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ABSTRACT
One means of minimizing interlobe leakage in a screw compressor is to design it so that the pressure distribution
across the female rotor causes it to maintain contact with the trailing flank of the male rotor. This is because the 
sealing length on that side of the rotor is longer than on the, more traditionally used, leading flank. The 
disadvantage of this is that it creates torque on the female rotor opposite in sign to that caused by the drag 
forces. The the net torque, which is the result of the small difference between relatively large forces, may then 
change its sign during the compression cycle and this is the main cause of rotor instability and mechanical noise 
in screw compressors. Thus, some adjustment of the pressure distribution may be required to avoid rotor flutter 
or rattling. A well proven mathematical model was used to calculate the torque on the female rotor and 
determine the best pressure distribution that would avoid this effect. The improvement resulting from this were 
confirmed experimentally on a prototype compressor, which had previously generated high levels of contact 
noise and vibration under some operating conditions. Trial and error changes were made to the discharge port 
size and shape until the best result was achieved. By this means, the female rotor motion was stabilized. This
resulted not only in reduced noise generation but also in improved compressor performance.
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1. INTRODUCTION
The performance of screw compressors is highly affected by internal leakage. Hence, any reduction in the 
clearances between the rotors and the rotors and their housing always improves their efficiency. Therefore, in 
order to maximise screw compressor delivery rates and efficiencies, interlobe clearances are made as small as
possible. Modern rotor manufacturing methods, such as grinding with simultaneous measurement, control and 
correction of the profile, allow profile tolerances to be maintained within �5 m. This enables the clearances 
between the rotors to be kept below 15 m

In oil flooded compressors, direct contact is made between the rotors and, in well designed machines, the clearance 
distribution is set so that this is first made along their contact bands, close to the rotor pitch circles. Since the relative 
motion between the contacting lobes in this region is almost pure rolling, the danger of their seizing, as a result of 
sliding contact, is thereby minimised. As shown in Fig 1, the contact band may be either on the rotor round flank a), 
or on the rotor flat flank b).

The traditional approach is to maintain a high, so called, positive gate rotor torque, which ensures round flank 
contact. More recently, it became apparent that there are significant advantages to be gained by creating a 
negative gate rotor torque so that contact will made be on the flat face. The reason for this can be understood by 
examination of the sealing line lengths, shown as item 5 in Fig 2, where it is clearly apparent that the flat flank 
sealing line is much longer than that of the round flank. Thus, minimising the clearance on the flat flank will 
reduce the interlobe leakage more than minimising the round flank clearance. Negative gate torque is achieved 
by making the gate rotor lobes thicker and the main rotor lobes correspondingly thinner. This has the additional 
effect of increasing the flow displacement area. Thereby, both the compressor flow rate and its efficiency are 
increased. 

The torque induced by the pressure forces on the female rotor is small compared with that induced on its male 
counterpart and is of the same order of magnitude as that induced by other effects, such as contact friction and 
oil drag forces. Since negative torque on the female rotor acts in the opposite direction to the friction and drag 
force induced torque, the net torque on the female rotor may experience a change of sign during the complete 
compression cycle. This may cause the female rotor to flutter and, in extreme cases, may induce rotor rattle. 
This directly influences the compressor noise. Andrews and Jones, 1990 [1] and Holmes, 2003 [2] indicated
that a great part of compressor noise may be attributed to the rotors. Koai and Soedel, 1990 [3] analysed
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pulsations and their influence upon the discharge port and Sangfors 1999 [5] established a procedure to calculate 
flow through the discharge port, while Tantari, 2000 [7] gave a good analysis of the phenomena which influence 
screw compressor noise. More recently, Mujic et al, 2005 [4] showed how the compressor discharge ports 
influence the noise. It follows that the design of screw compressor components must include the elimination of 
such effects. Neglect of this, results in reduced reliability and, usually, increased compressor noise.

a) Rotor contact on the round face, b) Contact on the flat face
Fig. 1 Rotor interlobe clearance distribution 

1-main, 2-gate, 3-rotor external and 4-pitch circles, 5-sealing line,
6-clearance distribution, 7-area between the rotors and housing

Fig 2 Screw rotor profile
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2. CALCULATION OF TORQUE ON COMPRESSOR ROTORS
The magnitude and direction of the torque on the rotors is determined both by the rotor profile and the shape and 
position of the compressor discharge port. To quantify this and determine the position of rotor contact, it is 
necessary to calculate the pressure history on the rotors for the whole compression cycle. 

