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ABSTRACT
The categorical notion of monad, used by Moggi to structure
denotational descriptions, has proved to be a powerful tool
for structuring combinator libraries. Moreover, the monadic
programming style provides a convenient syntax for many
kinds of computation, so that each library defines a new
sublanguage.

Recently, several workers have proposed a generalization
of monads, called variously “arrows” or Freyd-categories.
The extra generality promises to increase the power, ex-
pressiveness and efficiency of the embedded approach, but
does not mesh as well with the native abstraction and appli-
cation. Definitions are typically given in a point-free style,
which is useful for proving general properties, but can be
awkward for programming specific instances.

In this paper we define a simple extension to the functional
language Haskell that makes these new notions of computa-
tion more convenient to use. Our language is similar to the
monadic style, and has similar reasoning properties. More-
over, it is extensible, in the sense that new combining forms
can be defined as expressions in the host language.

1. INTRODUCTION
A useful method for implementing of domain-specific lan-

guages (DSLs) is to embed them in a general-purpose lan-
guage. Functional languages are particularly suitable, as
originally noted by Landin [19] and widely exploited since.
Hudak [11] gives a recent account.

Many of these libraries or sublanguages have a common
structure; they involve a monad, a categorical structure that
Moggi applied to the structuring of denotational descrip-
tions [22] and Wadler subsequently applied to functional
programming [30]. Much useful code can be written to the
monad abstraction, and is thus useful with each such library.

In the monad-based view of computation [22], we move
from expressions yielding values of type A to computations
of type M A, where M is a functor with certain operations.
A simple example of the monadic style of programming is
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the following Haskell [24] function that adds the results of
two computations:

addM :: Monad m ⇒ m Int → m Int → m Int
u ‘addM ‘ v = u >>= λx →

v >>= λy →
return (x + y)

Though the setting is more general, variables like x and y
still denote values, and may be bound using Haskell’s λ-
abstraction.

A neat example of a monad-based library is provided by
recursive-descent parsers [13]. One can write a set of mu-
tually recursive computations that closely mirror the origi-
nal grammar, subject to the usual limitations of top-down
parsing. However such parsers have a major flaw: they
are typically designed to backtrack on error, which is both
inefficient and makes useful error reporting very difficult.
The deterministic parsing library designed by Swierstra and
Duponcheel [28] solves these problems, but steps beyond
the world of monads. The reason is the same as the source
of the efficiency of this technique: the parser has a static
component that is independent of the input, and this would
be lost in any definition of the >>= combinator. Moreover,
as they noted, this optimization technique is applicable in
many other contexts, but the resulting libraries would not
be monadic.

Hughes [12] showed that monads could be generalized to
“arrows” relating inputs and outputs. Workers in denota-
tional semantics have proposed similar frameworks [4, 26,
27]. Such arrows may represent “procedures” that have a
static component independent of the input, or other kinds
of procedure that accept multiple inputs, as well as monadic
computations. The added generality is useful, but comes at
a cost: since procedures are no longer functions, they cannot
be manipulated using the abstraction and application fea-
tures of the underlying language. One can use a point-free
style resembling category theory, which is very convenient
for proving general properties, but can be awkward for pro-
gramming specific instances.

The contribution of this paper is to define a convenient
notation for computation corresponding to these semantic
notions, designed as an extension to the functional language
Haskell [24]. Although arrows cannot in general be factored
as functions, we are able to define limited forms of applica-
tion and abstraction, as well as a notion of control operator
for combining arrow-based computations. We also extend a
notion of feedback to arrows to support recursion. The new
constructs are defined by translation to standard Haskell.

The rest of the paper is organized as follows. In the next



arr id ≫ f = f

f ≫ arr id = f

(f ≫ g) ≫ h = f ≫ (g ≫ h)

arr (g · f ) = arr f ≫ arr g

first (arr f ) = arr (f × id)

first (f ≫ g) = first f ≫ first g

first f ≫ arr (id × g) = arr (id × g) ≫ first f

first f ≫ arr fst = arr fst ≫ f

first (first f ) ≫ arr assoc = arr assoc ≫ first f

Figure 1: Arrow equations

section we briefly review Hughes’s arrows. Section 3 presents
our proposed extension to Haskell, illustrated using an ex-
ample from [12]. A larger example, an embedded language
for regular data parallel algorithms, is described in Section 4.
In Section 5 we consider how arrows may be extended to al-
low recursive definition of values, and similarly extend our
syntax. This extension is applied in our final example, an
embedded language for circuit description, in Section 6.

