain). ODE/IM is a correspondence between

Quantum Integrable Hamiltonians
and
ODEs+zero-monodromy conditions
(On the ODEs, except $x=0$ and $x=\infty$). It is the quantum version of

Gaudin models \leftrightarrow Classical zero-monodromy Opers (Feigin and Frenkel [arXiv:0705.2486]).

The 6 V model the BAE and, PT-symmetric QM
Consider $N \times M$ lattice model with periodic BCs and $N / 2$ even. On each link of the lattice, we place a spin

A) Only those configurations of spins which preserve the 'flux' of arrows through each vertex are allowed.
B) We shall only consider the zero field $6-\mathrm{V}$ model which has an additional '4-spin reversal' symmetry. Locally this gives six options:

$$
\begin{aligned}
& W\left[\begin{array}{lll}
& \uparrow & \\
\rightarrow & & \rightarrow
\end{array}\right]=W\left[\begin{array}{lll}
& \downarrow & \\
& & \\
& \downarrow & \leftarrow
\end{array}\right]=a \\
& W\left[\begin{array}{lll}
& \downarrow & \\
& & \rightarrow
\end{array}\right]=W\left[\begin{array}{lll}
\leftarrow & \uparrow & \\
& & \leftarrow
\end{array}\right]=b \\
& W\left[\begin{array}{lll}
& \uparrow & \\
& & \leftarrow
\end{array}\right]=W\left[\begin{array}{lll}
& \downarrow & \\
& & \uparrow
\end{array}\right]=c
\end{aligned}
$$

The overall normalisation factors out trivially from all calculations, and we can parametrise the remaining two degrees of freedom using:

$$
\begin{array}{ll}
\nu & \text { (the spectral parameter) } \\
\eta & \text { (the anisotropy) }
\end{array}
$$

as
$a=\sinh (i \eta-\nu), \quad b=\sinh (i \eta+\nu), \quad c=\sinh (2 i \eta)$
To calculate the partition function Z, define the transfer matrix, T :

$$
\mathbf{T}_{\{\alpha\}}^{\left\{\alpha^{\prime}\right\}}(\nu)=\sum_{\left\{\beta_{i}\right\}} W\left[\begin{array}{c}
\beta_{1}^{\prime} \\
\alpha_{1}^{\prime}
\end{array} \beta_{2}\right] W\left[\begin{array}{c}
\beta_{2}^{\prime} \\
\alpha_{2}^{\prime}
\end{array} \beta_{3}\right] \ldots W\left[\begin{array}{c}
\alpha_{N}^{\prime} \\
\alpha_{N}
\end{array} \beta_{1}\right]
$$

In terms of \mathbf{T} the partition function is

$$
Z=\text { Trace }\left[\mathbf{T}^{M}\right]
$$

The free energy per site in the limit $M \rightarrow \infty$ can be obtained as

$$
f=\frac{1}{N M} \ln Z=\frac{1}{N M} \ln \text { Trace }\left[\mathbf{T}^{M}\right] \sim \frac{1}{N} \ln t_{0}
$$

where $t_{0} \equiv t$ is the ground-state eigenvalue of T . Baxter's $T-Q$ relation : there exists an auxiliary function $q(\nu)$

$$
q(\nu)=\prod_{n=0}^{N / 2-1} \sinh \left(\nu-\nu_{l}\right)
$$

such that

$$
t(\nu) q(\nu)=a(\nu, \eta)^{N} q(\nu+2 i \eta)+b(\nu, \eta)^{N} q(\nu-2 i \eta)
$$

BAE then emerge as a consequence of the fact that both t_{0} and q are entire. Setting

$$
q\left(\nu_{i}\right)=0
$$

we find

$$
-1=\frac{a^{N}\left(\nu_{i}, \eta\right)}{b^{N}\left(\nu_{i}, \eta\right)} \frac{q\left(\nu_{i}+2 i \eta\right)}{q\left(\nu_{i}-2 i \eta\right)}
$$

