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1 INTRODUCTION

Numerical methods for computing turbulent flows are derived from methods developed for
laminar, viscous flows. Although most of the methods developed for computing inviscid flows
are of the same type and can be extended to turbulent flows, there are some special methods
which can not be extended in a straightforward manner; the viscous part of the Navier-Stokes
equations is essential in turbulent flows and any method to be used for computing such flows
must deal efficiently with the elliptic equations.

There are several features by which the numerical methods for computing turbulent flows
can be classified. The approach used here is not the only possibility, but it is appropriate enough;
the classification is according to:

� the discretization method used to approximate the differential or integral conservation
equations by a system of algebraic equations which can be solved on a computer;

� the time-integration method;

� the method of pressure-velocity-density coupling.

The most often used discretization methods are finite-difference (FD), spectral (S), finite-
element (FE), and finite-volume (FM) methods. There are of course also methods of mixed
type, like the spectral-element methods (see e.g. Henderson and Karniadakis, 1995) or control-
volume finite-element methods (see e.g. Baliga, 1997). Not all of these methods will be covered
here; FD and FV methods, being the most widely spread, will be described in more detail, while
only the basic information on the others will be provided.

The time-integration methods are either explicit or implicit; there are many variants of each
group and again only some of them will be described in detail. The choice of the time-
integration method is essential for both the accuracy and computational efficiency reasons.
Special attention will be given to the computation of steady flows, which are representative
of engineering applications in which only the mean features of the flow are of interest.

The method of pressure-velocity-density coupling is important in both incompressible and
compressible flows, and especially if both flow types are to be covered. Again, many approaches
are possible but only the most important ones will be described.

Special attention will be given to error estimation and computational efficiency, measured
by the effort required to achieve a solution of given accuracy. Some of the methods – like the
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use of local grid refinement – are applicable only to some types of discretization methods, while
others – like multigrid acceleration and parallel computing – can always be used.

The methods used to solve the Reynolds-averaged Navier-Stokes equations also differ from
those used to perform direct numerical simulations (DNS) and large-eddy simulations (LES)
of turbulent flows, although the gap appears to be narrowing lately. In the following sections
the emphasis will be given to second-order methods which are widely used to solve RANS-
equations, both in commercial codes and in academic research. These kinds of methods are
nowadays also being used in LES and DNS, especially those which offer local grid refinement
techniques.

Section 2 describes the discretization methods. It is followed by a section on time integration
techniques. Section 4 deals with the methods for solving linear equation systems. The methods
of computing incompressible flows are covered in the following section. Section 6 is devoted
to flows in complex geometries and the aspects of grid adaptation. In section 7, the methods
of computing compressible flows are discussed. In section 8, an approach to moving grids is
described. Finally, some concluding remarks are given.

The following descriptions of the various methods are kept concise; for a more detailed
analysis see books by Anderson et al. (1984), Hirsch (1992), Fletcher (1991), and Ferziger and
Perić (2002), among others.

2 DISCRETIZATION METHODS

In order to describe some of the discretization methods, a generic conservation equation for
quantity� will be considered. It will be shown later that all conservation equations have the
same form as this generic equation; actually, by proper substitutions for�, its diffusivity�, and
the generic source term��, all equations can be cast in this form:
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Depending on the coordinate system used, one has to provide the appropriate form of the diver-
gence and gradient operator.

Some methods use the integral form of the conservation equation as the starting point; it
reads:
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where� is the volume of a control volume bounded by a closed surface�, v is the fluid velocity
vector, andn is the outward-pointing unit vector normal to the surface�.

In the descriptions which follow it will be assumed that the coordinate system is arbitrary
non-orthogonal, and that the control volume can have any polyhedral shape. The special forms
of the expressions that result when Cartesian or curvilinear orthogonal coordinates are used
can be obtained by appropriate simplifications of the equations. Also, vectors and tensors are
expressed through their Cartesian components. This ensures that the strong conservation form
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of the equations is preserved, since only the coordinates may need to be transformed, but the
Cartesian base vectors are retained.

The discretization methods shall be described under the assumption that an implicit time-
integration method is used, i.e. that an algebraic equation system needs to be solved. In the case
of explicit methods, the same expressions remain valid but the fluxes and source terms can be
directly computed using solution from previous time levels.

2.1 Finite-Difference Methods

The finite-difference (FD) methods are used in conjunction with structured grids, where each
set of grid lines is considered to represent lines along which two of the three independent co-
ordinates are constant (one of two in two-dimensional – 2D – problems). An example of a 2D,
structured, non-orthogonal grid is shown in Fig. 1.

Fig. 1: An example of a 2D, structured, non-orthogonal grid

The generic conservation equation, which for Cartesian coordinates
� and tensor notation
reads:
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needs to be transformed when non-orthogonal coordinates�� are used.:
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where
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is proportional to the velocity component normal to the coordinate surface�� �const. The
coefficients��� are defined as:

��� � ������ � ������ � ������ � ������ � (6)

where��� represents the co-factor of�
����� in the Jacobian of the coordinate transformation
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Equation (4) differs from Eq. (3) in that the velocities��, which are a linear combination
of the Cartesian velocity components��, replace the latter in the convective term, and that
in the diffusive term, mixed derivatives appear. The mixed derivatives disappear when the
grid becomes orthogonal, even if it is curvilinear; the coefficients��� with unequal indices
become than zero. When the grid is only mildly non-orthogonal, the terms involving mixed (or
“cross”) derivatives are smaller than the terms involving “normal” derivatives. However, they
may become dominant if the grid non-orthogonality is high and the aspect ratio of the grid is
large (i.e. if��� � ��� by a factor of two or more). This affects both the computational effort
and the accuracy of the solution, as will be discussed below.

In spite of the above differences, the discretization techniques are basically the same for both
non-orthogonal and orthogonal grids. We shall consider here the general case of the diffusion
coefficient being a derived variable. This is the case when turbulent flows are calculated using
some kind of an eddy-viscosity model; the turbulent diffusion coefficient may than vary in space
by as much as three orders of magnitude. Thus, what would be a second derivative in the case
of constant� appears as an “outer” first derivative (which stems from the divergence operator)
applied to an “inner” first derivative (which stems from the gradient operator) multiplied by the
diffusion coefficient. This leads naturally to an appropriate discretization approach.
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Fig. 2: An example of a non-orthogonal FD–grid and the notation used

In FD methods, the grid lines are associated with coordinate lines, as mentioned above. We
shall consider a 2D grid and the notation shown in Fig. 2; the extension to 3D is straightfor-
ward. The Eq. (4) is approximated at each grid point by replacing the derivatives with appro-
priate finite approximations. These approximations should be consistent (i.e. in the limit of the
mesh spacing becoming zero, the approximations should become exact) and lead to a numer-
ical method that converges towards the exact solution of the differential equation as the mesh
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size reduces. More details on the choice of approximations and their properties can be found
in standard textbooks (Anderson et al., 1984; Hirsch, 1992; Fletcher, 1991; Ferziger and Peri´c,
2002); here only some of the most often used approximations are given.

One possibility of approximating the derivative of� at a grid point is to fit a “shape function”
(usually a polynomial) through that grid point and a number of neighbors, and differentiate that
function. One usually uses one-dimensional polynomials along each grid line to approximate
the derivative in the particular direction. Here� is used to denote any of the grid lines��, ��, or
��.

The simplest shape function is piece-wise linear, assuming that� varies linearly from node
to node. The problem is that at any grid point the slope is different on either side; thus, at the
grid point identified by an index�, see Fig. 2, one can have:�
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which is calledbackward differencing scheme (BDS), or:�
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	 (9)

which is calledforward differencing scheme (FDS). Obviously, for any non-linear variation of
�, both of these approximations will be rather inaccurate. However, these approximations are
still used (in some commercial codes as well), because they are numerically stable. Which of
the two variants is selected, depends usually on the flow direction: the point on the upwind-side
is used in addition to point at��. This choice is based on the physical argument (when the
convective term is considered) that the state at any point is by virtue of convective transport
influenced only by what happens upstream of it. These approximations are not recommended –
except for local blending with higher-order schemes in order to avoid oscillations in the solution
near discontinuities, e.g. near shocks – because they introduce an error known asnumerical or
false diffusion. This feature will be discussed further below.

Assuming a parabolic profile passed through three points, one obtains the following approx-
imation on grids with a uniform spacing:�
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which is calledcentral differencing scheme (CDS). When the grid is non-uniform, the approx-
imation involves the ratio of mesh spacing and also the value��; see Ferziger and Peri´c (2002)
for details. This approximation is much more accurate than the above two; it is exact if the
variable� varies linearly or quadratically.

By using more points and polynomials of higher degree, more accurate approximations can
be obtained. Some will be presented below.

Another possibility for developing approximations to derivatives is to use Taylor series ex-
pansion around��:
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where� means “higher order terms”. By replacing� by ����, ����, etc., one can express the
variable values at these points in terms of the variable and its derivatives at��. From these
expansions, one can obtain approximations for the first and higher derivatives at point�� in
terms of the function values at neighboring points. For example, BDS is obtained by using the
expression (11) for����, and FDS when���� is used instead; most of the terms in the series are
neglected, though. CDS is obtained when the expression for���� is subtracted from the series
for ����; the result is:�
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The CDS approximation uses only the first term on the right-hand side; the remainder repre-
sents thetruncation error; it is a measure of the accuracy of approximation and determines the
rate at which the error decreases when the mesh spacing is reduced. The truncation error is
proportional to the product of the mesh spacing to the power�, � � � etc., and derivatives of
� higher than the one being approximated. Usually, the term involving the smallest exponent�

is the dominant one, and one can say that the approximation is of�th order.
Although the order of an approximation is an important measure of its accuracy, one has

to be careful: two methods may be of the same order but the errors on a given grid may differ
by as much as an order of magnitude! Also, the order tells us how fast the error reduces when
the grid is refined, and not how big the error is on a given grid. See Roache (1994) or Ferziger
and Peri´c (1996) about how the order can be determined and used to estimate the discretization
errors.

In some cases, as in Eq. (12), the leading truncation error term becomes zero when the grid is
uniform. However, the error is primarily a function of the mesh spacing and the spatial variation
of �, and then of the expansion (non-uniformity) factor. The purpose of using non-uniform grids
is to reduce the mesh spacing where the variable� varies most, while leaving large spacing in
regions of small variation. Thus, if the same number of uniformly spaced grid points were used
in the solution domain, the errors would be much larger since the mesh spacing would then be
increased in regions of strong variable variation and decreased in regions where errors are small
anyway. It can be shown (see Ferziger and Peri´c, 2002, for a demonstration) that, when the grid
is systematically refined, the error reduces at the same rate on a non-uniform and on a uniform
grid when CDS approximation is used.

Taylor series is used to determine the truncation error even when the approximations are
derived from polynomial fitting. Below are given two third-order approximations obtained by
fitting a cubic polynomial to four points and a fourth-order approximation obtained by fitting a
polynomial of degree four to five points on a uniform grid:�
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These approximations are called third-order BDS, third-order FDS, and fourth-order CDS, re-
spectively. When the grid is non-uniform, the coefficients in the above expressions become
functions of grid expansion ratios. The two third-order schemes are also calledthird-order up-
wind schemes; the switch from one to the other is dependent on the flow direction – two points
are always used on the upstream and one point on the downstream side of the point at��.

Many more approximations can be developed by using more points or different polynomi-
als or shape functions (even multi-dimensionally). Especially for uniformly spaced grid points,
many special (compact) schemes can be derived; here only Pad´e-schemes will be briefly de-
scribed.

A family of compact centered approximations can be defined as follows:
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Depending on the choice of parameters�, ��, and��, the second-order CDS, the fourth-order
CDS, the fourth-order Pad´e or the sixth-order Pad´e scheme is obtained; the parameters and the
corresponding truncation errors are listed in Table 1.

Table 1: Compact schemes: the parameters and truncation errors

Scheme Truncation error � �� ��
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The standard central-difference schemes use variable values at two or four neighbor points
to compute the derivative at a point. In Pad´e schemes, the order of the approximation is in-
creased by two while keeping the same computational molecule compared to CDS-schemes.
This is achieved by using the derivatives at near neighbors instead of variable values at more
distant nodes; the computational molecule is thus smaller, but one has to solve an equation
system to compute derivatives at grid nodes using known values of the variable�. This is not
a problem when using explicit time-integration methods; however, in implicit methods some
special treatment is required if Pad´e schemes are to be used.
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One approach is to use the so-calleddeferred correction (which shall be referred to very
often further below):�
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Here, only the derivative at point� is expressed through the unknown variable values, while the
derivatives at neighbor nodes are explicitly computed using values from the previous iteration.
When the iterations converge, the old values will be equal to the current ones and the correct
expression corresponding to Eq. (16) will be obtained. However, this approach may affect the
convergence rate, since the expression is not quite balanced: the “implicit” part on the right-
hand side represents more than the derivative on the left-hand side. The following kind of
deferred correction may be more efficient:
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Here, the second-order CDS is used as an implicit approximation, thus limiting the computation
molecule to the nearest neighbors only (meaning that less storage space for the matrix coeffi-
cients and less computing time for solving the linear algebraic equation systems is needed). On
the right-hand side we have the explicitly computed derivative from the Pad´e scheme (which is
what we want to have at the end) and from it is subtracted the explicitly computed lower-order
CDS-approximation of the derivative (which we used in the implicit approximation). This gives
a more balance expression, since in regions where the second-order CDS is already accurate,
the term in square brackets will be negligible.

These compact schemes are limited to regular grids and can not be used in general-purpose
codes. Actually, most general-purpose codes use second-order methods, which appear to offer
the best compromise between accuracy, complexity of coding, and efficiency when used for
computing practical flows. Higher-order methods are in place when very low discretization
errors are required (e.g. in DNS). When turbulence models are used in conjunction with RANS
equations, the errors due to turbulence model are usually of the order of few per cent, so using
methods of high order and reducing the discretization errors much below 1 % is not practical,
except when turbulence models are tested.

The diffusive term requires that the differentiation is performed twice. When the diffusion
coefficient is not constant, as is often the case, the first derivative is multiplied by it before the
product is differentiated again. Any of the approximations shown above – and many others
– can be used for each of the differentiation steps; they even don’t have to be necessarily the
same for the two steps. It is also possible to calculate first derivatives at imaginary nodes placed
between grid points (identified here by indices� � �

�
and� � �

�
), and then evaluate the second

derivative using these intermediate values; for example, CDS leads to:
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Mixed derivatives occur in conservation equations only when they are transformed into non-
orthogonal coordinate systems, see Eq. (4). For example, one needs to compute:
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If CDS is used, one would first express the first derivative with respect to�� at nodes E and W
as (see Fig. 2):�
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For the second differentiation, one multiplies the above approximations by�� ��� evaluated
at nodes E and W, respectively, takes the difference and divides by��	� � ��	�.