Although our focus is on programming, many of the con-
cepts here are inspired by category theory. Short discussions
of the connections are given in subsections entitled Theoret-
ical Aside. These may be useful to readers with the appro-
priate theoretical background, but they are not essential to
the main development.

The extension to Haskell described here has been imple-
mented by a preprocessor that produces Haskell 98. The
preprocessor is itself written in Haskell 98, as an extension
of a Haskell parser and pretty printer written by Sven Panne,
Simon Marlow and Keith Wansborough. This paper was for-
matted from a literate script which has also been fed to the
preprocessor, and thence to Haskell implementations.

2. ARROWS
We briefly recall Hughes’s definitions from [12].

Definition 1. An arrow type is a binary type constructor
a with the following data:

class Arrow a where
arr :: (b → c)→ a b c
(≫) :: a b c → a c d → a b d
first :: a b c → a (b, d) (c, d)

satisfying the equations of Figure 1. The functions (×) and
assoc used there are defined as follows:

(×) :: (a → a ′)→ (b → b′)→ (a, b)→ (a ′, b′)
(f × g) (a, b) = (f a, g b)

assoc :: ((a, b), c)→ (a, (b, c))
assoc ((a, b), c) = (a, (b, c))

There is no need to require a second function, as it is
defined in terms of first :

second :: Arrow a ⇒ a b c → a (d , b) (d , c)
second f = arr swap ≫ first f ≫ arr swap

swap :: (a, b)→ (b, a)
swap (̃x , y) = (y , x )

The following definitions will also be useful:

(∗∗∗) :: Arrow a ⇒ a b c → a b′ c′ → a (b, b′) (c, c′)
f ∗∗∗ g = first f ≫ second g

(&&&) :: Arrow a ⇒ a b c → a b c′ → a b (c, c′)
f &&& g = arr (λb → (b, b)) ≫ f ∗∗∗ g

Note that ∗∗∗ does not in general preserve composition; for
example, the order in which effects occur is significant.

Ordinary functions are a special case

instance Arrow (→) where
arr f = f
f ≫ g = g · f
first f = f × id

The Kleisli arrows of a monad may also be cast as an arrow
type.

newtype Kleisli m a b = K (a → m b)

instance Monad m ⇒ Arrow (Kleisli m) where
arr f = K (return · f )
K f ≫ K g = K (λb → f b >>= g)
first (K f ) = K (λ(b, d)→ f b >>= λc →

return (c, d))

However, there are other important examples, as we shall
see later.

Some arrow types have additional constants. Hughes gave
a class specifying an application operator

class Arrow a ⇒ ArrowApply a where
app :: a (a b c, b) c

which is required to satisfy certain conditions [12]. The triv-
ial arrow type → and Kleisli arrow types satisfy these con-
ditions, and indeed any such arrow type is equivalent to a
Kleisli arrow type [12, 27].

Hughes also defined structures on sum types dualizing
those on product types:

class Arrow a ⇒ ArrowChoice a where
left :: a b c → a (Either b d) (Either c d)

right :: ArrowChoice a ⇒
a b c → a (Either d b) (Either d c)

right f = arr mirror ≫ left f ≫ arr mirror
where mirror (Left x ) = Right x

mirror (Right y) = Left y

(+++) :: ArrowChoice a ⇒
a b c → a b′ c′ → a (Either b b′) (Either c c′)

f +++ g = left f ≫ right g

(|||) :: ArrowChoice a ⇒
a b d → a c d → a (Either b c) d

f ||| g = f +++ g ≫ arr untag
where untag (Left x ) = x

untag (Right y) = y

As an illustration of the programming style used with ar-
rows, here is an arrow operation corresponding to addM
from the previous section:

addA :: Arrow a ⇒ a b Int → a b Int → a b Int
addA f g = f &&& g ≫ arr (λ(x , y)→ x + y)



2.1 Theoretical Aside
Similar structures have been independently proposed by

workers in denotational semantics. We give here a simpli-
fied (but equivalent) version of a definition of Power and
Thielecke [27].