The conformal limit is achieved by sending

$$
N \rightarrow \infty \quad \text { and } \quad a=e^{\pi \nu / 2 \eta} \rightarrow 0
$$

with $a N$ finite. Defining

$$
\lambda_{i}=e^{2 \nu_{i}} \quad, \quad \Omega=e^{i 4 \eta},
$$

the λ_{i} 's for $i \ll \ln N$ rescale to zero as

$$
\lambda_{i} \sim E_{i} a^{4 \eta / \pi} \sim E_{i} N^{-4 \eta / \pi},
$$

and the BAE becomes for $\pi / 4<\eta<\pi / 2$

$$
-1=\prod_{n=0}^{\infty} \frac{\left(E_{n}-E_{i} \Omega\right)}{\left(E_{n}-E_{i} \Omega^{-1}\right)}
$$

Twisted BCs:

$$
-1 \Longrightarrow-e^{2 i \phi}
$$

and the $\mathrm{T}-\mathrm{Q}$ relation becomes

$$
t(E, \phi) q(E, \phi)=e^{i \phi} q\left(\omega^{2} E, \phi\right)+e^{-i \phi} q\left(\omega^{-2} E, \phi\right),
$$

ODE/IM result:

$$
t(-E, \phi) \leftrightarrow \text { Spect. det. PT-symmetric QM }
$$

for

$$
\mathcal{H}_{M, l}=p^{2}-(i x)^{2 M}+l(l+1) / x^{2}
$$

(M and l real, $M>0$.)
This amounts to studying the effect of an angular-momentum-like term $l(l+1) x^{-2}$ on the Bender-Boettcher problem.

Integrable Model		Schrödinger equation
ν	\leftrightarrow	Energy
η	\leftrightarrow	$\mathrm{M} \pi /(2 \mathrm{M}+2)$
ϕ	\leftrightarrow	$(2 \mid+1) \pi /(2 \mathrm{M}+2)$
t	\leftrightarrow	Lateral spectral prob- lems defined at $\|x\|=\infty$ Radial spectral prob-
q	\leftrightarrow	lems linking $\|x\|=\infty$ and $\|x\|=0$

At $M=1$

$$
t(-E, l)=\frac{2 \pi}{\Gamma\left(\frac{1}{2}+\frac{2 l+1-E}{4}\right) \Gamma\left(\frac{1}{2}-\frac{2 l+1+E}{4}\right)}
$$

and the 'PT-Harmonic oscillator' spectrum is real

$$
E \in\{3+2 l+4 n\} \cup\{1-2 l+4 n\} \quad(n=0,1, \ldots)
$$

Consider

$$
\left[-\frac{d^{2}}{d x^{2}}+\frac{1}{4}\left(x^{2}-\lambda\right)\right] \psi(x)=0
$$

impose vanishing BCs at $x \rightarrow+\infty$

$$
\psi(x)_{x \rightarrow \infty} \sim x^{-\frac{1}{2}+\lambda} e^{-\frac{1}{2} x^{2}}
$$

and set

$$
\Psi\left(x, \lambda, \lambda^{\prime}\right)=\psi(x, \lambda) \psi\left(x, \lambda^{\prime}\right)
$$

Two possible behaviors as $x \rightarrow-\infty$. In general

$$
\psi(x, \lambda)_{x \rightarrow-\infty} \sim(-x)^{-\frac{1}{2}-\lambda} \exp \left(+\frac{1}{2} x^{2}\right)
$$

exceptionally at $\lambda_{i}=\lambda \in\{3+4 n\} \cup\{1+4 n\} \quad(n=$ $0,1, \ldots$)

$$
\psi(x, \lambda)_{x \rightarrow-\infty} \sim(-x)^{-\frac{1}{2}+\lambda_{i}} \exp \left(-\frac{1}{2} x^{2}\right)
$$

therefore

$$
\psi\left(x, \lambda_{i}, \lambda^{\prime}\right)=\psi\left(x, \lambda_{i}\right) \psi\left(x, \lambda^{\prime}\right)
$$

can be (ϵ-regularised) Fourier transformed

$$
\widetilde{\Psi}(k)=\mathcal{F}[\Psi(x)]=\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} d \theta \Psi(x) e^{-i k x+\epsilon x} .
$$

