
3/14/02

JEFFJEFFTMTM

ISO 20970ISO 20970

Jean-Paul Billon
SchlumbergerSema
chairman@stip.org

3/14/02

What is JEFF?

• JEFF is a storage format for set of classes
– “alternative” to JAR

• JEFF solves completely one of the most important
obstacles to the deployment of Java on small footprint
devices

• JEFF Results of 4 years of research and experimentation
from the participants in removing this obstacle
(maturity)

• JEFF can be used also with important benefits on
“bigger” platforms

3/14/02

JEFF History

• 01/2000: Workgroup created to define a ready-for-execution format.

• End 2000: Public review of JEFF specification release 1.0

• Feb 2001: Final release of JEFF 1.0 specification
– JEFF™ is a trademark of the J Consortium

• Apr 2001: Submitted to ISO "Fast Track” procedure

• September 2001: JEFF becomes ISO/IEC DIS 20970

• Nov 2001: 19 countries vote, 14 approve, 2 disapprove votes

• January 2002: Ballot Resolution Meeting
– Comments are resolved

3/14/02

Usual Sun’s Class File Format

• Two parts:
– constant pool: viewed as a TLV linear expression of a table

with variable length elements
– bytecode: references = indexes (not offsets!) in constant

pool viewed as a table:
 ⇒ 2 bytes indexes allow for 65536 entries in constant pool
 ⇒ a class file can be > 64KB (e.g. class java.lang.Character in J2SE)

• Requires a reformatting for efficient execution
 ⇒ Requires a recopy into runtime memory for transformation
 ⇒ Runtime RAM = heap + stack + Reformatted Classes

> size stored program!!

 ⇒ Slowness of program start!

3/14/02

Consequence

• On small devices:
– To provide small VMs does not solve the real problem of the

waste of runtime memory when running non-gadget
programs.

– On very small devices (<128 KB for runtime memory) no
“serious” use of Java possible, even with KVM.

• On “bigger”platforms:
– The need in runtime memory often goes beyond reason (e.g.

Forte or Jbuilder4 need a minimum of 256 MB to run
efficiently!).

• Real-Time: no “instantaneous” start

3/14/02

Split-VM Solution

• Uses a separate converter translating Class File Format
into a Ready-For-Execution format

• Uses a special VM executing in place the ready-for-
execution format without recopy into runtime memory

• On small devices the converter can be off-Platform

• VM + Converter = “classical” VM split in two
components

3/14/02

Usual Duplication of Classes
between Storage and Runtime Memory

Classes
.java sources

Java

compiler
Classes

.class files

Classes
.class files in

storage memory

Off-platform

On-platform

 Download

Copy & format

 for execution

Stack Runtime memory of
classes = executable
representation of classesheap

Duplication Total Runtime memory

3/14/02

Split-VM Approach

Classes
.java

sources

Javac
compiler

Classes
.class files

Executable
Modules

in
storage memory

Stack

Off-platform

On-platform

 Download

Heap

Verifier
Compactor

Modules
ready

forexecution
format

Use directly
without runtime processing

Install

Total Runtime memory

3/14/02

Previous Formats for SPLIT-VM

• “Romized” Classes
– image of the runtime memory of classes in one file
– completely linked
=> flexibility of dynamic linking completely lost

• Java Card CAP File Format (Java Card)
– modules internally pre-linked
– use of 16-bit offsets instead of indexes

• CAP file limited to 64 K

– external references by numeric “tokens” instead of symbolic
names

• compact
• flexibility of dynamic linking partially kept
• but requires rigorous management of token allocation by

central authority

3/14/02

Objective in Designing JEFF

 “Dream” format for split-VM that could be both:

– Compact like Cap File format
– Not pre-linked at all
– Preserving all original .class information, even symbolic
– Support of all Java features
– Really ready for execution (could be put in ROM)
– Really efficient (more than usual runtime representation of

.class classes)
– Able to store any additional resources (e.g. files) besides

classes
– No size limitation

Choices

• A file can contain several classes from several packages. The
content can be a complete application, parts of it, or only one
class

• To allow the “dynamic linking” of the classes, the references
between classes must be kept at the symbolic level

• The binary content of the file is adapted to be efficiently read by
most of the processors (byte order, alignment…)

• JEFF is also highly efficient for the dynamic download of
classes in dynamic memory (RAM)