Definition 2. A Freyd-category consists of

• a category V with finite products (the value category),

• a category C with the same objects as V (the compu-
tation category),

• a functor inc : V → C that is the identity on objects,

• a functor n : C × V → C such that

inc xn y = inc (x× y)

and the following natural isomorphisms in V

assoc× : (A×B)× C ∼= A× (B × C)

unitr× : A× 1 ∼= A

extend to natural isomorphisms in C:

inc assoc× : (AnB) n C ∼= An (B × C)

inc unitr× : An 1 ∼= A

The first four of Hughes’s axioms correspond to the re-
quirements of a category C and an object-preserving functor
inc (corresponding to arr). Hughes’s first corresponds to the
family of functors −nC for each object C, with the last two
of his axioms corresponding to the naturality requirements
above.

In this form, the definition is easily generalized to any
symmetric monoidal category. Nor is the assumption of
symmetry required; one merely assumes two bifunctors and
additional axioms, obtaining what Power and Robinson call
a notion of computation [26]. Even more general structures
have been explored by Blute, Cockett and Seely [4].

Hughes [12] showed that the stream processors of the Fud-
gets library [5] comprised an arrow type, but were more often
used as a dual arrow type. In Power and Robinson’s terms,
stream processors comprise a notion of computation where
the underlying monoidal structure is that of sums rather
than products.

A Freyd-category is said to be closed [27] if each functor
inc - n A : V → C has a right adjoint; this is equivalent to
Hughes’s ArrowApply class.

2.2 Deterministic Parsing
Hughes showed how Swierstra and Duponcheel’s parser li-

brary may be recast using an arrow type, say ParseArrow ,
with composition corresponding to grammatical concatena-
tion. For the empty language and union, we use the classes

class Arrow a ⇒ ArrowZero a where
zeroArrow :: a b c

class ArrowZero a ⇒ ArrowPlus a where
(<+>) :: a b c → a b c → a b c

which make sense for many kinds of arrow. An extra prim-
itive is supplied for terminal symbols.

symbol :: Sym → ParseArrow () ()

data Expr = Plus Expr Expr | Minus Expr Expr | · · ·

expr :: ParseArrow () Expr
expr = term ≫ exprTail

exprTail :: ParseArrow Expr Expr
exprTail = (

arr (λe → (e, ())) ≫
second (symbol PLUS) ≫
second term ≫
arr (λ(e, t)→ Plus e t) ≫
exprTail

) <+> (
arr (λe → (e, ())) ≫
second (symbol MINUS) ≫
second term ≫
arr (λ(e, t)→ Minus e t) ≫
exprTail

) <+> arr id

term :: ParseArrow () Expr
term = . . .

Figure 2: Expression parser using arrows

Now we can write parsers using arrow combinators. For
example, the parser in Figure 2 expresses the common ex-
ample grammar

expr ::= term exprTail

exprTail ::= PLUS term exprTail

| MINUS term exprTail

| ε

In this program the underlying grammar is obscured by all
the plumbing required to pass the results of earlier computa-
tions past later ones. (Indeed this is the reason for requiring
first in the arrow definition.) This point-free style is typical
of arrow-based programs. While convenient when defining
general combinators and laws, it can be very cumbersome
for specific definitions.

3. ARROW-BASED SUBLANGUAGES
We propose to address this problem by defining an ex-

tension to Haskell, with the meaning of new forms given by
translation rules from the new expressions back into Haskell.
This will be done in two stages. Firstly we define a syntax for
arrow expressions, which will enable us to write programs re-
sembling the raw monadic syntax (using >>= and >>). Then
on top of this we will define an analogue of Haskell’s do-
notation.

The new syntax for arrow expressions, with associated
translation rules, is given in Figure 3. An arrow expression
is defined by a new binding operator proc. The body of
such an expression is a new form, which we call a command.