Let's see what kind of ODE $\Psi\left(x, \lambda, \lambda^{\prime}\right)$ satisfies:

$$
\Psi^{\prime \prime \prime}=\left(x^{2}-\bar{\lambda}\right) \Psi^{\prime}+x \Psi-\frac{(\Delta \lambda)^{2}}{4}\left(\frac{d}{d x}\right)^{-1} \psi
$$

where

$$
\bar{\lambda}=\left(\lambda+\lambda^{\prime}\right) / 2, \quad \Delta \lambda=\left(\lambda-\lambda^{\prime}\right) / 2
$$

where the pseudo-differential operator (introduced for later convenience) is defined by its formal action

$$
\left(\frac{d}{d x}\right)^{-1} x^{s}=\frac{x^{s+1}}{s+1}
$$

Fourier transforming the final equation and, after gauge transformation

$$
-\frac{d^{2}}{d p^{2}}+\left(p^{2}-\bar{\lambda}\right)+\frac{(\Delta \lambda)^{2}-1}{4 x^{2}}
$$

this is our initial PT-symmetric HO with

$$
E=\left(\lambda+\lambda^{\prime}\right) / 2
$$

$l=1 / 2\left(-1-\lambda / 2+\lambda^{\prime} / 2\right)$ or $l=1 / 2\left(-1-\lambda^{\prime} / 2+\lambda / 2\right)$.
The PT-spectral determinant is

$$
t\left(-E, \lambda, \lambda^{\prime}\right)=\frac{2 \pi}{\Gamma\left(\frac{1}{2}-\frac{\lambda}{4}\right) \Gamma\left(\frac{1}{2}-\frac{\lambda^{\prime}}{4}\right)}
$$

Starting from

$$
\left[-\frac{d^{2}}{x^{2}}+\frac{1}{4}\left(x^{2}-\lambda+\frac{k}{x^{2}}\right)\right] \psi(x, \lambda, k)=0
$$

and setting

$$
\Psi(x, \lambda, \rho, \sigma)=\psi(x, \lambda, \rho) \psi(x, \lambda, \sigma)
$$

the resulting pseudo-differential operator has a term

$$
-\frac{(\rho-\sigma)^{2}}{16 x^{2}}\left(\frac{d}{d x}\right)^{-1} \frac{1}{x^{2}} .
$$

This case is related to a $S O$ (4) particular in a $S O(2 n)$ family of high-order ordinary pseudo-differential equations (Dorey, Dunning, Masoero, Suzuki, Tateo (2006)).

What we have learned?

- The seemingly unphysical initial problem has a nice interpretation in terms of a pair of standard Harmonic oscillators
(~ Pais-Uhlenbeck oscillator model studied by Bender and Mannheim in arXiv:0706.0207 [hepth]).
- Certain high-order ODEs with real spectra should be considered more seriously!

ABCD Bethe ansatz models and (pseudo) ODEs

For the A to G simple Lie algebras, the general CFT Bethe ansatz equations are

$$
\prod_{b=1}^{r} \Omega^{C_{a b} \gamma_{b}} \frac{Q^{(b)}\left(\Omega^{C_{a b}} E_{i}^{(b)}, \gamma\right)}{Q^{(b)}\left(\Omega^{-C_{a b}} E_{i}^{(b)}, \gamma\right)}=-1, \quad i=1,2, \ldots
$$

where $r=\operatorname{rank}(g) \quad\left(g \in\left\{A_{n}, \ldots, G_{2}\right\}\right), C_{a b}$ is the matrix

$$
C_{a b}=\frac{\langle a \mid b\rangle}{\langle\max \mid \max \rangle},
$$

$|a\rangle$ and $|b\rangle$ are simple roots and

$$
\langle\max \mid \max \rangle=\operatorname{Max}(\langle j \mid j\rangle) \quad(j=1, \ldots, r) .
$$

We parametrise Ω in terms of a real number $\mu>0$ as

$$
\Omega=\exp \left(i \frac{2 \pi}{h^{\vee} \mu}\right) .
$$

The roots of the BAE split into 'multiplets' with equal $\left|E_{i}^{(a)}\right|$ (strings).

The ground-state of the original quantum spin chain usually corresponds to pure configurations with 'multiplets' of the same dimension d (d-strings).