The approximation of mixed derivatives using standard techniques is easy, but when the grid
is severely non-orthogonal (angle between grid lines smaller than 45Æ) and the mesh spacing
in one direction is much larger than in the other direction (say more than a factor of four),
the approximations like the one described above can lead to unphysical, oscillatory solutions
(with undershoots and overshoots). Some authors have suggested modifications which partly
overcome these problems; avoiding the use of nodes in “sharp corners” of the computational
molecule like the one shown in Fig. 2 helps (see Demirdˇzić, 1987). For example, in a situation
like that of Fig. 2, a more robust approximation of the expression (20) is obtained by replacing
the first derivatives in Eqs. (21) by:�
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After CDS is applied in the second step, the final expression contains only the values at nodes
NE, E, W, and SW – the nodes SE and NW are not used. However, the approximations of the
first derivative at E and W are first-order FDS and BDS, respectively, so the numerical stability
is improved at the expense of accuracy.

Special attention is needed at nodes next to solution domain boundaries if more than nearest
neighbor nodes are used in the approximations. In such a case one-sided approximations of
higher-order have to be used. By fitting a fourth-order polynomial through the boundary and
four inner points,�� to ��, the following one-sided fourth-order approximation for the first
derivative at the first interior point results:�
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The boundary conditions are either of Dirichlet or Neumann type, i.e. either the variable
value or its derivative (usually in the direction normal to boundary) is specified at boundary
points. If the boundary values are known, they are used as such in the approximations and con-
tribute to the right-hand side of the equation system to be solved. If the gradient is prescribed,
it is used to eliminate the boundary value as unknown in the approximations at near-boundary
grid points. For example, using polynomials of degree two or three, passed through the bound-
ary and two or three interior nodes, the following second and third order approximations for the
derivative at the boundary are obtained:�
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From these approximations one can express the boundary value�� through the interior points
as follows:
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In the approximations at inner grid nodes, when a reference to�� is made, the above replace-
ment formulae are used; the boundary values are thus eliminated as unknowns.

The source term is evaluated at the point P. If it depends on the variable�, it may be ex-
pressed through the unknown solution at that point. If the dependence is non-linear, some kind
of linearization is necessary. Since the solution method is inevitably of iterative nature, either
Picard or Newton iteration on the non-linear source term can be used; see Ferziger and Peri´c
(2002) for more details.

The conservation equations are approximated at interior grid points only; boundary nodes
serve for the specification of the boundary conditions, which make the solution unique. There
must be no more unknowns than equations, i.e. only the variable values at the interior nodes may
appear in the approximations as the unknowns. When appropriate approximations are applied
to all terms of the conservation equation at a given point P, and when all non-linear terms are
linearized in a suitable way, an algebraic (linear) equation of the following form results:

���� �
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�
 � �� 	 (28)

where index� runs over the neighbor nodes of node P represented in the computational molecule.
Note that more nodes may be used in the individual approximations, but if the above described
deferred-correction approach is used, some contributions may be treated explicitly so that they
enter the source term��. The coefficients�� and�
 depend on the approximations employed,
mesh spacing, fluid velocity, and fluid properties.

The algebraic equations for all interior nodes can be written in matrix form as:

�� � Q � (29)

Here,� is the square� � � matrix, where� is the number of unknowns, while� andQ
represent the vectors of unknowns and source terms, respectively. When the grid is structured, as
is usually the case in FD methods, the matrix� has diagonal structure: all non-zero elements are
located on the main diagonal and a number of other diagonals, depending on the computational
molecule of the discretization scheme. This special feature can be exploited to construct some
very efficient solution algorithms. Some methods which can be used to solve this equation
system will be introduced later.

A few more remarks on FD methods are in place. Firstly, the coordinate transformation
can be completely hidden (i.e. one does not have to assign any values to the coordinates��, but
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can use the Cartesian coordinates of grid points instead). All one needs to do is to construct
non-overlapping control volumes around each grid node and calculate their volume�� . Since
�� � �
 �� �� �  ��� ��� ���, it follows that

�� � ��������� � (30)

If one now multiplies the whole equation by���������, the mesh spacing will disappear in all
terms except those containing the Jacobian , but due to the above expression, one can replace
the resulting product by�� . The terms involving coordinate derivatives (�s and�s) loose the
mesh spacing in the transformed space and only the differences in Cartesian coordinates remain,
e.g. in 2D:
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The mesh spacing��� cancels out upon multiplication of the equation by���������, so one
only needs the Cartesian coordinates of the grid points.

Finally, FD can in principle be applied to unstructured grids as well. Actually, one does
not have to define any grid at all – all one needs are suitably distributed points in space. One
can then, in a pre-processing step, define computational molecules or clouds by assigning a
certain number of neighbor points to each interior point. By fitting a multi-dimensional shape
function to variable values at all points from the molecule, one can obtain approximations to
the derivatives with respect to the Cartesian coordinates at the central point, without the need to
perform coordinate transformations. No such methods seem to have been developed so far for
computing turbulent flows, but similar methods have been used for some special applications.
It appears that it would be easier to construct a high-order FD-method than a FV-method of the
same order when unstructured, arbitrary grids are used; the reason will become obvious soon.

2.2 Finite-Volume Methods

The finite-volume (FV) methods use the conservation equation in integral form as the starting
point, see Eq. (2). The solution domain needs to be subdivided into a finite number of non-
overlapping control volumes (CVs). The edges of CVs are usually defined by a grid which
may be either structured, block-structured, or unstructured. Figure 3 shows an example of a
2D block-structured grid, which may also be seen as an unstructured grid generated block-
wise using a method for the generation of structured grids. The variables are usually defined
at the centers of the CVs, except at boundaries where they are defined at the centers of the
CV faces. The integral conservation equation is approximated on each CV, resulting in one
algebraic equation per CV.

The grid lines and surfaces defining the CVs may be curved. However, when Cartesian vec-
tor and tensor components are used, the equations contain no curvature terms and the curvature
of grid lines (i.e. CV-edges) is not important; they are usually assumed to be straight. The grid
lines in a FV method are not associated with any coordinate directions and therefore any number
of grid lines may cross at any CV corner. The CVs can also have an arbitrary shape, although
in practice mostly CVs with up to eight corners are used, i.e. tetrahedra, pyramids, prisms and
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Fig. 3: An example of a 2D block-structured grid, consisting of 13 blocks.

hexahedra. Actually, for the sake of compatibility with CAD tools and commercial software
for grid generation, it is a common convention to define CVs always by a list of eight vertices
ordered in a certain way. If the CV is not a hexahedron, then some of the vertices collapse, as
shown in Fig. 4.
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Fig. 4: On the definition of CVs by a list of eight vertices.

In FV methods, two levels of approximation are necessary:

� The integrals over surface and volume of a CV need to be evaluated by a suitable numer-
ical approximation, which uses the value of the integrand at one or more locations within
the integration domain;

� Since the variable values are calculated at CV center only, values at other locations which
are required for the evaluation of integrals have to be obtained by interpolation; also,
derivatives of certain quantities may be required, which makes numerical differentiation
also necessary.

Some of the most frequently used approximations for each step are described below.

Approximation of Surface Integrals

The integration must be performed over a closed surface enclosing the CV. The surface of any
kind of CV defined by a certain number of vertices which are joined by straight lines can be
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decomposed into a certain number of sub-surfaces, enclosed by a polygon of straight lines
connecting the vertices at corners. The number of sub-surfaces or cell-faces can range from
four (in the case of tetrahedron-CVs) to any greater number; however, usually up to six faces
(for hexahedron-CVs) are involved. Each CV face is common to two CVs and is thus uniquely
defined for both; only the normal unit vector directed outwards changes sign when the cell face
is viewed from either CV. It is therefore sufficient to describe the approximation of the surface
integral over one such face; the integral over the whole surface is equal to the sum of integrals
over all faces, and the same approximation can be applied to all faces if appropriate substitutions
of indices are made, i.e.:

 �
�
�

f � n �� �
�
�

�
��

f � n �� 	 (32)

where index! runs over all faces of one CV andf stands for the convective or diffusive flux
vector,��v or ���, respectively.

The simplest approximation of the surface integral is provided by the midpoint rule:

 � �
�
��

f � n �� � �f � n���� �
�
�

" ���
�
� 	 (33)

where��
� is the area of the projection of cell face! onto the Cartesian coordinate surface
� �

const. (or, in other words, the�th Cartesian component of the surface vector�n), and" �� is the
�th Cartesian component of the vectorf at the center of the cell face. Thus, the values of" �� are
taken to represent the mean value over the whole cell face, an approximation which is exact if
the variation of the function is linear. The truncation error of this integral approximation (i.e.
when theexact values of" �� are used) is proportional to the square of the mesh spacing, i.e. it
is asecond-order approximation. This is the most widely used approximation; its second order
makes it accurate enough for most engineering applications, and this fact with its simplicity is
the best argument for adopting it.

One of the nice features of the midpoint-rule approximation is that it is applicable to cell
faces of any shape; one only needs to evaluate the integrand at one location, and even if the
location at which" �� are evaluated does not fall exactly at the cell-face center, it will still be
nearly second-order. Therefore, for unstructured grids as well as for structured grids, the above
approximation is the best choice if second-order accuracy is acceptable.

Higher-order integral approximations are not so easy to develop for an arbitrary CV shape.
For regular structured grids (quadrilaterals in 2D and hexahedra in 3D), one can come up with
efficient methods of higher order. Especially in 2D is this task relatively easy: if one uses the
Simpson rule, it is necessary to evaluate the integrand at three locations per cell face, i.e. (see
Fig. 5):

 � �
�
��

f � n �� � ��
�

��f � n��� � � �f � n�� � �f � n���� � (34)

Since the corners are common to two CVs, there are actually two evaluations of�f � n� per
cell face: its center and one corner. This approximation isforth order accurate; it is very
simple, but in order to retain the fourth-order accuracy, the values of the integrand need to
be accurately interpolated from the nodal values, which is not so simple, as will be shown
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Fig. 5: A typical 2D CV and the notation used.

below. Lilek and Peri´c (1995) analyzed this approach and found that it is efficient if very high
accuracy is required. As with all high-order methods, oscillatory solutions are obtained (and the
convergence of the iterative solution procedure may be difficult) if the grid is too coarse. Thus,
for a moderate accuracy a second-order method as the midpoint rule may turn out to be a better
choice.

In three dimensions, higher-order methods require evaluation of the integrand at many more
locations within the face; for example, a fourth-order approximation for a face of a hexahedron-
CV requires evaluation of�f � n� at nine locations, which increases the complexity of the dis-
cretization substantially. Especially since – in addition to a more complicated integral approxi-
mation – also more complicated interpolation and differentiation are required, the development
of high-order FV methods is more elaborate than the development of FD methods of the same
order; the latter require only high-order approximations of the derivatives at grid points. Espe-
cially if arbitrary polyhedral CVs are considered, methods of high order (higher than second)
are difficult to construct.

The accuracy of integral approximation can be increased by subdividing the cell face in
smaller pieces and applying midpoint rule at the center of each sub-face. This approach is sim-
ple and only requires a more sophisticated interpolation; with the help of the earlier described
deferred-correction approach it can be easily implemented by computing the integrals over sub-
faces explicitly and using a simple midpoint-rule approximation for the whole face to build the
coefficient matrix. This approach could be applied to arbitrary polyhedral CVs, whose polygo-
nal faces could be easily decomposed in a number of triangles.
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Approximation of Volume Integrals

The simplest method to approximate a volume integral is again the midpoint rule:�
�
�� �� � ������� 	 (35)

where����� stands for the value of the specific source term at the CV center, i.e. at the compu-
tational node P. Thus, no interpolation is necessary to evaluate the integrand (the differentiation
may, however, be necessary, depending on the particular expression for��, which often does
involve gradients of some quantities; for example, source terms in equations for most variables
describing turbulence, like!, #, $ etc., involve velocity gradients).

This approximation is also of second order if the point P lies in the center of the volume
�� , which most often is the case (there are methods which define the computational nodes at
the crossings of grid lines, and then construct control volumes around each node; the node may
then not lie in the center of the CV, but the cell faces lie midway between the neighbor nodes).
Higher-order approximations are, as outlined above, more difficult to derive and are seldom
used.

Interpolation Schemes

There are many methods to choose from when interpolation is considered. The crudest ap-
proximation is to assume that the cell-face value is equal to the cell-center value on one side,
depending on the flow direction. This step-wise interpolation is calledupwind differencing
scheme (UDS), by analogy to the upwind-differencing of convective term in FD. It is first-order
accurate, introduces excessive numerical diffusion error, and should therefore be avoided.

Another simple and popular approach is linear interpolation. If the grid is structured, one
usually interpolates in each direction independently and calls the interpolation bi-linear (in 2D)
or tri-linear (in 3D). When the grid is unstructured, one either uses some kind of linear shape
functions, or interpolates by using the gradient vector evaluated at the CV center:

�� � �� � ����� � �r� � r�� 	 (36)

where�� is the interpolated value of� at a location defined by the position vectorr�. This
approximation is based on the assumption that the gradient of� is constant within the CV,
which corresponds to the assumption of a linear variation of� and is therefore second-order
accurate.

In order to calculate the variable values at cell-face centers, one only needs to interpolate
between the two nearest neighbors if linear interpolation is used, e.g.:

�� �
�r� � r��
�r� � r���� �

�r� � r��
�r� � r���� � (37)

However, if the grid lines change their direction at CV corners (which is always the case on un-
structured grids made of tetrahedra), linear interpolation according to this expression is second-
order accurate at the location denoted by ‘e�’ in Fig. 5, which lies on the straight line connecting
nodes P and E, and not at the cell-face center ‘e’. Thus, if ‘e�’ is substantially far away from ‘e’
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(relative to the cell-face size), the accuracy of the integration is reduced. If, for example, the
location ‘e�’ falls close to the cell corner ‘se’, the integral approximation will be only first-order
accurate since the value used as an approximation of the mean value in the integration range is
actually corresponding to the value at the boundary of the range and not at its center, as required
for the second-order accuracy of midpoint rule. If the gradient of� is known at cell centers, one
can restore the second-order accuracy by applying a correction to the value resulting from the
above simple linear interpolation:

�� � ��� � ������ � �r� � r��� � (38)

The over-bar denotes here interpolated value.
Linear interpolation leads to a second-order approximation of the cell-face center value

(for a formal proof, see Ferziger and Peri´c, 2002). It is equivalent to thecentral differencing
scheme (CDS) in FD and is usually referred to under this name. CDS was long believed to be
impractical for convection-dominated flows, since it – as any other scheme of the order higher
than first – may lead to oscillatory solutions. No oscillations occur when the so calledcell
Peclet number, Pe =�%���� & �, where%� is the velocity component normal to the cell face
and� is the distance between the two cell centers on either side of the face. However, this is
only a sufficient, but not alwaysnecessary condition for non-oscillatory solutions. Only when
the Peclet number is large in a region of strong variable change (high second derivative) is
CDS prone to oscillations. Local grid refinement is the cure, not switching to UDS, since the
oscillations carry a message: the grid is much too coarse where it should be fine (see Ferziger
and Peri´c, 2002, for some examples).