3/14/02

JEFF File Structure

• JEFF file = set of individual classes
• not pre-linked

• Each class referenced is assigned an index
• 16 bits indexes: the number of referenced classes < 64K
• lower indexes for internal classes
• Indexes local to the JEFF file

• The JEFF file has a common table of the internal
classes with a 32 bit offset to reach the individual
class headers

• The symbolic names are stored in a common symbol
pool

3/14/02

Individual Class

• Internal references inside a class made by 16 bit offsets
– a class < 64 KB (only limitation)

• Each class has a local table of the classes it references
that contains the indexes of the referenced classes

• The references external to a class are made via a 16 bit
offset to this local table

Content of a JEFF file

Definition of
Class A

(uses classes B & C)

Definition of
Class B

(uses class A)

ClassDirectory

offset
offsetIndex Class A

Index Class B

Symbol A

Symbol B

Symbol
Directory

offset
offsetIndex Class A

Index Class B

offsetIndex Class C
(External)

Symbol C

In the Definition of class A

offset

offset
Reference to

Class A

Index A
Index B

Local Table of
Referenced

Classes

Index C

Reference to
Class C

offsetReference to
Class B

In the bytecode

JEFF “Linking”

• Simple and efficient
• On-platform
• Do not modify the content of the files
• Keeps the symbolic information
• Allows the linking of additional JEFF files

Linking:Use of a single JEFF

• All the classes stored in a single JEFF file
• The class indexes identify unambiguously

the class locations
• No linking needed!

Linking: Multiple JEFF Files (1)

• JEFF indexes cannot be used directly
• An external translation table must be built

for each JEFF file:
– An entry per local class index (internal and

external)
– Each entry in the table contains the global index

of the class (in the same JEFF or in another
JEFF)

Addr. C
Addr. D
Addr. B

Addr. A
Addr. B
Addr. C

Multiple JEFF Files (2)

JEFF 1
Class A

(uses B &C)

Class B
(uses A)

External Table
used by JEFF 1

1
2
3

JEFF 2

Class C

Class D
(uses B)

1
2
3

External Table
used by JEFF 2

Patch of Classes

JEFF 1
Class A

(uses B &C)

Class B
(uses A)

Table 1
Addr. A
Addr. B
Addr. C

1
2
3

JEFF 2

Class C

Class D
(uses B)

Table 2
Addr. C
Addr. D
Addr. B

1
2
3

JEFF 3
(patch JEFF 1)

Class B

Table 3
Addr. B
Addr. A

1
2 New link

New link

Old Link

Old Link

3/14/02

Advantages

• Compact execution file format

•Without compression, code size is reduced 40-50%

compared to Sun’s class file.

•Well designed for Java processor (Memory

alignment, organization,…)

• Execution from storage memory

•Saves unnecessary copying to RAM

•Cost savings for devices – less RAM

•Power consumption saving-The static memory

consumes less power than the dynamic memory

=> More efficient execution

Storage

Regular Class
File Format

RAM

With JEFF

Storage
RAM

3/14/02

Average S ize Reduct ion 40-50%

Class Files

178 Kb

Flash/ROM RAM

Instances
32 Kb

Linked
classes

178 Kb

JEFF

107 Kb

Flash/ROM RAM

Instances
32 Kb

No linked
classes

0 Kb

J2ME CLDC 1.0.2

•(112 classes) CLDC + Application

• Class files 148 KB + 30 KB

• JEFF 89 KB + 18 KB

Class Files JEFF

3/14/02

Summary JEFF Decisive Benefits

• JEFF is completely not pre-linked
– each class of a JEFF file keeps its individuality and can be

overriden at link time by a new class downloaded in another JEFF
file if needed

• JEFF keeps the original information
– preserves all original symbolic information and attributes

• JEFF is a strictly ready-for-execution format
– no transformation of the original file needed for execution, even

during linking: can be put in ROM.
– completely pre-aligned for fast execution

• JEFF is compact:
– usuall twice smaller than original .class classes, this without any

compression

• JEFF can store any kind of data in addition to classes:
≈ JAR

3/14/02

JEFF-TOOLS Availability

• Jar to JEFF Converters

• JEFF Disassemblers

• JEFF-Based VMs for STIP/FINREAD Platforms

Providers: Cardsoft, Trusted-Logic, Silicomp,
Ingenico, SchlumbergerSema