3.1 Arrow Application
The simplest kind of command is the arrow application

e1 −≺ e2, where e2 is a Haskell expression to be input to
the arrow described by the Haskell expression e1. As noted
above, there is in general no notion of application of arrows,



Syntax

exp ::= . . .
| proc pat → cmd

cmd ::= exp −≺ exp
| form exp cmd1 ... cmdn

| cmd1 op cmd2

| κ pat → cmd
| (cmd)

Translation rules

proc p → e1 −≺ e2 =

8>><>>:
arr (λp → e2) ≫ e1

if Vars(p) ∩ Vars(e1) = ∅
arr (λp → (e1, e2)) ≫ app

otherwise

proc p → form e c1 ... cn =
e (proc p → c1) ... (proc p → cn)

proc p → c1 op c2 = proc p → form (op) c1 c2

proc p → κ p′ → c = proc (p, p′)→ c

Figure 3: Arrow expressions

but the rule allows two useful special cases. The first is

proc p → e1 −≺ e2 = arr (λp → e2) ≫ e1

Clearly this is meaningful only if e1 contains no variables
defined in p. A simple example of an expression for e1 is the
identity arrow

returnA :: Arrow a ⇒ a b b
returnA = arr id

Then we have

proc p → returnA −≺ e = arr (λp → e)

This arrow returnA will play a role analogous to return in
monad notation.

The second translation is

proc p → e1 −≺ e2 = arr (λp → (e1, e2)) ≫ app

This version has no such syntactic restriction, but it does
require that the arrow in use belong to the class ArrowApply ,
and thus be equivalent to a monad. Thus both rules are
needed. The rules overlap, but from the axioms of app it is
possible to show that in that case they produce equivalent
translations.

Hence we must distinguish two kinds of variables:

local variables defined in the current arrow expression.

external variables defined outside.

In this paper we shall focus on arrows that are not equiv-
alent to monads, so we shall use only the first form of arrow
application. Nevertheless, the notation may be used with a
variety of arrows, some of which are equivalent to monads.

3.2 Control Operators
Next we need a means to combine commands to make new

ones. In the monad setting, we have operators like

mplus :: MonadPlus m ⇒ m a → m a → m a

This works well, because in an expression like

e1 ‘mplus‘ e2

the two expressions may take inputs from environment vari-
ables bound in ordinary ways. However, we cannot in gen-
eral factor an arrow type as a function from inputs, so an
arrow combinator must route the inputs of the composite ex-
pression to each of the arguments. Hence the corresponding
arrow operator has the signature

(<+>) :: ArrowPlus a ⇒ a b c → a b c → a b c

In the arrow notation, a command describes an arrow from
the local environment. We can use operators to combine
commands by combining the resulting arrows, so for example
we have

proc p → c1 <+> c2 = (proc p → c1) <+> (proc p → c2)

In general an operator may be an arbitrarily complex Haskell
expression meeting certain conditions (to be given below).
The syntax requires a keyword form to distinguish these
from commands. However in the special case of infix oper-
ators we can use an abbreviated syntax as above.

Parameter Passing. Some operators pass data to their ar-
guments. For example, the monadic operator for exception
handling has the form

handle :: MonadHandle ex m ⇒
m a → (ex → m a)→ m a

If the second argument (the handler) is called, it is passed
the exception raised. The arrow form will also have two
arguments. Each will be passed the input, with the second
also being given the exception:

handleA :: ArrowHandle ex a ⇒
a b c → a (b, ex ) c → a b c

We shall adopt the convention of adding argument data by
pairing in this way. In general the input of an arrow will
have the form

((. . . (v, v1), . . .), vn)

where v is the original input, named by the proc pattern
p, and the vi are additional arguments, as yet unnamed.
The next form, the κ quantifier, applies another pattern
to the innermost argument v1 within a sub-command. A
similar quantifier occurs in the abstract machine framework
of Douence and Fradet [7], transferring a value from the
argument stack to the environment.

Thus we can write a command like

c1 ‘handleA‘ κ ex → c2

This may be read just like the corresponding monadic form:
the body c1 is executed, and if it raises an exception then
the handler c2 is called, with ex bound to the exception
raised. However, the arrow version of the operator passes
the original environment to both commands, as we can see
from the translation:

proc p → c1 ‘handleA‘ κ ex → c2

= (proc p → c1) ‘handleA‘ (proc p → κ ex → c2)
= (proc p → c1) ‘handleA‘ (proc (p, ex )→ c2)

An operator may also accept an argument from its caller in
a similar way, as in the following operator to encapsulate
state-transforming arrows:

runWithState :: . . .⇒ a b c → a ′ (b, s) c



Naturality. We stated above that an operator delivers in-
puts of the composite arrow to its components. We can
formalize this with a naturality condition for each opera-
tor. For example, the handleA operator will be required to
satisfy

arr k ≫ (f ‘handleA‘ g) =
(arr k ≫ f ) ‘handleA‘ (arr (k × id) ≫ g)

This ensures that inputs delivered by the operator to f or
g were inputs to the whole expression. In general, an input
to the whole expression need not be delivered to each argu-
ment; in the above example g is called only if an exception
occurs in f . But any input that is delivered must have been
an input to the whole arrow.