CDS is suitable for use in conjunction with midpoint rule integral approximation. However,
the accuracy is somewhat increased – even though the order of the overall approximation can
not be increased above second – when a more accurate interpolation is used. Very popular is the
quadratic interpolation on structured grids, which even has its own name: QUICK (Leonard,
1979). Two nodes are used on the upwind side of the cell face and one node on the downstream
side, and a parabola is fitted to the nodal values. The resulting value at the cell face is, on a
uniformly spaced grid and with the flow directed from P to E:

�� �
	

�
�� �

�

�
�� � �

�
�� � (39)

When the grid is non-uniform, the coefficients in the above expression become functions of the
mesh spacing. When a grid made of triangles or tetrahedra is used, the second upstream node
may not be readily available; instead of the variable value at the second upstream point one
can use the gradient at the upstream cell center to obtain the third coefficient in the parabola,
see below. This interpolation scheme isthird-order accurate; however, the overall method still
remains ofsecond order if the interpolated value is used in a midpoint rule approximation of
the integral, i.e. the error will asymptotically be reducing by a factor of four when the grid is
refined. On a particular grid, the result might be though significantly more accurate than when
linear interpolation is used instead (except on coarse grids).

For higher-order integral approximations, like the Simpson rule in 2D, one has to use higher-
order interpolation in order to preserve the accuracy of the integral approximation. Thus, one
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can retain the fourth-order of the Simpson rule if the interpolation is also at least fourth-order
accurate. A suitable approximation results from fitting a polynomial of degree three through
four nodes, two on either side of the cell face; on a uniform grid, the result is:

�� �
���� � ���� � 	�� � 	���

��
� (40)

One can first calculate the values at all cell-face centers using the above kind of interpolation.
One can then apply the same interpolation along the cell faces and obtain values at cell corners
as a function of cell-face center values, e.g.��� and���. The integral approximation according
to Eq. (34) can now be performed; the flux � is then a function of 15 nodal values.

When the grid is unstructured and made of arbitrary CVs, one would have to use more
complicated interpolation polynomials. If the gradient-vector components are available at each
CV-center (see below), one can construct a polynomial shape function up to degree three by
using the variable values and gradient vectors at the two cell-centers on either side of the cell
face, i.e. the coefficients�� in the polynomial

� � �� � ��� � ���
� � ���

�

can then be computed. For example, if� described the coordinate along the line connecting the
nodes P and E, see Fig. 5, we can obtain the four coefficients by fitting the polynomial to��
and�� as well as setting:�

��

��

�
�

� �� � ����� � i� 	

wherei� is the unit vector in the direction of�, and using an analogous expression at node E.
Since the convective flux through each cell face depends on 15 nodal values when the above

approximation is used (on structured grids), the implicit treatment of all terms would result in an
algebraic equation at each CV with 25 unknowns (in 2D). The solution of the resulting equation
system for the whole solution domain would thus become prohibitively expensive. One can,
however, argue that the flux calculated using the midpoint rule and an interpolation which uses
the nearest neighbors only (from CVs which have common faces with the CV around node P)
will not be much different from the flux calculated using a higher-order method, unless the
variation of the variables is highly non-linear. Also, if one is solving a non-linear equation or
a coupled equation system (which the Navier-Stokes equations are), one is forced to use an
iterative solution strategy (see below). It then turns out to be both simpler and numerically
more efficient to calculate the higher-order flux approximation explicitly (using values from
previous iteration) and combine it with an implicit approximation which is numerically stable
and uses only nearest neighbors. This leads to another version of the earlier describeddeferred-
correction approach (first suggested for this purpose by Khosla and Rubin, 1972):

 � �  �
� �


 �
� �  �

�

�	
�
� (41)

Here, �
� stands for an approximation by a lower-order scheme (midpoint rule integration with

first-order UDS) and �
� is the higher-order approximation (either midpoint rule or Simpson’s

rule integration with higher-order interpolation). The term in brackets is evaluated explicitly
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using values from the previous iteration, which is indicated by the superscript ‘old’. It is nor-
mally relatively small compared to the implicit part, so that its explicit treatment does not slow
down the convergence significantly. The term in brackets may also be multiplied by a factor
� � � � �, thus enabling the blending of the two schemes.

It is important that the explicitly computed part of the flux is minimized; one should there-
fore not simply compute explicitly contributions of more distant nodes, but always try to achieve
that the implicit part of the flux is itself a consistent approximation.

The convective fluxes are non-linear. To solve the equation system, linearization is neces-
sary. In most applications the simple Picard iteration is appropriate enough. For example, in
the generic conservation equation for property�, we have:

 �
� �

�
��
��v � n �� � �

�
��
�v � n �� � �� ��� � (42)

Here a mid-step is introduced in which the mean value of� is first taken out of the integral;
the integral of the remaining linear term, denoted�� and representing the mass flux, is calcu-
lated explicitly using values from previous iteration and treated as a known quantity. When the
midpoint-rule approximation is used (as in the above equation), the mass flux is expressed as
��� � ��%����, where%� is the velocity component normal to the surface and�� is the area of

the face. To complete the formulation, the mean value of� is replaced by the midpoint rule
approximation, i.e. by��, which needs to be further approximated by interpolating the neigh-
boring nodal values. In higher-order approximations, the mean-value approximation involves
values at more than one location, like in the above-mentioned Simpson’s rule in 2D. Both the
mass flux and the mean value of� have to be approximated by higher-order approximations;
see Lilek and Peri´c (1995) for an example of a 4th-order scheme.

Differentiation Schemes

In order to calculate the diffusive flux through a cell face using midpoint rule approximation,
one needs the gradient of� at the cell-face center:

 �
� �

�
��
��� � n �� � ���� � n�� �� �

�
�
��

��

�
�

�� � ��
�
�

�
��

�
�

�
�

��
� � (43)

When the line connecting two neighbor CV-centers is orthogonal to the cell face (which is true
not only for Cartesian grids, but also for curvilinear orthogonal body-fitted grids and grids made
of equilateral triangles), the normal derivative can be easily approximated using second-order
central differences:�

��

��

�
�

� �� � ��
�r� � r�� � (44)

When the line connecting neighbor nodes is not orthogonal to the cell face, the computation of
the diffusive flux is more complicated.

On structured grids, one can use coordinate transformation to express either the derivatives
with respect to Cartesian coordinates, or the derivative with respect to the normal�, through
derivatives in the direction of local coordinates aligned with grid lines. Central differences can
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then be applied to the derivatives along local coordinates. For the coordinate along the line
connecting cell centers, the approximation given in Eq. (44) is obtained at cell-face center;
for other two coordinates, the derivatives are evaluated at cell centers and interpolated to the
cell face. These so calledcross-derivatives are usually treated explicitly in order to keep the
computational molecule limited to nearest neighbors.

Higher-order derivatives can be obtained by fitting a polynomial of a higher degree through
a certain number of points along grid lines. For example, from a cubic polynomial passed
through four nodes (two on either side of the cell face), one obtains on a uniform grid:�

��

��

�
�

�
���� � ���� � �� � ���

����
� (45)

On unstructured grids with arbitrary CVs, the above approach is not practical. If the spatial
variation of� in the vicinity of the location ‘e’ is described by an analytical shape function,
then the derivatives with respect to Cartesian coordinates are easily calculated. Another simple
approximation which is up to second-order accurate can be obtained using Gauss’ theorem
without using complicated shape functions. The derivative at CV center can be evaluated using
midpoint-rule approximation of the volume integral as follows:

�
��

�
�

�
�

�

�
�

��

�
�
��

��
� (46)

Since the derivative����
� can be interpreted as divergence of the vector� i�, one can transform
the volume integral in the above equation into a surface integral:�

�

��

�
�
�� �

�
�
� i� � n �� ��

�

���
�
� 	 ! � 
	 �	�	 �	 � � � (47)

Therefore, in order to calculate the gradient of� with respect to
 at the CV center, one needs
to sum the products of�� with the
-component of the surface vector��n at all CV faces and
divide this sum with CV volume:�

��

�
�

�
�

�
�

� ���
�
�

��
� (48)

As �� one can use those values used to calculate the convective flux. In the case of Cartesian
grids, this approximation leads to the usual CDS-expression for the first derivative at the cell
center. The derivatives calculated this way at CV centers can now be interpolated to cell faces
and the diffusive flux can be calculated according to Eq. (43).

Another second-order approximation, which is also applicable to arbitrary grids, involves
definition of auxiliary nodes P� and E� on the normal passing through the cell face center, see
Fig. 5. The values of� at these auxiliary nodes can be expressed by means of Eq. (36) as
follows:

��� � �� � ����� � �r�� � r�� � ��� � �� � ����� � �r�� � r�� � (49)

The derivative with respect to�, which is the only one needed to calculate the diffusive flux,
see Eq. (43), can now be approximated by a central difference using Eq. (49) as:�

��

��

�
�

� �� � ��
�r�� � r�� � �

�
����� � �r�� � r��� ����� � �r�� � r��

�r�� � r���

�	
�
� (50)
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The first term on the right-hand side can be treated implicitly while the second term can be
calculated using values from previous iteration. Note that�r�� � r��� � �r� � r�� � n.

Another second-order approximation on any grid can be obtained by assuming linear varia-
tion of the variable in the vicinity of the node P and using central-difference approximations of
derivatives along lines which connect the node P with neighbor nodes, e.g.:

����� � �r� � r�� � �� � �� �

There are as many such expressions as there are neighbors of node P (six in the case of a
hexahedral grid); in all of them, the gradient of� at node P is the only unknown. Thus, there are
more equations than unknowns (three components of the gradient vector) so the least-squares
method has to be used to compute the gradient; see Demirdˇzić and Muzaferija (1995) for more
details.

The cell-center derivatives can be interpolated to the cell-face centers using the same inter-
polation technique as used for convective terms. However, oscillatory solutions may develop in
this case; see Ferziger and Peri´c (2002) for detailed discussion. Muzaferija (1994) introduced
an effective approach which both avoids de-coupling problems and acts as a deferred correction,
preserving the simplicity of the coefficient matrix and its diagonal dominance, e.g. for the face
‘e’:

����� � n� � �� � ��
�r� � r�� � ����

	
�

� �
�

r� � r�
�r� � r�� � n�

�
� (51)

The underlined term is calculated using prevailing values of the variables and treated as another
deferred correction, see above. If the line connecting nodes P and E is orthogonal to the cell
face, the underlined term is zero (since the vectorsr� � r� andn� are then co-linear) and the
approximation reduces to the standard CDS-expression. The explicitly calculated gradient at
the cell face (denoted by over-bar in the above expression and obtained by interpolation) only
accounts for the cross-derivative. The additional diffusive terms in the momentum equations
can be obtained by interpolating the cell-center values, as they cause no problems.

Approximations of the diffusive flux of the order higher than second are difficult to develop
for arbitrary CVs. For structured, and especially for orthogonal grids, this task is much easier,
but the applicability of the solution method is then limited to geometries which allow generation
of such grids.

One should also note that the implementation of turbulence models, especially the more so-
phisticated ones, requires that the first – and sometimes also the second – derivatives of velocity
components be calculated at both CV center and cell faces. The above approximations are ap-
plicable to arbitrary CVs and involves no coordinate transformation. This is a very attractive
feature, since many turbulence models involve complex equations even when written in Carte-
sian coordinates; their transformation in non-orthogonal coordinate systems is a painstaking
procedure, and the result is not easy to check. The possibility to avoid coordinate transforma-
tion should therefore be used wherever available.
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Boundary conditions

Some faces of next-to-boundary CVs lie in the boundary surface enclosing the solution domain.
The surface integrals over boundary faces – which represent convective and diffusive fluxes
through the solution domain boundary – must either be known (if flux boundary conditions are
provided) or be expressed in terms of variable values at the boundary and in the interior. Since
there may be only as many unknowns as there are CVs, the cell-face values of variables and their
gradient – if unknown – must be approximated using extrapolation and one-sided differences.

Usually, convective fluxes are prescribed at inlet. They are zero at impermeable walls and
symmetry planes and are usually approximated by upwind schemes at outlet boundaries. Diffu-
sive fluxes are sometimes specified at solid surfaces (e.g., specified heat flux); in this case, they
are used directly and, if the wall value of the variable is required, an approximation for the flux
in terms of nodal variable values can be used to find it. More often, the value of the variable
is prescribed; in this case, the diffusive flux is evaluated using a one-sided approximation for
the normal gradient. For a more detailed description of the various boundary conditions, see
Ferziger and Peri´c (2002).

Each CV provides one algebraic equation of the form given by Eq. (28), which represents a
linearized and discretized approximation of the conservation equation. It should be noted that,
in any conservative method, the following relation holds:

�� � ��



�
 �
�
�

��� 	 (52)

where� runs over neighbor nodes used in the computational molecule and! runs over all cell
faces. For incompressible flows,

�
� ��� � � holds.

The methods used to solve the system of algebraic equations, Eq. (29), will be described
below.

2.3 Finite-Element Methods

The finite element (FE) methods are similar to FV methods in many ways. The principal differ-
ences are twofold:

� The solution domain is subdivided into a finite number of elements (which may look the
same as CVs in FV methods), usually by an unstructured grid. The computational nodes
are located at the corners and possibly also at other locations at the surface or within the
element. Depending on the number of nodes per element, a suitable shape function is
defined which describes the approximated variation of the variable over the element.

� The algebraic equation system from which the unknown nodal values of the variable are
obtained can be constructed by different methods. One variant multiplies the equations
by aweight function, integrates over the entire domain, and requires that the derivative of
the integral with respect to each nodal value be zero.

These methods involve more mathematics than the FV methods; they are also more suitable for
the mathematical analysis of the properties of the numerical solution method and are therefore
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preferred by mathematicians and more mathematically-minded engineers to FV methods. A
vast literature exists on FE methods, mostly because they are primarily used in the structural
analysis in solid mechanics. Details on FE methods for fluid dynamics can be found in many
books, e.g. Oden (1972), Chung (1978), Baker (1983), Girault and Raviart (1986), and Fletcher
(1991).
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Fig. 6: A control volume in a CVFEM method

A hybrid method calledcontrol-volume-based finite element method (CVFEM) deserves
also to be mentioned. In it, the elements (three-node triangles in 2D) are used to describe the
variation of the variables (linear shape functions of the form� � �
 � '� � (). The control
volumes are formed around each node by joining the centroids of the elements, cf. Fig. 6. The
conservation equations in integral form are applied to these CVs in exactly the same way as
described above for the FV method. The surface and volume integrals are calculatedelement-
wise. For the CV shown in Fig. 6, the CV surface consists of 10 sub-faces, while its volume
consists of five sub-volumes, since the node P is common to five elements. Since the variation
of � over an element is prescribed in the form of an analytical function, both surface and volume
integrals can easily be calculated (i.e. expressed through the unknown values of� at node P and
its nearest neighbors, N� to N� in Fig. 6). Even when the grid consists of triangles only, the
number of neighbors may vary from one CV to another, leading to an irregular structure of the
coefficient matrix. This restricts the range of solvers which can be used; se below.