The forces which cause torque at any rotor cross section are presented in Fig 3. Three rotor positions are given, 
where the pressure acts on the corresponding interlobes normal to line AB. Points A and B are either on the 
sealing line between rotors or on the rotor tips. Since they are always located on the sealing line, their positions 
are determined by the rotor geometry.

1-No torque, 2-High torque on main, low torque on gate rotor, 3-High torque on main, low torque on gate
Fig 3 Pressure forces acting to screw compressor rotors
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In position 1, there is no contact between the rotors. Since A and B are on the circumference, the overall forces 
F1 and F2 act towards the rotor axes and thereby are purely radial. Therefore, in this position they do not create 
any torque. 

In position 2, A is only one contact point between the rotors. Forces F1 and F2 are eccentric and therefore have 
both radial and circumferential components. The latter cause the torque. Due to the force position, the torque on 
the gate (female) rotor is significantly smaller than that on the main (male) rotor.

In position 3, both contact points are on the rotors and the overall and radial forces are equal for both rotors. As 
in position 2, they cause torque.

If x is the direction parallel to the line between rotor axes O1 and O2, y is perpendicular to x and the pressure is 
denoted by letter “p”, then the torque, T, is calculated as:

 2 2 2 20.5
B

B A B A
A

T p xdx ydy p x x y y     
This equation is integrated along the profile at all shaft rotation angle steps over one complete revolution and 
thereby requires the pressure history to be expressed as a function of shaft rotation. Finally, the sum is taken of
all rotor interlobes, taking account of any phase and axial shift between them. Details of the calculation 
procedure employed are given by Stosic at al, 2005 [6].

A production air compressor, which generated higher levels of contact noise than anticipated under some 
operating conditions, was taken as a case on which to examine the validity of this approach. A well proven 
mathematical model was used to calculate the torque on the female rotor and the effect of rotor contact on 
compressor behaviour, from which the resulting noise attenuation was predicted. It was found from this that the 
prototype discharge port design was responsible for the negative pressure torque on the female rotor being 
sufficient to overcome the contact friction and oil drag effects. Since the drag force is difficult to model, some 
allowance had to be made for errors in calculation. Nonetheless, it was shown that even a small change in the 
discharge port could cause the gate rotor torque to approach zero, thereby triggering rotor instability manifested 
by acceleration and deceleration and even loss of contact with the main rotor. This would create rattling, 
identified by increased rotor mechanical noise. Further analyses showed that an alternative port design would be 
more suitable and should eliminate or at least minimize the noise resulting from inadequate rotor contact. 

Fig 4. Torque on the main and gate rotor, left and gate rotor torque right, old port light line, new port, bold line

The results of these calculations are shown in Fig 4, for two cases, namely the original port and the finally 
modified port. The calculated torque on the main and gate rotors is presented in Fig 4, left, together with the 
torque on the gate rotor, right, for the old port, with a light line, and for the new port, with a bold line. The 
torque thus shown comprises the sum of the pressure force torque and drag force torque. The results presented in 
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Fig 4 show that the old port was prone to cause gate rotor instability, while the new port minimised this effect. 
Therefore, the new port was expected to ensure quieter and more stabile compressor operation. 

3. EXPERIMENTAL PROGRAMME
In view of the uncertainty of the calculations, an experimental programme was then carried out on the prototype 
compressor to check the effects of the proposed port modifications.