In the special case of a Kleisli arrow of a monad m, this
naturality condition ensures that the operator is equivalent
to a monadic operator. In this case, the type of handleA is
equivalent to

(b → m c)→ ((b, ex )→ m c)→ b → m c

Currying the second argument gives the type

(b → m c)→ (b → ex → m c)→ b → m c

Since this is natural in b (and the Kleisli arrows factor as
functions) it is equivalent to the type of the corresponding
monad operator

m c → (ex → m c)→ m c

Many monadic operators have similar generalizations in the
arrow setting.

Formal Definition of a Control Operator. In order to
specify which Haskell expressions may serve as control op-
erators, we need a preliminary definition:

Definition 3. Let τ stand for a Haskell value type. We
introduce a new sort of types

Command types θ ::= a\τ | τ ⇀ θ

For each Haskell type τ and command type θ, we define a
Haskell type τ ; θ as follows

τ ; a\τ ′ = a τ τ ′

τ ; (τ ′ ⇀ θ) = (τ, τ ′) ; θ

If k :: τ1 → τ2, we can define a function k ; θ :: (τ2 ; θ)→
(τ1 ; θ) by

k ; a\τ = (arr k ≫)

k ; (τ ⇀ θ) = (k × id) ; θ

Definition 4. A Haskell expression e is a control operator
of signature θ1 → · · · θn → θ if

1. No local variables occur free in e,

2. e has type

∀b. (b ; θ1)→ · · · (b ; θn)→ (b ; θ)

where b does not occur free in any of the θs, and

3. e satisfies a corresponding naturality property

e ((k ; θ1) x1) . . . ((k ; θn) xn) =

(k ; θ) (e x1 . . . xn)

expr :: ParseArrow () Expr
expr = proc ()→

(term −≺ ()) ‘bind ‘ κ t →
exprTail −≺ t

exprTail :: ParseArrow Expr Expr
exprTail = proc e → (

(symbol PLUS −≺ ())‘bind ‘
(term −≺ ()) ‘bind ‘ κ t →
exprTail −≺ Plus e t

) <+> (
(symbol MINUS −≺ ())‘bind ‘
(term −≺ ()) ‘bind ‘ κ t →
exprTail −≺ Minus e t

) <+> (returnA −≺ e)

Figure 4: Expression parser in arrow notation

The first two conditions would be checked by the imple-
mentation. It may be that the naturality property can be
obtained automatically from parametricity results.

For example, the control operator handleA has signature
a\c→ (ex ⇀ a\c)→ a\c.

Examples. Some functions we have already seen are also
examples of control operators:

(&&&) :: Arrow a ⇒ a b c → a b d → a b (c, d)
(<+>) :: ArrowPlus a ⇒ a b c → a b c → a b c
zeroArrow :: ArrowZero a ⇒ a b c

Others may be defined using the features of Haskell. For
example, the arrow counterpart of the monadic binding op-
erator >>= may be defined as

bind :: Arrow a ⇒ a b c → a (b, c) d → a b d
u ‘bind ‘ f = arr id &&& u ≫ f

Using this operator, we can redefine addA (which is also an
operator):

addA :: Arrow a ⇒ a b Int → a b Int → a b Int
addA f g = proc z →

(f −≺ z ) ‘bind ‘ κ x →
(g −≺ z ) ‘bind ‘ κ y →
returnA −≺ x + y

Another useful operator is the special case of bind where the
result of the first computation is ignored, corresponding to
the monadic >> combinator:

bind :: Arrow a ⇒ a b c → a b d → a b d
u ‘bind ‘ v = u ‘bind ‘ (arr fst ≫ v)

Now we can rewrite the arrow parser of Figure 2, obtaining
the version of Figure 4. As promised, the form of this pro-
gram is very similar to what we would write with monadic
parser combinators [13]. The point is that this program
works not merely for monadic parsers but also for any parser
that can be cast in the more general arrow form, including
the optimized ones of Swierstra and Duponcheel [28]. All
the plumbing of the previous version is hidden.