This approach was followed – although only in 2D and using second order approximations –
by Baliga and Patankar (1983), Schneider and Raw (1987), Masson et al. (1994), Baliga (1997),
and others. Its extension to 3D is straightforward, but more complicated.

2.4 Spectral and Spectral-Element Methods

Spectral methods are usually used for specialized applications, especially for LES and DNS
of flows in simple geometries. No attempt will be made to describe them here in any more
detail but to say that they use Fourier series or generalizations of them to evaluate the spatial
derivatives. The grids are uniformly spaced, and the method is especially suited for problems
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which allow for periodic boundary conditions to be applied at the opposite boundaries.
The discretization error decreases in spectral methods exponentially with the number of grid

points� , making them very accurate if� is sufficiently large (which, as is usually the case
with the descriptorsufficient, depends on the problem being solved and can not be accurately
determined a priori). Interested reader may refer to the book by Canuto et al. (1987) for further
details.

The spectral element methods do away with the requirement that the grid must be uniform
and structured (conforming), while trying to retain the spectral accuracy. They can use locally
refined (non-conforming) grids and are more flexible regarding the geometrical complexity of
problems that can be solved than the classical spectral method; see Henderson and Karniadakis
(1995) for an example of such a method.

These methods have so far been mostly used to solve the Navier-Stokes equations; they are
mathematically more complicated than other methods presented so far and are not so easy to
extend to problems which involve additional (coupled) phenomena, which is the reason for their
use in a limited range of applications.

3 METHODS FOR INTEGRATION IN TIME

The methods for integration in time can be grouped into two major categories:

� Explicit methods, which calculate the solution at the new time step by using only the
variable values from previous time steps;

� Implicit methods, which use in the evaluation of the integral the unknown new values and
thus require the solution of an equation system, see Eq. (29).

The explicit methods are thus much simpler and they require less storage and computing time
per time step than the implicit methods. However, the explicit methods suffer from instability
if the time step is larger than a certain limit. Thus, they are not suitable for problems which do
not require (on the grounds of accuracy) small time steps, like periodic flows or time-marching
towards steady solutions.

The integration in time can be best explained by re-writing the conservation equations (1)
and (2) in the following form:

�)

��
�  	 (53)

where both) and are functions of time. The meaning of these two quantities is obvious from
Eqs. (1) and (2). At an initial time level, the solution must be known (the initial condition), i.e.
)���� � )�. At the time�� � ��, the solution is found by integration. It serves than as the
initial solution for the integration over the next time step, and so on. In general, to advance the
solution from time�� to time���� � �� ��� at a given point in space, one can write:
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In the following,)��� and ��� will be used to denote the values of) and at the time level
����, assuming that also depends on).

As shown in the above equation, the integral on the left-hand side is easy to evaluate, but the
integral on the right-hand side requires an approximation. Many possibilities exist, both explicit
and implicit. Basically one has to assume a certain variation of over the time step�� and
integrate it.

If one uses only the values at the ends of the integration interval, the so calledtwo-level
methods are obtained. They are described below.

3.1 Two-Level Methods

The simplest approximation of the time integral is obtained by assuming a constant value of 

over��. If the old (known) value is used, one obtains theexplicit Euler method:

)��� � )� �  ��� � (55)

Since all quantities on the right-hand side are known, the new value is directly obtained – hence
the nameexplicit method.

If, on the other hand, the new value is used, one has theimplicit Euler method:

)��� � )� �  ����� � (56)

Since ��� on the right-hand side depends on)��� (not only at the given point in space, but also
in the surroundings), explicit calculation of)��� is not possible. ��� involves the convective
and diffusive fluxes at the new time level, as well as the source terms (see Eq. (2)); when these
terms are discretized, an algebraic equation results at each grid point. Thus, to calculate the new
value of), the equation system (29) must be solved. The main diagonal element of the matrix
� receives a contribution from the unsteady term, and the known old value contributes to the
source vectorQ. One usually divides the whole equation by��, which than attains the form of
the steady-state equation extended by an approximation of the time-derivative:
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In the case of FV methods, the Eq. (28) can then be re-cast in the following form:�
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Note that, since the conservation equations are in general non-linear, the matrix elements also
depend on the new solution.

As can be guessed from the kind of approximation used, both of these Euler methods are
first-order accurate. Although the approximation of the time derivative in Eq. (57) looks like a
central-difference approximation, it is actually a backward-difference relative to the right-hand
side. The approximation in Eq. (55) represents a forward-difference relative to the right-hand
side.
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The implicit Euler method, owing to its stability (there is virtually no limit on the time step
that can be used from the stability point of view), is often used, especially when steady-state
solutions are sought. The explicit Euler method is stable only when

���

������
� �

�
	 (59)

where�� is the mesh spacing in a particular direction. When the mesh spacing is halved, the
time step must be reduced by a factor of four to satisfy the above criterion. This is too restrictive
and owing to the first-order accuracy, the method is of little use.

One of the most often used two-level approximations, which is second-order accurate, is
based on the trapezoid rule:

)��� � )� �
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If written in the form of Eq. (57), the equation reveals that the right-hand side is an approxima-
tion of the value at the center of the interval by means of linear interpolation, and the left-hand
side would then represent the central-difference approximation with respect to the center of the
interval. The method is implicit and requires the solution of an equation system. However, the
accuracy is of second order and the computing effort and storage requirement are hardly any
larger than for the implicit Euler scheme. The method is known under the nameCrank-Nicolson
scheme and is the only two-level method of second order. It should be noted that, although the
solution at only one old level needs to be stored, one usually has to store the contribution of old
fluxes and source terms, �, since these form a part of the final source term in the algebraic
equation which does not change during iterations within the time step.

3.2 Multi-Level Methods

Two-level methods cannot have order higher than second; higher-order methods must use in-
formation at more time levels. The additional data may be at points at which the solution has
already been computed (past data) or at points between�� and���� which are used strictly for
computational convenience; the former are calledmultipoint methods, the latter,Runge-Kutta
methods.

The methods derived by fitting a polynomial to the derivative at a number of points in time
are calledAdams methods. If the derivative at���� is not used, explicit orAdams-Bashforth
methods are obtained. The first-order method is explicit Euler; the second-order one is:

)��� � )� �
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If data at���� is included in the interpolation polynomial, implicit orAdams-Moulton methods
are obtained. The first-order method is implicit Euler while the second-order one is trapezoid
rule. A commonly used method is a combination of the (� � �)st-order Adams-Bashforth
method as a predictor and the�th-order Adams-Moulton method as a corrector.
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A fully implicit scheme of second-order can be obtained by integrating over an interval
centered about���� and using the mean-value approach:

��������
�������

�)

��
�� � ��

�
�)

��

����

�  ����� � (62)

The derivative at���� is approximated by fitting a quadratic polynomial through variable values
at three time levels:����, �� and����. For a constant time step the following approximation is
obtained:�
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This scheme is easy to implement as it differs from the first-order implicit Euler scheme only in
that an additional term involving the value at���� is added:

)��� �
�

	
)� � �

	
)��� �

�

	
 ����� � (64)

In the case of FV methods, the Eq. (28) obtains the following form when this scheme is used:�
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If the values of�� at old time levels are also considered as neighbors in the computational
molecule, then obviously the relation (52) still holds.

This scheme has a temporal truncation error which is four times as large as in the Crank-
Nicolson method. However, the differences between solutions obtained by these two methods
in practical applications are very small; the three-time-level scheme is less prone to oscillations
and somewhat easier to implement than the Crank-Nicolson scheme, which explains why it is
often used.

The attractiveness of this scheme also lies in the fact that it allows re-gridding between time
steps (e.g. when flows around moving bodies are computed). Since surface and volume integrals
need to be computed only at the new time level, the shape and the number of CVs at previous
time levels is irrelevant; one only needs to interpolate the old solutions to the computational
nodes of the new grid in order to be able to compute the local time derivative according to Eq.
(63). The same is true for the implicit Euler scheme, but since it is only first-order accurate, this
feature does not improve its value for the simulation of unsteady flows.

Multipoint methods using more than three time levels are easy to construct and program and
require only one evaluation of the derivative per time step, making them relatively cheap. Their
principal disadvantage is that they cannot be started solely with data at the initial time point; one
has to use another method to get started. In periodic flows, the initial solution does not affect
the final periodic behavior so one may simply start with implicit Euler. Another possibility is
to use very small time steps initially and a lower-order method, and than gradually increase the
time step size and switch to the higher-order method as more data is generated. The multipoint
methods can easily be expressed as a blend of a lower-order method plus a correction (this can
be done in a nested way); thus, one can easily switch from one method to another.

26



The difficulties in starting multipoint methods can be avoided by using points between��
and ����, yielding Runge-Kutta methods. Second-order Runge-Kutta methods consist of at
least two steps; the simplest one uses a half-step Euler predictor followed by a midpoint-rule
corrector:
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This method is easy to use and is self-starting. Runge-Kutta methods of higher order have been
developed; the most popular one is of fourth order. The first two steps of this method use an
explicit Euler predictor and an implicit Euler corrector at��� �

�
. This is followed by a midpoint

rule predictor for the full step and a Simpson’s rule final corrector that gives the method its
fourth order. The method is:
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By using methods of different order, it is possible to estimate errors and to construct methods
with automatic error control.

The major problem with Runge-Kutta methods is that an�th-order method requires the
derivative (i.e., surface and volume integrals representing the convective and diffusive fluxes
and source terms) to be evaluated at least� times per time step, making it expensive. For a
given order, Runge-Kutta methods are more accurate and more stable than multipoint methods.

Methods for solving RANS-equations – especially the general-purpose ones – usually use
implicit time-integration schemes (implicit Euler or second-order methods like Crank-Nicolson
or three-level method). Methods for DNS and LES often use higher-order multi-level methods
(third or fourth order).

4 SOLUTION OF ALGEBRAIC EQUATION SYSTEMS

Irrespective of which method is used for integration in space and time, one ends up eventually
with an algebraic equation system of the form (29) – even in explicit methods, where the calcu-
lation of pressure requires that an equation system be solved. Since the conservation equations
are in general non-linear, iterative solution methods are necessary. One could still use direct
methods to solve the linear equation systems, but since the matrix� and the source vectorQ
are not final, an accurate solution of the linearized equations is not necessary. Thus, iterative
solvers are preferred for the linear equation systems as well.
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An iterative solver starts with an initial solution�� and tries to improve it by iterating. When
the initial solution is inserted into the equation (29), the equation is not satisfied and we obtain
theresidual vector R�; at any iteration level� one can write:

��� � Q� R� � (72)

By subtracting this equation from the one in which�� is replaced by the exact solution�, one
obtains an equation which expresses the link between the residual anditeration error #� �

�� ��:

��� � R� � (73)

The purpose of the iteration procedure is to drive the residual to zero and thus also the iteration
error.

If the inversion of the original matrix� were easy, there would be no need to iterate on
the linear equation system; however, since the inversion of� is too expensive, one usually
constructs an iterative procedure by choosing aniteration matrix * (which is easy to invert)
and using it to drive the residual to zero:

*����� � ��� � Q� ��� � (74)

If the iterations converge the left-hand side becomes zero and the original equation is satisfied.
This equation can be re-written as:

*Æ� � R� 	 (75)

whereÆ� � ���� � �� is the correction to the solution at the previous iteration level. One
usually solves the system (75) instead of the original system (29) and then updates the solution
and calculates the new residual vector.

For an iterative method to be effective, solving the system (75) must be cheap and the
method must converge rapidly. The first requirement means that* must be easy to invert. The
simplest iterative solver, theJacobi method, uses the main diagonal of� as* ; the Gauss-Seidel
method uses the triangular matrix made of the main diagonal and all the elements below it from
�. In both cases the inversion of* is trivial.

For rapid convergence,* should be a good approximation to�, i.e. �* � ��� should
be small in some sense. For the solution of linear equation systems resulting from discretized
conservation equations, one can construct efficient methods based onincomplete lower-upper
decomposition or ILU-methods. The idea is to find twosparse triangular matrices, lower+ and
upper� , which have the same sparsity as the original matrix�, and use their product+� as
the iteration matrix* , i.e.* � +� . Since the product of two such triangular matrices in
general has more non-zero elements that the matrix�, the decomposition is not exact, hence
the ILU-name. There are many variants of these methods. The most popular ones use the
idea introduced by Stone (1968), which uses the smoothness property of solutions of transport
equations to reduce�* � ���. In addition to the original Stone’s description of the method
for five-diagonal matrices (2D), variants for nine-diagonal matrices (2D, non-orthogonal grid;
see e.g. Schneider and Zedan, 1981 and Peri´c, 1987) and seven-diagonal matrices (3D, compact
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computational molecule with nearest neighbors only) have been published. Vectorized version
of the latter has been published by Leister and Peri´c (1994).

The ILU-type methods mentioned above are effective, both on their own and as smoothers
in multigrid solvers. However, they are only applicable to structured and block-structured grids.
When the grid is unstructured, and especially if the computational molecule is allowed to vary
(i.e. the number of neighbors in the algebraic equation at any node is not the same), one has
to use more general solvers like those based onconjugate gradient methods. Alternatively,
one can use a multigrid method with simple smoothers like the Gauss-Seidel method which
is applicable to any grid. However, these methods may not be robust as an anisotropic grid
may affect the convergence adversely. The methods from the conjugate gradient (CG) family
are robust, although more expensive per iteration than the ILU-type solvers. When an accurate
solution of a linear equation system is required, CG-type methods belong to the most efficient
ones, but since in some FD and FV methods the linear equation systems need not be solved very
accurately, ILU-type methods may turn out to be more cost-effective on structured grids.

Space does not allow detailed description of particular solvers here; some are described in
the book by Ferziger and Peri´c (2002), and the interested reader is referred for details to the
original references: for CGSTAB-solver, see Van den Vorst and Sonneveld (1990) and Van den
Vorst (1992), and for GMRES-solver, see Saad and Schultz (1986).

All of these solvers require more iterations to converge to a prescribed tolerance as the
number of unknowns increases. The increase is usually linear for the better solvers, but since
each iteration requires more computing time as the grid is refined, the computing time increases
over-proportionally (typically quadratically). Multigrid techniques can be used to obtain nearly
constant number of iterations irrespective of the grid fineness, so that computing time increases
only linearly with grid refinement. Multigrid methods can be viewed as acceleration techniques
and can be used in conjunction with any of the aforementioned solvers; experience showed that
ILU-type solvers profit especially well from multigrid acceleration.