In the spin-j $s u(2)$ quantum chains $d=2 j$.

We first introduce the $n^{\text {th }}$-order differential operator

$$
\begin{aligned}
& \quad D_{n}(\mathbf{g})=D\left(g_{n-1}-(n-1)\right) \ldots D\left(g_{1}-1\right) D\left(g_{0}\right) \\
& \qquad D(g)=\left(\frac{d}{d x}-\frac{g}{x}\right), \\
& \mathbf{g}=\left\{g_{n-1}, \ldots, g_{1}, g_{0}\right\}, \mathbf{g}^{\dagger}=\left\{n-1-g_{0}, \ldots, n-1-g_{n-1}\right\}, \\
& \text { and }
\end{aligned}
$$

$$
P_{K}(E, x)=\left(x^{h^{\vee} M / K}-E\right)^{K}
$$

PS: $K>1$ in $A_{1}, d=K=2 j:$ Lukyanov's idea!

In general

$$
d=K / C_{11}
$$

The relevant pseudo-differential equations are:
su(n):

$$
\left((-1)^{n} D_{n}(\mathrm{~g})-P_{K}\right) \psi(x)=0 ;
$$

so(2n):
$\left(D_{n}\left(\mathrm{~g}^{\dagger}\right)\left(\frac{d}{d x}\right)^{-1} D_{n}(\mathrm{~g})-\sqrt{P_{K}}\left(\frac{d}{d x}\right) \sqrt{P_{K}}\right) \psi(x)=0$;
so $(2 n+1)$:

$$
\left(D_{n}\left(\mathrm{~g}^{\dagger}\right) D_{n}(\mathrm{~g})+\sqrt{P_{K}}\left(\frac{d}{d x}\right) \sqrt{P_{K}}\right) \psi(x)=0
$$

sp(2n):

$$
\left(D_{n}\left(\mathrm{~g}^{\dagger}\right)\left(\frac{d}{d x}\right) D_{n}(\mathrm{~g})-P_{K}\left(\frac{d}{d x}\right)^{-1} P_{K}\right) \psi(x)=0
$$

$$
\begin{gathered}
A_{3} \Longleftrightarrow D_{3} \\
D_{2} \Longleftrightarrow A_{1} \oplus A_{1} \\
B_{1} \Longleftrightarrow A_{1} \quad \text { (K even) } \\
\left(g_{i}=i, M=\frac{2}{h^{\prime}}, K=1\right) \quad D_{n}, B_{n} \Longleftrightarrow A_{1} \\
B_{2} \Longleftrightarrow C_{2}
\end{gathered}
$$

Dualities

$$
A_{-n} \leftrightarrow A_{n} \quad(K \leftrightarrow-K)
$$

and

$$
D_{-n} \leftrightarrow C_{n} \quad(K \leftrightarrow-K / 2)
$$

similar to W-algebra dualities (Hornfeck 1994)

$$
\frac{\widehat{s u}(-n)_{K} \times \hat{s u}(-n)_{\mu}}{\hat{s u}(-n)_{K+\mu}} \leftrightarrow \frac{\hat{s u}(n)_{-K} \times \hat{s u}(n)_{\bar{\mu}}}{\hat{s u}(n)_{-K+\bar{\mu}}}
$$

$$
\frac{\hat{s o}(-2 n)_{K} \times \hat{s o}(-2 n)_{\mu}}{\hat{s o}(-2 n)_{K+\mu}} \leftrightarrow \frac{\hat{s p}(2 n)_{-K / 2} \times \hat{s p}(2 n)_{\bar{\mu}}}{\hat{s p}(2 n)_{-K / 2+\bar{\mu}}}
$$

(see also Cvitanovic E-book)

Lowest three functions $\Psi(x, E)$ for a D_{4} pseudodifferential equation.

Complex E-plane: the eigenvalues for the $S U(2)$ model with $M=3, g_{0}=0$ for $K=2,3$ and 4 respectively.

Complex (In E)-plane: two, three- and four-strings.

Conclusions

Maths: connection with classical W-algebras, Opers in generalised KdV equations.

Physics: PT-symmetric QM, applications to condensedmatter physics.