The aim was to find a shape and size that simultaneously assured rotor contact at the leading flank of the male 
rotor while minimising the effects of gate rotor instability, without reducing the compressor efficiency,. Noise 
and vibration were chosen as the criteria to validate the results. Changes to the port were made progressively 
and until the best result was obtained.

The compressor was installed on the City University compressor test rig which is presented in Fig 5. The noise 
meter: SJK Scientific Ltd - Integrating Averaging Sound Level Meter HML 323 was used for noise 
measurements and piezo-resistive pressure sensors Endevco 8530C were used for measurements of pressure 
oscillations.

The noise meters were located one meter from the compressor at four positions: 1. behind the compressor 
discharge, 2.to the right of the compressor, 3. in front of the compressor and 4. to the left of the compressor. The 
pressure pulsation sensor was positioned in the compressor discharge chamber directly opposite to the discharge 
port. The compressor speed was operated over the 2000, 3500, 4500, 5500 and 6000 rpm range, with discharge 
pressures of 4, 6, 8, 10 and 12 bar. The mid point was set at 4500 rpm and 8 bar. All other compressor 
parameters such as suction and discharge pressures and temperatures, flow and power were measured in order to 
evaluate the compressor performance. 

Fig 5. Screw compressor in the test rig
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Fig 6. Discharge port sketch and photograph, original port, light line and modified port, bold line

The original and finally selected shapes of the discharge port are shown in Fig 6.

The test results conclusively confirmed that the discharge port shape, finally selected, resulted in reduced rotor 
contact noise. The results are presented in Table 1 and in Fig 7 which show a comparison of the sound pressure 
level as function of the compressor speed for the two different ports. The original compressor port caused a 
higher sound pressure level than the optimised modification. The difference is more visible at higher operating 
speeds. A comparison of the sound pressure level for the presented cases, as a function of the discharge 
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pressure, is also presented in Table 1 and given in Fig 7. A noise reduction of up to 5.7 dB is detectable over the 
whole measured domain. 
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Figure 7 Sound pressure level in function of compressor speed and discharge pressure

Gas pulsations in the discharge port are presented in Fig 8 and they correlate well with the sound measurements.
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Gas pulsation in discharge port
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Figure 8 Gas pulsations in discharge port

Table 1 Noise measurements 

Sound Pressure Level [dB]

Pressure 8 bar
Date Port Rotors

2000 rpm 3500 rpm 4500 rpm 5500 rpm 6000 rpm

18.10.2005 OLD N 88.4 93.3 98.1 102.8 101.1

20.10.2005 N N 88.00 92.60 96.00 98.00 98.90

Shaft Speed 4500 rpm
Date Port Rotors

4 bar 6 bar 8 bar 10 bar 12 bar

18.10.2005 OLD N 101.2 97 98.1 99 98.7

20.10.2005 N N 99 94.1 96 93.7 94.2

Table 2 Compressor performance at 8 bars

Compressor performance

Q P Psp
Date Port Rotors

[m3/min] [kW] [kW/m3/min]

18.10.2005 OLD N 5.0775 29.4978 5.7901

20.10.2005 N N 5.3482 30.6475 5.7211

Results of the performance measurements, which are presented in Table 2 indicate that the compressor 
efficiency was improved by 1.5 % after the port modification.
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4. CONCLUSIONS

One of the most significant sources of noise in a screw compressor is that due to rotor contact. This may be 
intensified if contact is made on the main rotor trailing flank in order to reduce interlobe leakage. In that case the 
drag forces may overwhelm the pressure forces and cause the gate rotor to flutter or even rattle. The studies
presented in this paper confirm that even small modifications in the compressor discharge ports can significantly
change the torque on the gate rotor and thereby substantially influence both compressor vibration and rotor 
noise. Experimental investigation on a prototype production compressor confirmed that, by proper port design, 
noise was reduced by up to 5.7 dB while, simultaneously the compressor efficiency was increased by up to 1%.
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