Multigrid methods can be subdivided into geometric and algebraic ones; the former cre-
ate coarse grids by joining CVs of the finer grid (FV-methods) or by skipping some points
(FD-methods), while the latter do not create specific coarse grids but deduce the corresponding
coarse-grid matrix from algebraic manipulations of the fine-grid matrix (based on properties of
the matrix). A vast literature exists on multigrid methods, both for linear and non-linear equa-
tion systems; here only the book by Hackbush (1985) will be mentioned.

5 COMPUTATION OF INCOMPRESSIBLE FLOWS

We have dealt with the discretization of a generic conservation equation. The same principles
apply to the momentum and continuity equations as well. The difference is that the momentum
equations have few more terms, and that there is a special relation between the momentum
equations and the continuity equation. The integral form of the momentum equation for theith
Cartesian component is:
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where�� is the component of the velocity vectorv in the direction of the�th Cartesian coordinate

�, i� is the�th Cartesian unit vector,, is the static pressure,'� is the�th component of the body
force, and-�� is the viscous part of the stress tensor, defined for incompressible Newtonian
fluids as:
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where. is the dynamic viscosity.
The continuity equation reads:�

�
�v � n �� � � � (78)

The integrals in these equations can be approximated using the same approximations de-
scribed for the similar terms of the generic conservation equation. Although there are over 70
forms of the momentum equation, depending on the base vectors and coordinates used (covari-
ant, contravariant, etc.), the form shown above is the most often used one. The reason is that the
use of the Cartesian base vectors leads to the simplest, fully conservative form of the component
equations. If, on the other hand, one uses the covariant or contravariant components and gen-
eral, non-orthogonal coordinates, the equations contain additional terms which act as apparent
forces and account for the change of velocity components due to changes of coordinates. These
terms are non-conservative and involve the so calledcurvature terms or Christoffel symbols,
which require the computation of second derivatives along grid lines. Since these terms are
sensitive to grid smoothness and difficult to calculate numerically, they are best avoided. For-
tunately, the simplest form of the equations is also the easiest to handle numerically, so in what
follows only the Cartesian components and the equations in the above form will be considered.

In the discussion below we shall use the symbolic notation as the same approach is usually
applicable to both FD and FV methods; only where necessary the expressions specific to one
method will be used.

5.1 Choice of Variable Arrangement

An important issue when solving the fluid flow problems numerically is the arrangement of
variables on the numerical grid. In addition to the natural arrangement in which all the variables
share the same location (grid nodes in FD and CV centers in FV methods), there are many other
possibilities, some of which have found wide-spread use.

For Cartesian grids, the staggered arrangement introduced by Harlow and Welsh (1967) is
both popular and effective. In this arrangement, the
-component velocity,��, is stored at points
midway between the pressure nodes in
-direction and the�-component velocity,��, is stored
at points midway between the pressure nodes in�-direction. On this grid each equation has a
different set of control volumes. The CVs are selected so that pressure nodes which ‘drive’ one
velocity component are located at the faces of its control volume; the pressure node resides then
at the center of the continuity control volume, and the velocities are at its faces. Several terms
that require interpolation with the colocated arrangement can be calculated (to second-order
accuracy) without interpolation on the staggered grid. Another advantage of this arrangement
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is the strong coupling between the velocity and pressure, preventing oscillations which are the
major problem of the colocated arrangement. The staggered grid approach does not extend
easily to arbitrary grids, which is its main drawback; see below.

When all variables are stored at the same location, such a grid is calledcolocated. One
needs to define only one set of grid nodes or CVs. Since many terms in the various equations are
nearly identical, the number of coefficients that must be computed and stored is minimized and
the programming is simplified, as is the use of multigrid procedures. The colocated arrangement
was out of favor for a long time for incompressible flow computation due to the difficulties with
pressure-velocity coupling; obvious discretization procedures led to oscillations in pressure.
Due to the success of the staggered arrangement, little effort was invested in colocated grids
until problems in complex geometries began to be tackled, requiring the use of non-orthogonal
grids. An effective way of coupling pressure and velocity on colocated grids was presented by
Rhie and Chow (1983). Many methods based on that idea are currently in use. The methods
described below will refer to this arrangement, although most of them are equally applicable to
staggered grid arrangements as well.

Perić et al. (1988) compared staggered and colocated grid methods for flows in simple ge-
ometries using Cartesian grids. They found that both the differences in the solutions on similar
grids and in the convergence properties of the solution method were relatively small. Ferziger
and Peri´c (2002) also compared the two arrangements and demonstrated that the differences in
solutions were much smaller than the discretization errors (by a factor of 20 in the flows stud-
ied). Also, the numbers of iterations required to converge the iterations to the same tolerance
was almost identical for several grids of different fineness. Although some authors reported
different observations in such comparisons (with appreciable differences), there is no reason to
believe that the results should be much different when the same kind of approximations is used
on the same grid.

Velocities

Pressure

c)a) b)

Fig. 7: Arrangements of variables in a FV method: (a) staggered with contravariant velocity components,

(b) staggered with Cartesian velocity components, and (c) colocated with Cartesian velocity components.

When the grid is non-orthogonal, only the grid-oriented (covariant or contravariant) velocity
components can be used in a staggered arrangement without the occurrence of problems with
pressure-velocity-coupling. However, since the conservation equations then lose their strong-
conservation form and since the discretization and solution of such equations is difficult, this
arrangement is not recommended. It was used by Demirdˇzić et al. (1987), among others. If

31



Cartesian velocity components are staggered on a non-orthogonal grid, they may become par-
allel to the cell faces and thus may not contribute to the mass flux there. Also, there is no
longer a pair of pressure nodes ‘driving’ the velocity component, so oscillations may occur.
The measures to avoid these problems are no simpler than those used on colocated grids, so
there is no advantage in staggering the storage locations. Several other staggered arrangements
were proposed by various authors (e.g. storing velocities at corners of pressure cells, or stor-
ing all Cartesian velocity components at all faces of a pressure-CV), but these have not found
wide-spread use.

The simplest arrangement is the colocated one, see Fig. 7. The mass fluxes through the
CV faces, which are needed to approximate the convective fluxes in all equations, can (to a
second order approximation) be calculated by interpolating the values from two cell centers on
either side of the face, irrespective of whether the grid is orthogonal or not. Since an effective
coupling of velocities and pressure is possible and has been used to construct solution methods
up to fourth order (see Lilek and Peri´c, 1995), only this arrangement will be considered below.

The most important issue in computing incompressible flows is the calculation of pressure.
The construction of an iterative solution method which provides velocity and pressure fields
which satisfy both the momentum equations and the continuity equation is the subject of the
following sections.

5.2 The Pressure Equation

One can derive an equation for pressure by taking the divergence of the vector form of the
momentum equation, leading to:
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The differential form of this equation in Cartesian coordinates reads:
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For the case of constant density and viscosity, this equation becomes much simpler; the viscous
and unsteady terms disappear by virtue of the continuity equation leaving:
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One could now set up the following iterative solution procedure:

1. Discretize and solve momentum equations in turn, using pressure values from the previ-
ous iteration;

2. Discretize and solve the pressure equation, using velocities obtained in the previous step;

3. Repeat these steps until changes in velocity and pressure fields become negligible.
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The pressure equation can be discretized and solved using any of the approaches described for
the generic conservation equation. It is important to note that the right-hand side of the pressure
equation represents the sum of derivatives of the terms from the momentum equations; these
must be approximated in a manner consistent with their treatment in the equations they are
derived from. The second derivative of pressure on the left-hand side has been intentionally
written in the form shown in Eq. (81): the derivative inside parenthesis stems from the gradient
operator on pressure in the momentum equation and it has to be discretized in the same way
here; the outer derivative stems from the divergence operator and should be approximated in
the way the continuity equation is discretized. These two approximations need not be the same,
but it is essential that the consistency issues mentioned above are observed. Note also that
the outer derivatives on both sides of the above equation must be approximated in the same
way, since they stem from the same divergence operator applied to the momentum equation
and representing the continuity equation constraint. If the left-hand side is discretized using an
approximation for the second derivative (the Laplacean) which does not guarantee the above
consistency requirement, problems with mass conservation are encountered. The continuity
equation is not explicitly solved – it is used to derive the pressure equation and the only way to
enforce the mass conservation is through obeying the above rules regarding the discretization
of the pressure equation.

The pressure equation of the above form is seldom used in numerical methods for solving
the Navier-Stokes equations; it is used to calculate pressure when the velocity field is known,
like when the streamfunction-vorticity method is used to calculate it. However, these methods
will not be described here as they are difficult to implement in three dimensions. The most
often used methods of computing the pressure in incompressible flows is based on deriving a
discrete equation for pressure or pressure-correction from the discretized form of the continuity
equation or by using the so calledprojection methods; these are described below.

5.2 SIMPLE and Related Methods

Consider the momentum equations written in symbolic difference form (the choice of the ap-
proximations to the spatial derivatives is not important for the description of the steps leading
to an equation for pressure):
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whereÆ�Æ
 represents a discretized spatial derivative (which could represent a different ap-
proximation in each term) and�� is shorthand notation for the convective, viscous, and source
terms.

For simplicity, assume that the Eq. (82) is solved using the explicit Euler method for time
advancement. We then have:

�����
��� � �����

� � ��

�
��

� �
Æ,�

Æ
�

�
� (83)

The velocity field at the new time step, which can be obtained from this equation once the
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pressure is known, does not necessarily satisfy the continuity equation:
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The mass conservation has to be enforced by taking the numerical divergence (using the numer-
ical operator used to approximate the continuity equation) of Eq. (83) leading to:
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The first term on the left-hand side is the divergence of the new velocity field, which is required
to be zero. The second term is the divergence of the velocity field at time step�, which was
forced to be zero in the previous time step. Setting the right-hand side equal to zero leads to the
discrete Poisson equation for the pressure,�:
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Note that the operatorÆ�Æ
� outside the parentheses is the divergence operator inherited from
the continuity equation, whileÆ, �Æ
� is the pressure gradient from the momentum equations.
If the pressure,� satisfies this discrete Poisson equation, the velocity field at time step� � �

calculated from Eq. (83) will be divergence-free (in terms of the discrete divergence operator).
The time step to which this pressure belongs is arbitrary; one can use,��� in place of,� without
changing anything in the algorithm.

This procedure for time-advancing the Navier-Stokes equations is:

� Start with a velocity field��� at time�� which satisfies both the momentum and continuity
equations.

� Compute the convective, viscous, and source terms (expressed jointly above as� �
� ) and

take the divergence of the result.

� Solve the Poisson equation for the pressure,�.

� Compute the velocity field at the new time step from Eq. (83). It satisfies both the mo-
mentum and continuity equations.

� Advance to the next time step.

Methods similar to this are used when explicit time integration schemes are employed, the
major difference being that the schemes of higher order are used rather than the explicit Euler.

When steady flows are computed, implicit time integration methods with large time steps
(or equivalents of them) are used. The discretized equations to be solved at the new time step
are the non-linear algebraic equation systems which may be written as:
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where ‘P’ is the index of a velocity node, and the sum is over the neighbor points (how many
neighbor nodes are involved depends on the approximations of surface integrals in the momen-
tum equations; usually only the nearest neighbors are treated implicitly). The source term�

contains terms dependent on��� , body forces and, perhaps, terms which depend on����� and
are treated by a kind of deferred correction. The pressure term is written symbolically to em-
phasize the independence of the solution method from the spatial discretization approximation.
The discretization of the spatial derivatives may be of any type or order.

Due to non-linearity and coupling, Eqs. (87) cannot be solved by a direct method; the coeffi-
cients�, and possibly the source term, depend on the unknown����� . An iterative method is the
only choice. For unsteady flows, iteration must be continued until the equations are accurately
satisfied. For steady flows, the tolerance can be more generous; the only requirement is that the
steady equations are satisfied at the end, so one often performs just one iteration per time step.
An alternative is to use an infinite time step and discard the unsteady term altogether; one then
has to use under-relaxation methods to ensure convergence, which can be interpreted as a kind
of time stepping with time steps which vary from point to point; see Patankar (1980) or Ferziger
and Peri´c (2002) for details.

The solution process is similar to the one described above. At each time step, one first
improves the velocities by solving the linearized momentum equations. Then, an equation
for pressure or pressure correction is solved in order to correct the pressure and velocities to
enforce mass conservation. These steps are repeated until all equations are satisfied to within
an acceptable tolerance; one can then proceed to the next time step. The above steps which
are repeated within each time step are calledouter iterations, as distinguished from theinner
iterations or solver iterations used to solve the systems of linearized equations. The index for
the time step��� shall be dropped hereafter and an outer iteration index� will be introduced;
��� thus represents the current estimate (after the�th outer iteration) of the new time step
solution����� . At the beginning of each outer iteration, the terms on the right-hand side of Eqs.
(87) are evaluated using the variables from the preceding outer iteration. This means that the
pressure is treated explicitly. Thus one solves Eqs. (87) with,� replaced by,���; the result is
called���

� to indicate that it is a provisional velocity field that needs to be corrected to enforce
the mass conservation.

A common method of this kind uses a pressure-correction (rather than the pressure itself) to
correct the velocity. The corrections to the velocity and pressure fields can be expressed as:
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The velocity��� satisfies the linearized momentum equation in which the pressure from the
previous outer iteration is used:
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If we subtract this equation from the corresponding equation in terms of corrected velocities
and pressure,��� and,�, use Eq. (88), and divide the resulting equation by��, we obtain an
equation relating the velocity and pressure corrections:
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where the following shorthand notation was used:
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By requiring that the corrected velocities��� satisfy the discretized continuity equation, one
obtains:
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Finally, using Eq. (90) to express the three velocity corrections��� through pressure correction
yields the pressure-correction equation:
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The major approximation is now made: the velocity corrections���

� are unknown so it is common
practice to neglect them. This crude approximation requires special attention for the algorithm
to work efficiently, as will be shown below. Once the simplified pressure-correction equation
has been solved, the velocity corrections are calculated from Eq. (90), in which���� is omitted,
and added to the provisional velocities according to Eq. (88). If the pressure-correction equation
is solved exactly, the corrected velocity satisfies the continuity equation. This is the SIMPLE
algorithm, which was developed in early 70ies and is usually attributed to Patankar and Spalding
(1972).

Due to the approximation introduced above, SIMPLE requires small time steps or under-
relaxation in the momentum equations and converges slowly. The under-relaxation (which is
usually applied in all non-linear equations within outer iterations) is incorporated by modifying
the central coefficient�� and source term� (which in this case contains also the pressure term)
as follows:
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where ����
� and �����

��
are the modified main diagonal matrix elements and source vector compo-

nents, respectively. In the following, tilde will be omitted but it is assumed that under-relaxation
has been applied and that�� and� have been modified according to the above expression.
This modified equation is solved within inner iterations. When the outer iterations converge,
the terms involving�� cancel out and we obtain the solution of the original equation.

This kind of under-relaxation was proposed by Patankar (1980). It has a positive effect
on many iterative solution methods since the diagonal dominance of the matrix� is increased
(the element����

� is larger than���
� , while other elements�
 remain the same). It is also much

more efficient than an explicit under-relaxation in which the newly calculated value from the
unmodified equation is simply blended with the value from the previous iteration.

The rate of convergence of the SIMPLE-algorithm is improved if only a portion of the
pressure correction,� is added to,���, i.e. if instead of Eq. (88) we use:

,� � ,��� � ��,
� 	 (95)
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where the under-relaxation factor is� � �� � �. Patankar (1980) suggested to use�� � ���

and�� � ���; however, subsequent analysis showed that lower values of�� allow higher
values of�� and faster convergence. The nearly-optimum relation between�� and�� has been
independently derived via different routes by Raithby and Schneider (1979) and Peri´c (1985):

�� � �� �� � (96)

One can usually work with�� � ��� and�� � ��� with nearly-optimum results.
Instead of neglecting the last term in the pressure correction equation (93), one can approx-

imate it. For example, the velocity correction���	� at any node could be approximated by a
weighted mean of the neighbor values, which leads to:
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where Eq. (91) has been used. When this is inserted in Eq. (90), the following approximate
relation between��� and,� is obtained:
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which is used to derive the pressure-correction equation from (92). Since the neighbor co-
efficients are negative and���

� is larger than the sum of the absolute values of the neighbor
coefficients due to under-relaxation or unsteady term, the denominator in the above expression
on the right-hand side is positive but smaller than in the simplified expression used in SIMPLE.
The algorithm based on Eq. (98) is called SIMPLEC (van Doormal and Raithby, 1984); it con-
verges more rapidly than the SIMPLE method. SIMPLEC does not need an under-relaxation of
the pressure correction, but if in SIMPLE one uses the relation (96), it becomes equivalent to
SIMPLEC.

Issa (1986) proposed the following predictor-corrector procedure. In the first step – which
is equivalent to the SIMPLE method – the term involving�� �

� is neglected, i.e. the velocity
correction��� is expressed as (see Eq. (90)):
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After solving the pressure-correction equation:
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the velocities and pressure are corrected as described above. In a second step, the velocity
correction��� is corrected by introducing a second correction defined by:
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where���� is calculated from Eq. (91) after��� has been calculated from Eq. (99). Using Eq.
(99) and considering that the velocities���

� � ��� already satisfy the continuity equation, the
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requirement that it remains satisfied after the second correction is applied leads to the following
equation for the second pressure correction:
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Further corrector steps can be added, but this is rarely done. This method is known as PISO
algorithm (Issa, 1986). No under-relaxation is needed for the pressure corrections – they are
simply added together. The equation for the second pressure correction has the same coefficient
matrix as the equation for,� but different right-hand side, which can be exploited in some linear
equation solvers (one can store the inverted iteration matrix and use it with the new source term
to obtain,��).

The second corrector is needed because the first pressure-correction equation ensures only
that the continuity equation is satisfied but disregards the momentum equations by simplifying
the relationship between�� and,�. If the momentum equations were linear (in the limit of zero
Reynolds number), one would not need to solve them at all – just to calculate the coefficient
matrix. One could then start with a guessed velocity and pressure fields and by repeating the
corrector steps in PISO achieve velocities and pressure which satisfy both the momentum and
continuity equations. It can be also shown that the error after the second correction is propor-
tional to ����� when unsteady problems are solved, which means that one need not do more
than one outer iteration per time step. However, since the order of an approximation does not
give information about the magnitude of the error, only about the rate at which it is reduced
with further refinements, the non-iterative computation of unsteady flows is feasible only when
�� is sufficiently small.

A disadvantage of the PISO method is that the coefficient matrix of the momentum equations
is needed after the pressure-correction equation is solved. One usually overwrites the matrix of
the previous equation, but in this case one has to store the matrix of the momentum equations
for use in corrector steps of PISO algorithm. Since in 3D the matrix involves usually seven
elements per grid node, the memory overhead is large (alternatively, one can write and read
the matrix from hard disc, which causes longer computing times). Also, further simplifications
of the pressure-correction equation (e.g. when the grid is non-orthogonal, see below) are not
allowed if the advantages of PISO are to be retained.

Another method from the same family is SIMPLER (Patankar, 1980). It begins in the man-
ner of the SIMPLE method; the pressure-correction equation (100) is solved first. The pressure
correction so obtained is used only to correct the velocity field, but not to update the pressure
field. A new pressure field (not a correction) is calculated from apressure equation, which
is obtained by requiring that the corrected velocity and the new pressure filed satisfy also the
linearized momentum equation:
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Since the corrected velocities are now known, one can directly express the nodal velocity
through the pressure gradient:
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From the requirement that the right-hand side of the above equation also satisfies the continuity
equation (the left-hand side was forced to do so in the first step), the pressure equation of the
SIMPLER method is obtained:
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Note that the coefficient matrix of the pressure equation is the same as that of the pressure-
correction equation – only the source term is different. While the pressure correction is reset to
zero after each outer iteration (it remains zero when the outer iterations converge), the pressure
equation uses pressure from the previous outer iteration,,���, as the starting field.

The pressure-correction algorithms of the above kind can be summarized as follows:

� Advance time to the new level,���� � �� ���;

� Start outer iteration on the new time level:

1. Assemble and solve the linearized momentum equations, using velocity, pressure,
and fluid properties based on solutions from previous time step or outer iteration;
call the result���

� .

2. Assemble and solve the pressure-correction equation for,�.

3. Correct the velocity and pressure to obtain��� , which satisfies the continuity equa-
tion, and,�.

In PISO, solve the second pressure-correction equation and correct both velocity
and pressure again.

In SIMPLER, solve the pressure equation for,�.

4. Return to step 1 and repeat, until all corrections are negligible.

� Set����� � ��� and,��� � ,� and advance to the next time step.

The algorithms described above show the principles of pressure-velocity coupling using the
pressure or pressure-correction equation. Depending on the discretization method and the grid
arrangement, a detailed scheme can easily be derived.

A word about the boundary conditions for the pressure-correction equation is appropriate
here. When the velocity component normal to solution domain boundary (i.e. the mass fluxes
through the boundary cell faces) is known, it does not need to be corrected, i.e.�� � �. This
is equivalent to setting the gradient of the pressure correction in the same direction to zero,
see Eq. (99). Thus, the pressure-correction equation has Neumann boundary conditions on
all boundaries where the velocity is prescribed (inlet, wall, symmetry etc.). Even at boundaries
where the velocity is not prescribed one usually first applies an extrapolation (or another kind of
approximation) of the velocity and applies a global correction to make velocities at boundaries
satisfy the global mass conservation. When this is done, the velocity is – for the sake of deriving
the pressure-correction equation – considered as specified and the velocity correction is set to
zero.
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If an equation has zero-gradient boundary condition on all boundaries, the sum of all source
terms in the interior has to vanish. This is indeed the case in the pressure-correction equation, as
will be shown below when a pressure-correction equation in a FV method is derived. The solu-
tion is not unique, but that is not a problem since in incompressible flows only pressure gradient
counts; one usually keeps the pressure fixed at one node (by subtracting the pressure correction
at that node from all other corrections) and adjusts the pressure at other nodes relative to it.

5.3 Fractional-Step Methods

The fractional step concept is more a generic approach than a particular method; there are many
variants of it. Only one particular method will be shown here, which has been proposed by
Choi and Moin (1993) and which was found suitable for DNS and LES in complex geometries.
It is a four-step method based on the Crank-Nicolson time integration method; the authors
used staggered Cartesian grid and central differences of second order for all spatial derivatives.
However, the fractional step approach can be applied even if different parts of the equation are
advanced in time using different methods (often explicit for convective and implicit for viscous
terms, sometimes implicit only in the direction normal to wall and explicit in other directions);
the spatial discretization can be of any kind and order. Note, however, that there are no outer
iterations in fractional step methods of the same kind as in pressure-correction methods; after
the last step, the solution at the new time level is obtained and one proceeds to the next time
level.

In the first step, the velocity is advanced using pressure from the previous time step; con-
vective terms, viscous terms, and body forces (if present) are represented by an equal blend of
old and new values (Crank-Nicolson method in this particular case):
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where����� is an operator representing the discretized convective, diffusive, and source terms.
This system of equations must be solved for��

� ; any method can be used. Unless the time step is
very small, one should iterate to account for the non-linearity of the equations; Choi and Moin
(1993) used a Newton iterative method.

In the second step, half of the old pressure gradient is removed from��� :
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The final velocity at the new time level is given the required contribution from the (as yet
unknown) new pressure:
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The requirement that the new velocity satisfies the continuity equation leads to a Poisson equa-
tion for pressure:
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Upon solution of the pressure equation, the new velocity field is obtained from Eq. (108). It
satisfies the continuity equation and also the momentum equation in a slightly modified form:
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To be correct,����� � should be replaced by������� � in the above equation. However, from Eqs.
(107) and (108) one can easily show that the error is of second order in time and thus consistent
with other errors:
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Note that, by subtracting Eq. (106) from Eq. (110), one obtains an expression for the pressure
correction,� � ,��� � ,�:
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By requiring that����� satisfies the continuity equation, a Poisson equation for,� is obtained;
it has the same form as Eq. (109), only,��� needs to be replaced by,� and���� by ��� . Thus,
SIMPLE and fractional-step methods are very similar; SIMPLE includes outer iterations to
eliminate the error due to not updating����� � in Eq. (110), i.e. when outer iterations con-
verge, Eq. (110) will be solved with������� � in place of����� �. In the SIMPLE method, the
pressure-correction equations need not be solved accurately at each outer iteration, since the
mass conservation needs to be enforced only in the converged solution; in the fractional-step
methods, the pressure-correction equation is solved only once per time step and thus has to be
iterated to a tight tolerance to assure mass conservation; multigrid methods are often used for
this purpose.

5.3 Other Methods

For incompressible two-dimensional flows with constant fluid properties, the Navier-Stokes
equations can be simplified by introducing thestreamfunction ) andvorticity � as dependent
variables. The number of equations reduces than from three in primitive variables to two, since
the pressure can be eliminated by virtue of continuity equation. However, for three-dimensional
problems and flows with variable fluid properties, this approach becomes more complicated than
when primitive variables are used and is therefore not recommended.

Another approach which is sometimes used is that ofartificial compressibility. There are
several variants of these methods, the oldest being proposed by Chorin (1967). The idea is to
introduce a time derivative of pressure in the continuity equation and make it similar to the
corresponding equation for compressible flows, in which a time derivative of density is present.
The mass conservation is thus violated until the procedure converges, where the time derivative
of pressure becomes zero. In the case of steady flows, this poses no problem; however, when un-
steady flows are considered, one has to introduce pseudo time for marching within each step of
real time. The method thus becomes very similar to pressure-correction methods of SIMPLE-
type, the pseudo time corresponding to outer iterations (which can indeed be interpreted as
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marching in time, the time step being proportional to the under-relaxation factor and varying
from CV to CV). Actually, one can show that the pressure-correction methods and artificial-
compressibility methods are closely related and basically use the same principle of linking the
velocity and pressure gradient via momentum and continuity equations (see Ferziger and Peri´c,
2002). Examples of artificial compressibility methods can be found in Kwak et al. (1986) and
Belov et al. (1995), among others.

6 COMPUTATION OF COMPLEX FLOWS

Solution methods for complex geometries use non-orthogonal, boundary-fitted grids. Struc-
tured grids are limited to relatively simple topologies. Branching geometry and multiply-
connected domains require the use of either block-structured or unstructured grids. Block-
structured grids can be further subdivided in overlapping and non-overlapping; furthermore, the
non-overlapping blocks of grid may be matching or non-matching at block interfaces. Some of
the issues related to block-structured FV grids will be discussed below.

In the case of a block-structured grid made of hexahedra, one uses within one block the
regular data structure, i.e. the location of a CV is identified by indices��	 �	 !�. The neighbors
are identified by increasing or lowering the indices; the east neighbor has the indices����	 �	 !�

etc. However, along block interfaces a different data structure is necessary if an arbitrary block
connectivity and possibly non-matching grid is allowed. One can create a list of all cell faces
lying in the block interface, which must contain all the information necessary to approximate the
surface integrals. These are the indices of CV-centers on either side (which reside in different
blocks), interpolation factors, components of surface vector etc. The surface integrals over
interface cell faces are calculated only once and applied to CVs on either side (with opposite
signs), thus ensuring conservation of fluxes.

In an explicit method the computation can be performed block-wise without any special
measures. In implicit methods one needs to modify the iteration matrix. The usual practice,
which is also suitable for parallel computing using domain-decomposition technique, is to split
the coefficient matrix� in a local part,�
, and a coupling part,��. The local part represents
the matrix as it would have been if one were considering each block on its own, regarding
the variables in neighbor blocks as known. The coupling part contains those elements of�

which reside in one block but multiply variable values from other blocks. The iteration matrix
is then decoupled; for example, in an ILU method, one would perform the decomposition of
each local block matrix, while the coupling part would not be considered. Thus, the iteration
matrix* would be an approximation of�
 alone. This basically means that the variable values
in neighbor blocks are within one inner iteration considered as known, i.e. values from previous
inner iteration are used. The implication is that one usually needs more inner iterations to
achieve the same level of convergence; however, the increase is moderate and can become
significant only if the number of blocks and block interfaces is very large.

The approach described above can be used even if the grids in two neighbor blocks do
not match. An example is presented in Fig. 8, which shows the interface between two blocks
of different fineness. Some authors use the so called “hanging nodes” on either side of the
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Fig. 8: An example of a block-structured grid with a non-matching interface.

interface as boundary nodes of each block; here another possibility will be described. Rather
than having hanging nodes one can treat CVs along interfaces as polyedra (polygons in 2D),
with more faces (and neighbors) than the CVs within the block.

Since the shaded CV in block A of Fig. 8 has three neighbors on its east face, one cannot
use the usual notation for structured grids here. This face is not of the regular type (with one
neighbor on the opposite side), so it is not considered when working in block A. The coefficient
matrix and the source term for this CV will thus be incomplete, since the contribution from its
east side is missing; in particular, the coefficient�� will be zero.

In order to treat the irregular cell faces found at block interfaces, one has to use another kind
of data structure here – one similar to that used when the whole grid is unstructured. Each piece
of the interface common to two CVs must be identified (by a pre-processing tool) and placed
on a list together with all of the information needed to approximate the surface integrals: the
indices of the left (L) and right (R) neighbor cells, the surface vector (pointing from L to R) and
the coordinates of cell-face center. With this information, one can use the method used in the
interior of each block to approximate the fluxes through these faces.

Each interface cell face contributes to the source terms for the neighboring CVs (explicit
contributions to the convective and diffusive fluxes treated by deferred correction), to the main
diagonal coefficient (��) of these CVs, and to two off-diagonal coefficients:�� for node R and
�� for node L. The problem of irregularity of data structure due to having three east neighbors
is thus overcome by regarding the contributions to the global coefficient matrix as belonging to
the interface cell faces (which always have two neighbor cells) rather than to the CVs. It is then
irrelevant how the blocks are ordered relative to each other (the east side of one block can be
connected to any side of the other block): one has only to provide the indices of the neighbor
CVs to the interface cell faces.

The contributions from interface cell faces, namely�� and��, become parts of the cou-
pling matrix��. The iteration procedure is now:

1. Assemble the elements of matrix� and the source term� in each block, ignoring the
contributions of the block interfaces.
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2. Loop over the list of interface cell faces, updating�� and�� at nodes L and R, and
calculate the matrix elements stored at the cell face,�� and��.

3. Calculate elements of matrices+ and� in each block disregarding neighbor blocks, i.e.
as if they were on their own (when ILU-type solvers or pre-conditioners are used).

4. Calculate the residuals in each block using the local part of the matrix�; the residuals for
the CVs along block interfaces are incomplete, since the coefficients that refer to neighbor
blocks are zero.

5. Loop over the list of interface cell faces and update the residuals at nodes L and R by
adding the products���� and����, respectively; once all faces have been visited, all
the residuals are complete.

6. Compute the variable update at each node in each block and return to step 1.

7. Repeat until the convergence criterion is met.

One may treat blocks with non-matching grids of any kind in the same way; this is in
particular the case when a block-structured grid is block-wise refined. Especially when flows
around bodies are calculated, it is advantageous to generate first a matching – but coarse –
block-structured grid and then successively refine blocks near the body.

Fig. 9: Geometry of the square-to-round duct and the grid used, showing also the detail of grid on both

sides of the interface

The most flexible approach to computing flows in complex geometries is to use an unstruc-
tured grid which may consist of CVs with an arbitrary number of faces. Although one usually
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generates the grids made of tetrahedra, pyramids, prisms, or hexahedra, by performing a lo-
cal, cell-wise grid refinement one can create cells with many faces. Also, by constructing CVs
around vertices of tetrahedral elements, one usually obtains polyhedral cells with many faces.
Another situation in which the allowance for arbitrary polyhedral cells can be useful is at non-
matching block-interfaces or interfaces along which two grid blocks slide along each other. An
example of a grid which includes both local refinements and a non-matching interface is shown
in Fig. 9. By allowing polyhedral cells instead of hanging nodes, one achieves a more implicit
coupling of all CVs in the iteration matrix and faster convergence of iterations. The general
approach to handling such grids is to introduce an object-oriented data structure and define ob-
jectsvertex, edge, face, andvolume. Edges are defined by the two vertices on either end, faces
by a list of edges (which must form a closed polygon), and volumes by a list of faces which
enclose it. The discretization requires approximations to surface and volume integrals; these
are computed in loops runing over the list of faces and volumes, respectively.

A method that allows the use of arbitrary polyhedral CVs has been presented by Demirdˇzić
and Muzaferija (1995) and Demirdˇzić et al. (1997). The discretization method is based on
midpoint rule integration, linear interpolation, and central differencing, as described here for the
generic conservation equation. The only specialties are the data structure and the linear equation
solver (a version of conjugate gradient solver) which allows arbitrary number of neighbors.

The derivation of an appropriate pressure-correction equation for a FV method using arbi-
trary CVs will now be briefly described. The surface and volume integrals in the momentum
equation are assumed to be approximated using second-order approximations (midpoint rule
integration, linear interpolation, and central differencing). The pressure term is also treated
conservatively, i.e. in each equation the appropriate components of the pressure forces on the
CV surface are calculated. However, one can express the pressure contribution to the source
term also as a product of the mean pressure gradient and cell volume using the Gauss theorem:
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As was described earlier, the linearized momentum equations are solved first using pressure
from previous iteration. In order to enforce the continuity constraint, one needs to calculate
mass fluxes through CV faces using new velocity components���

� . To this end one needs ve-
locity vector at the cell face, which requires interpolation from neighbor CV centers. Simple
linear interpolation may lead to oscillations; the reason is that an oscillatory pressure distri-
bution is not sensed by the pressure source term in Eq. (113) when the oscillation wavelength
is two CV widths. Thus, interpolated velocity at the cell face – which contains interpolated
pressure terms calculated at cell centers – will also not sense pressure gradient due to oscilla-
tory pressure field. If the pressure term was calculated at the cell face (as is the case when a
staggered arrangement is used), the pressure oscillation would result in a large term and lead to
a pressure correction which will smooth the oscillation out. Rhie and Chow (1983) presented
an interpolation practice which avoids oscillations: the velocity is interpolated, but a correction
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to the interpolated value is applied. The correction is negligible when the pressure variation is
smooth, but becomes large if oscillations are present. The correction term is nothing else but
the difference between the interpolated pressure term and the one calculated at the cell face (see
Eq. (89)):
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where%�	� � �v�n�� is the velocity component normal to the cell face (here, the ‘east’ face of one
CV is considered; the same expressions are valid for any face when the indices are substituted
accordingly). Since the coefficient�� is the same for all Cartesian velocity components, the
same value is also used here as���

� . The correction term is proportional to the third derivative of
pressure multiplied by����� and vanishes when the variation of pressure is linear or quadratic;
�� is here the mesh spacing in the direction normal to the cell face. It reduces with grid
refinement as a second-order error term and is therefore consistent with other approximations
(see Ferziger and Peri´c, 2002, for a detailed discussion of this issue). The pressure derivative
in the normal direction approximated at the cell face can be obtained from Eq. (50). Since that
approximation is second-order accurate at a location midway between nodes P and E, see Fig.
5, the interpolated derivative should also be calculated at that location; thus, the double overbar
in the above equation denotes arithmetic average.

The interpolated derivative at a cell face can be obtained by interpolating the components
of the gradient vector from the two cell centers; these are calculated at each CV center during
solution of the momentum equations according to Eq. (113). Thus, one can write:
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The mass flux through the face ‘e’ can now be calculated as:
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The mass fluxes through other faces are calculated accordingly. The continuity equation is in
general not satisfied by these mass fluxes, but results in a mass imbalance:�
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where the summation is over all cell faces (note that the same value of the mass flux is used for
two CVs, but with opposite signs, i.e.��� for a CV centered around node P is equal to� ��� for
a CV centered around node E).

In order to enforce the mass conservation, the mass fluxes need to be corrected by correct-
ing the normal velocity component. By analogy with Eq. (99), the velocity correction can be
expressed through the gradient of the pressure correction as follows (see also Eq. (114)):
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The derivative of,� with respect to� at the cell face center can again be obtained from expres-
sion (50); however, the inclusion of the whole expression on the right-hand side of this equation
would lead to a too complicated pressure-correction equation. Since the role of the pressure-
correction equation is only to drive the algorithm towards convergence, where all corrections
must become negligible, and since the pressure-correction equation of the SIMPLE algorithm
is not exact anyway, one can here introduce another approximation: neglect the contribution of
non-orthogonality and express the derivative of,� with respect to� by only the first term on the
right-hand side of Eq. (50):�
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When this simplified expression is introduced in Eq. (118) and the mass flux corrections are
expressed as in Eq. (116),
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the requirement that the corrected fluxes satisfy the continuity equation�
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leads to the algebraic pressure-correction equation at each CV of the form:
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Once the pressure-correction equation is solved, one can correct the cell-face mass fluxes,
cell-center velocities, and pressure. Only an��–portion of,� is added to,���, as described
earlier for the SIMPLE method.

When the grid is not appreciably non-orthogonal, the neglected effects of non-orthogonality
are hardly felt. However, when the grid is substantially non-orthogonal, one needs to further
reduce��, typically to 0.1 or even below. One can take the effect of grid non-orthogonality into
account through another corrector, similar to the PISO corrector described earlier; see Ferziger
and Peri´c (2002) for a description of one such approach.

If mass fluxes are specified at boundaries, the pressure-correction equation has zero normal
derivative there (Neumann boundary conditions, as described earlier). However, one may also
specify pressure at inlet and outlet and let the mass flow rate be determined in the course of
computation. In that case,,� � � at these boundaries (Dirichlet boundary condition), but the
velocity is unknown. The velocity is first extrapolated to boundary using an expression like
(114) and is corrected accordingly upon solving for,�. For details on pressure boundary condi-
tions, see Ferziger and Peri´c (2002) and Gresho and Sani (1990).

7 COMPUTATION OF COMPRESSIBLE FLOWS

A large number of methods specially designed to compute compressible flows have been de-
veloped in the past. In many cases the viscous terms are neglected and one solves the special
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version of the momentum equations – theEuler equations. Without viscous terms there are no
boundary layers so one does not need as fine grids near walls as in the case of viscous flows.
Especially in aerodynamics, methods using unstructured triangular (in 2D) or tetrahedral (in
3D) grids have been developed and applied to computing flows around whole aircrafts or space
shuttles.

In the case of viscous compressible flows, one needs fine resolution near walls and the grids
made of triangles or tetrahedra become then so stretched that both the accuracy and the com-
putational efficiency becomes to suffer substantially. The cure was found in using quadrilateral
or hexahedral cells near walls and triangles or tetrahedra further away. The grid generation
becomes than more complicated, and if the solution method is specially designed for either cell
type, such a combination becomes also complicated. However, one can design a method for
arbitrary cells, e.g. as described by Demirdˇzić et al. (1997).

The methods specially designed for compressible flows solve the continuity equation for
density and obtain the pressure from an equation of state. Both the spatial and temporal inte-
gration can be of any type described earlier for the generic conservation equation. There are,
though, some special versions of discretization methods and special terminologies which are
encountered in literature devoted to compressible flows. In most cases one can interpret these
methods as a combination of the methods described earlier; in particular, very often the inte-
gration is first done using a lower-order method and thenre-constructed by adding a correction
which leads to a higher-order approximation, which is more or less the same as the deferred
correction approach described earlier. Details on methods design specifically for compressible
flows can be found in Hirsch (1992), among other books.

There are also special coupled solution methods, which consider the density, velocity com-
ponents, and temperature as one vector of unknowns; iterative solution methods with multigrid
acceleration are usually used to solve the resulting algebraic equation systems. With special
preconditioning (see Weiss and Smith, 1995) such coupled solvers can be used for both com-
pressible and incompressible flows; see Weiss et al (1999) for a description of one such method.
These methods are somewhat more complicated to program and require more memory than the
sequential solution methods of the SIMPLE-type, but due to the simultaneous solution for all
variables they are potentially more robust.

Most of the methods design specifically for compressible flows usually become inefficient if
the Mach number is low in some regions, since in that case the density does not change, neither
in space nor in time. On the other hand, the pressure-correction methods, originally developed
for truly incompressible flows, can easily be extended to compressible flows, leading to efficient
methods for all flow speeds. This approach is described below since it simple and yet effective.

To compute compressible flows, it is necessary to solve not only the continuity and momen-
tum equations but also a conservation equation for the thermal energy and an equation of state.
The energy equation – which is usually written as an equation for enthalpy – must retain terms
which are usually neglected in incompressible flows. For example, viscous dissipation may be
a significant heat source and conversion of internal energy to kinetic energy (and vice versa) by
means of flow dilatation is also important. In integral form the energy equation reads:
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Here/ is the enthalpy per unit mass,1 is the absolute temperature,0 is the thermal conductivity
and� is the viscous part of the stress tensor,� � -��i�i�. The stress tensor components-�� now
contain additional terms which account for compressibility effects:
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whereÆ�� is the Kronecker’s delta (Æ�� � � if � � � andÆ�� � � otherwise).
For a perfect gas with constant specific heats,(� and(�, the enthalpy becomes/ � (�1 ,

allowing the energy equation to be written in terms of the temperature. Furthermore, under
these assumptions, the equation of state is:

� �
,
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	 (125)

where2 is the gas constant. In pressure-correction methods for all flow speeds, the equation of
state is used to compute density once the pressure and temperature have been updated.

The major extension to the pressure-correction scheme described earlier for incompressible
flows is the addition of the unsteady term in the continuity equation, and the correction of
density in addition to velocity correction. The discretized mass conservation equation thus
reads in the first step (implicit Euler scheme used):
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In the correction step one has to take into account that by changing the pressure, both velocity
and density will change. The velocity correction at cell-face center is expressed as a function
of the normal gradient of pressure correction, see Eq. (118); the density correction at cell-face
center can be expressed as a function of the pressure correction itself:

��� �
�
��

�,

�
�

,� �
,�

21
� (127)

The corrected mass flux can now be expressed as:
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If one neglects the product of density and velocity corrections (since it tends to zero faster than
other terms), the mass-flux correction can be expressed as:
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If one substitutes the velocity correction as given by Eq. (118) and the density correction as
given by Eq. (127), after adopting an interpolation scheme for the cell-face center value of,�
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and upon introducing mass-flux corrections into the mass conservation equation for corrected
quantities,
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a pressure-correction equation is obtained. The expressions for the coefficients depend on the
approximations of cell-face center values, which can be of any type described earlier for con-
vective and diffusive fluxes. If shocks are present and one uses linear interpolation and central
differences, oscillations around shocks will result. Some kind of damping is necessary to avoid
them; one may blend first-order upwind schemes with central differences, or use some kind
of non-oscillatory schemes or limiters (e.g. total-variation diminishing or TVD schemes, see
Hirsch, 1992, or essentially non-oscillatory or ENO schemes, see Sonar, 1997).

There are important differences between the pressure-correction equation for incompress-
ible and for compressible flows. The former represents the discretized Poisson equation, i.e. a
transport equation with diffusive terms only. In the compressible case, the pressure-correction
equation contains in addition convective and unsteady terms, i.e. it resembles the generic con-
servation equation. Also, the solution of the pressure-correction equation for incompressible
flow – if the mass fluxes are prescribed at all boundaries – is indeterminate to within an additive
constant; in the compressible case, the presence of convective terms makes the solution unique
(the pressure must be prescribed somewhere on the boundary).

The nice feature of the pressure-correction equation is that it automatically adapts to the
local state of the flow. The convective term is of the order of Ma� relative to the diffusive term;
in regions of flow where the Mach number is low, the equation reduces to the form appropriate
for incompressible flows. On the other hand, when and where the Mach number is large, the
convective terms dominate and properly reflect the hyperbolic nature of the flow. Solving the
pressure-correction equation is then equivalent to solving the continuity equation for density, as
is traditionally done in methods designed for compressible flows.

This type of the method is especially attractive for flows in which both strongly compress-
ible and almost incompressible regions exist. Examples are flows in valves and body wakes.
Details of this kind of solution methods can be found in Demirdˇzić et al. (1993), Karki and
Patankar (1989) and Van Doormal et al. (1987), among others. In these references, as well as
in Ferziger and Peri´c (2002), details on various boundary conditions in compressible flows are
also given.

8 COMPUTATION OF FLOWS WITH MOVING BOUNDARIES

In many engineering applications, the flow domain is changing in time due to the movement of
boundaries. The movement may be determined by external effects (like in piston-driven flows)
or it may depend on the flow itself and have to be determined as part of the solution (like in
free-surface flows). In both cases the grid has to move with the boundary. If the base vectors
remain fixed (e.g. if we use the Cartesian components as before), the only change in the con-
servation equations is the appearance of the relative velocity in convective terms; however, to
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be conservative, one has to consider the so calledSpace Conservation Law (SCL). The conser-
vation equations for space, mass, and momentum in integral form for a control volume which
may move read:
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Here isv� the velocity with which the CV boundary is moving. Obviously, if the control volume
boundary moves with the same velocity as the fluid, the convective fluxes are equal to zero. The
control volume becomes then thecontrol mass and we are dealing with the Lagrangean approach
to the description of fluid motion.

The Eq. (131) describes the conservation of space when the CV changes its shape and po-
sition with time. If the grid is not moving, this equation becomes redundant and in all other
equationsv� � � applies. Thus, the equations for non-moving CVs are only a special case of
the equations for moving CVs. The solution method designed for moving grids can then be
used for fixed grids as well.

It should be noted that the time derivative in the above equations has a different meaning
in fixed and moving grids, although it is approximated in the same way. If the CV does not
move, the time derivative represents the local change of the conserved quantity, while in another
extreme of a CV whose surface moves exactly with fluid velocity, it becomes the total (material)
derivative since no fluid enters or leaves the CV. This change of meaning is accounted for by
the convective fluxes, which become zero in the latter case.
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Fig. 10: A typical 2D CV at three time levels and the volumes swept by cell faces

Why is it important to obey the SCL can be seen by considering the mass-conservation
equation (132) for a fluid of constant density; it can then be written as:
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The first two terms represent the SCL and add up to zero, cf. Eq. (131); thus, for fluids with
constant density, the mass conservation equation reduces to�

�
v � n �� � �  ! � � v � � � (135)

It is therefore important to ensure that the above two terms cancel out in the discretized equa-
tions as well (i.e. the sum of volume fluxes through CV faces due to their movement must equal
the rate of change of volume); otherwise, artificial mass sources are introduced and they may
accumulate in time and spoil the solution, as demonstrated by Demirdˇzić and Peri´c (1988).

The implementation of SCL in a FV method using fully implicit time integration scheme
with three time levels will now be briefly outlined. The extension to other time integration
schemes is straightforward.

The discretized SCL equation can be cast into the following form (see Eq. (63)):
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where the summation is over all faces of the CV. Note that the difference between CV volumes
at consecutive time levels can be expressed as the sum of volumesÆ�� swept by each CV face
when moving from its old to the new position, see Fig. 10, i.e.:
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When this expression is introduced in Eq. (136), one finds out that the SCL is satisfied identi-
cally if the volume fluxes through cell faces are defined as:

�� ���
� �

��
��

v� � n ��
����

� ��v� � n�����
��� � 	 Æ� �

� � Æ� ���
�

���
� (138)

Therefore, the volumes swept by each face over one��, Æ��, are calculated from the grid posi-
tion at two time levels and used to calculate volume fluxes�� ���

� ; there is then no need to define
explicitly the velocity of the CV-surface,v�. The alternative is to calculate the grid velocityv�
from the movement of the cell-face center and calculate the volume flux by multiplying it with
the new surface vector; however, it is difficult then to make sure that SCL is satisfied.

The mass flux through the face ‘e’ can now be calculated as (see Eq. (116)):
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The requirement that the discretized mass conservation equation be satisfied:
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and the introduction of the above defined expressions for��� and ���

� lead finally to a pressure-
correction equation of the same form as in the case of fixed grids (the same approach is valid for
both compressible and incompressible flows). If the grid position at the new time level is known
(e.g. in piston-driven flows, flows around rotating machinery etc.), the volume flux through cell
faces �� ���

� is not dependent on the outer iteration counter�; otherwise, the volume fluxes need
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to be corrected during outer iterations together with other corrections. This is the case when
free-surface flows, flows in blood vessels etc. are computed.

When the grid position is known at each time level, the implementation of the grid move-
ment in the solution procedure is simple; see Demirdˇzić and Peri´c (1990) and Ferziger and
Perić (2002) for more details and examples of application. When the boundary movement is
not known in advance, an iterative procedure within each time step (outer iterations) has to be
used, as outlined above.

In some cases bodies move relative to each other and it is not possible to use a single grid
which adapts to new positions of each body (two cars or trains passing each other, train enter-
ing a tunnel, a propeller rotating between ship body and rudder etc.). These situations require
special treatment. Sometimes it is feasible to subdivide solution domains in blocks and let
the grid in some blocks move while keeping it fixed in others. The numerical method has to
be capable of treating block interfaces with non-matching grids, since one block slides along
interface with the other block. This is not difficult to implement, as outlined earlier when block-
structured grids were discussed. At each time step the connectivity at the interface changes, so
one needs an algorithm for finding which CVs are in contact. This approach is especially suited
for studying flows around rotating objects (propellers etc.). The alternative is to use overlapping
(Chimera) grids, in which case one block of grid is attached to a body and moves with it in a
fixed background grid. The coupling of solutions in two grids is more difficult than when the
blocks are sliding along an interface; interpolation must be used and the conservativeness is not
so easy to ensure. However, there are several methods that have been proposed and used in the
past (Tu and Fuchs, 1992; Perng and Street, 1991; Zang and Street, 1995; Hubbard and Chen,
1994, 1995).

9 GRID QUALITY AND OPTIMIZATION

The discretization errors are reduced when the grid is refined; however, an optimization of
the grid quality can often reduce the errors by as much (or even more) as its refinement.

The optimization of the grid is aimed at improving the accuracy of approximations to surface
and volume integrals. This, of course, depends on the discretization method used. Here, grid
features which affect the accuracy of the method described above will be briefly described; most
of them are of general relevance.

In order to obtain maximum accuracy of convective fluxes when using linear interpolation,
the line connecting two neighbor CV centers should pass through the center of the common face.
In certain cases, especially when the grid generator uses some kind of block-wise generation,
situations like in Fig. 11 are unavoidable. However, one can then locally refine the grid as
indicated in Fig. 11, in order to reduce the distance between cell-face center! and the location
at which the straight line from node C to N� passes through the cell face,!�. The distance
�r� � r��� relative to some linear measure of the cell face (e.g.



��) can thus be used as one

measure of the grid quality.
The maximum accuracy of diffusive fluxes is achieved when the line connecting the neigh-

bor CV centers (i) is orthogonal to the cell face, and (ii) passes through the cell-face center. The
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Fig. 11: An example of poor grid quality due to a large distance from� to �
� (left) and the improvement

through a selective local grid refinement (right)

latter property is also important for convective fluxes and has been discussed above; the former
is another measure of the grid quality. For discretization methods of the kind presented here, it
is not important that the grid lines are orthogonal to one another at CV corners; only the angle
between the line connecting neighbor CV centers and the cell-face normal matters (see angle3

in Fig. 12). A tetrahedral grid can be orthogonal in this sense. Large angle3 can lead to both
convergence problems and unphysical solutions and should be avoided.
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Fig. 12: An example of the measure of grid non-orthogonality

Different other kinds of undesirable distortions of CVs may be encountered. Two are de-
picted in Fig. 13; in one case, the upper cell face of a regular hexahedral CV is simply rotated
around its normal, creating high warpage of adjacent faces, while in the other case, the top
face is simply displaced by shear in its own plane. Both features are undesirable and should be
avoided if at all possible, as they lead to poor approximations of both diffusive and convective
fluxes.
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Fig. 13: An example of poor grid quality due to a large warpage (middle) and distortion (right)

Grids made of triangles in 2D and tetrahedra in 3D can also cause problems. One of the
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problematic situations is shown in Fig. 14: the CV centered around node C is very narrow.
While the velocity component in
-direction at node C is strongly coupled to pressures at nodes
N� and N�, there is only one “supporting” node for the velocity component in�-direction, the
node N�. In other words, the�-component of the velocity vector computed at node C can
begin to oscillate and attain large values. Another kind of thin triangles or tetrahedra usually
results near walls and causes problems due to strong non-orthogonality when diffusive fluxes
are computed. The problem is even more pronounced in 3D, where all neighbor nodes may
fall nearly in one plane, making computation of the gradient at v center difficult. The pressure-
velocity coupling algorithm will not be able to remove these oscillations and the outer iterations
may not converge. It is therefore important that such thin triangles or tetrahedra are avoided in
computational grids.
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Fig. 14: An example of poor quality of triangular or tetrahdral grids

If the computational nodes are placed at CV centroids, the volume integrals approximated
by the midpoint rule are second-order accurate. However, CVs may sometimes be so deformed,
that the centroid is actually located outside the CV. This and other above mentioned grid features
should be avoided, for the sake of computational efficiency and accuracy. Some of the problems
can be avoided by subdividing problematic cells (and possibly some surroundings cells) into
smaller ones in a way which reduces the problem, as indicated for one of the grid features
above.

When computing flows in engineering practice, it is often difficult to generateany grid, let
alone agood one. The task of grid generation is also the most time-consuming one; it may
take weeks, while the computation (in the case of steady-flow computation) may be finished
overnight on a standard workstation. The need for tools which could generate a good grid
automatically is therefore obvious; the lack of such tools is the greatest obstacle for a more
wide-spread use of CFD in engineering practice.

10 CLOSING REMARKS

Computation of laminar flows poses nowadays no problems: the available computing resources
are big enough to enable accurate solutions even in complex 3D problems. The numerical
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methods have become very powerful too: one can use unstructured grids with arbitrary control
volumes, and the grids may move in time and adapt to complicated boundary conditions. On
the other hand, the development of multigrid techniques and parallel computing has lead to a
dramatic improvement of computational efficiency. These methods could not be described here,
but interested readers can find a lot of information in literature devoted to these subjects (a more
detailed discussion is also available in Ferziger and Peri´c, 2002).

The accuracy of numerical solutions is also easy to assess when laminar flows are con-
sidered, since only the discretization and iteration errors are present. The iteration errors are
easily controlled by monitoring the residual levels and using sufficient precision of computer
arithmetics. The discretization errors can also be reliably assessed by using Richardson extrap-
olation and a systematic grid refinement, as they depend on the approximations used and the
grid fineness. For a method of order, and sufficiently fine grids (so that monotonic convergence
is achieved), the grid-independent solution can be estimated as follows:

� � �� �
�� � ���
4� � �

	 (141)

where4 is the refinement factor and/ denotes a measure of grid fineness. For example, when the
size of CVs is halved in all directions (4 � �) and a second-order method as the one described
above is used (, � �), the errors on the finest grid (spacing/) are approximately equal to one
third of the difference between solutions on that and the next coarser grid (spacing�/). For
more details and examples of application of these methods, see Ferziger and Peri´c (2002). The
estimation of discretization errors can also be used as a guidance for a local grid refinement;
indeed, fully-automatic adaptive methods do exist and will be certainly more common in the
future.

Computation of turbulent flows is much more difficult. One can not use DNS for most engi-
neering flows due to too high Reynolds numbers, and even LES is not always possible. On the
other hand, the engineer needs reliable answers fast if CFD tools are to be useful in practice.
The need to replace the exact equations which describe fluid flow by modeled equations which
are easy enough to solve (RANS equations) introduces an additional source of error – themod-
eling error. Even if very fine grids are used and the numerical errors (iteration and discretization
errors) are negligible, the solution contains modeling errors which may be substantial (usually
of the order of few per cent, but the errors may even be as large as 20%; the solution may even
be qualitatively wrong).

The numerical and modeling errors interact in an unpredictable way. At many workshops,
solutions produced by different researchers for the same problem have been compared in the
past (see Rodi et al., 1995, and Bradshaw et al., 1994). The conclusion was most often that it
was not possible to identify the best model because differences in solutions obtained by different
authors using the same model were often larger than the differences between solutions obtain
by the same authors using different models. There are many details, especially associated with
the treatment of wall boundaries, which can be responsible for these differences, in addition to
programming and other ‘bugs’ which exist in all computer codes. In some cases one obtains
very good agreement between numerical and experimental results when coarse grids are used;
when the grid is refined, the agreement becomes less favorable. One should therefore be very
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careful when assessing the quality of turbulence models and compare the results with exper-
imental data only after the iteration and discretization errors have been reduced substantially
below the expected level of modeling errors.

Out of a large variety of numerical methods for computing turbulent flows, the user should
choose one which is most appropriate for the kind of flows that will be studied. There is no
point in using too sophisticated, high-order numerical methods if the models used are known
to produce modeling errors of the order of 10%; also, there is no point in trying a DNS with
methods of first order. Methods of second order in space and time are hardly any more com-
plicated than first order methods, while the difference in accuracy is enormous (see Ferziger
and Peri´c, 2002, for examples of comparisons). If the method is to be a general purpose one,
block-structured or unstructured FV grids and schemes of second order like Crank-Nicolson,
central differencing, linear interpolation, midpoint rule integration etc. are probably the best
choice. For special applications like in the analysis of some features of turbulence, methods of
high order and regular grids are appropriate.

Any turbulence model can be implemented in any of the numerical solution method de-
scribed above. The model equations always have the form of the generic conservation equation,
the main new feature being the source term which usually contains many terms involving first
(and sometimes also second) derivatives of velocity components with respect to spatial coor-
dinates. Since these terms are usually evaluated at the CV center and the volume integral is
approximated by the midpoint rule, the evaluation of these terms is easy as the gradients at cell
center are computed anyway when approximating the diffusive fluxes; the values of velocity
components from previous iteration are used. Some models also require distance from the near-
est wall, which can also be easily computed a priori for an arbitrary unstructured grid during
pre-processing. If the divergence of velocity vector is needed (like in compressible flows), it
can also be easily computed for arbitrary CVs using Gauss theorem, as described above for the
approximation of diffusive fluxes.

The implementation of boundary conditions, especially at walls, is of crucial importance.
Since the conditions depend on the model used, they will not be further discussed here – only
the importance of a careful treatment of boundaries is emphasized.
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34. Lilek, Ž., Perić, M.: A fourth-order finite volume method with colocated variable arrangement,
Computers Fluids, 24, 239–252 (1995).

35. Masson, C., Saabas, H.J., Baliga, R.B.: Co-located equal-order control-volume finite element
method for two-dimensional axisymmetric incompressible fluid flow,Int. J. Numer. Methods Flu-
ids, 18, 1–26 (1994).

36. Oden, J.T.:Finite elements of non-linear continua, McGraw-Hill, New York, 1972.

37. Patankar, S.V.:Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980.

59



38. Perić, M.: Efficient semi-implicit solving algorithm for nine-diagonal coefficient matrix,Numer.
Heat Transfer, 11, 251–279 (1987).
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