3.3 Theoretical Aside
Power and Thielecke [27] showed that each Freyd-category

is equivalent to a kind of indexed category called a κ-category.
Each category HA models computations in a context A, and
has the same objects as C, with morphism sets

HA(B,C) = C(A×B,C)

Our command sublanguage could be viewed as a language
for such indexed categories, with A corresponding to the in-
put context and B to additional arguments. The κ quantifier
then corresponds to the obvious isomorphism

HA(B × C,D) ∼= HA×B(C,D)

as in Hasegawa’s κ-calculus [9]. A control operator defines a
natural family of functions, one for each category HA. These
generalize the controls of elementary control structures [25],
which are used to model concurrency. Our definition sug-
gests a higher-order generalization, although such operators
appear to be less useful.

3.4 Type-checking of Commands
One could use the equations of Figure 3 to transform any

arrow expression into ordinary Haskell, where it will be type-
checked, but it would obviously be easier for users to deal
with a type system for the command sublanguage. There
is not room here for a formal treatment, not least because
there is no complete definition of Haskell’s type system to
refer to, but the basic ideas are simple. Each command is
assigned a command type as follows:

• If e1 :: a τ τ ′ and e2 :: τ , then e1 −≺ e2 has type a\τ ′.

• If c has type θ assuming p :: τ , then κ p → c has type
τ ⇀ θ.

• If each ci has type θi and e is a control operator of
signature θ1 → · · · θn → θ, then form e c1 ... cn has
type θ.

It follows (by induction on c) that if c has type θ assuming
p :: τ , then proc p → c :: τ ; θ, and

((λp′ → e) ; θ) (proc p → c) = proc p′ → [e/p]c

This equation expresses the naturality of commands with
respect to the environment, allowing us to change the rep-
resentation of the environment, for example to improve effi-
ciency. We shall return to this point in Section 3.7.

3.5 Equivalences
It is also useful to reason directly with commands.

Definition 5. We write c1 ≡p c2 for

proc p → c1 = proc p → c2

and c1 ≡ c2 to mean c1 ≡p c2 for all legal p.

Then we have the following equivalences for returnA and
bind , corresponding to the familiar monad laws:

(returnA −≺ e) ‘bind ‘ κ x → c ≡ [e/x]c

c ‘bind ‘ κ x → returnA −≺ x ≡ c

c1 ‘bind ‘ κ x1 → (c2 ‘bind ‘ κ x2 → c3) ≡
(c1 ‘bind ‘ κ x1 → c2) ‘bind ‘ κ x2 → c3

An arrow library would typically supply a collection of ar-
rows and operators with associated laws, ideally expressed
as equivalences between commands.

Syntax

cmd ::= . . .
| do {stmt1; ...stmtn; cmd }

stmt ::= cmd
| pat ← cmd
| rec {stmt1; ...; stmtn}

Translation rules

do {c} ≡ c

do {p ← c; A} ≡ c ‘bind ‘ κ p → do {A}
do {c; A} ≡ c ‘bind ‘ do {A}
do {rec A; B } (see Section 5.3)

Figure 5: do-notation for arrows

expr :: ParseArrow () Expr
expr = proc ()→ do

t ← term −≺ ()
exprTail −≺ t

exprTail :: ParseArrow Expr Expr
exprTail = proc e → do

symbol PLUS −≺ ()
t ← term −≺ ()
exprTail −≺ Plus e t

<+> do
symbol MINUS −≺ ()
t ← term −≺ ()
exprTail −≺ Minus e t

<+> do
returnA −≺ e

Figure 6: Expression parser using do-notation

3.6 do-notation for Arrows
We can take the correspondence further, by defining a

do-notation for commands in a similar fashion to Haskell’s
monadic do-notation. The syntax and translation rules are
given in Figure 5. The rec construct, which allows recursive
bindings, will be discussed in Section 5.3.

Then the above operator addA could be rewritten as

addA :: Arrow a ⇒ a b Int → a b Int → a b Int
addA f g = proc z → do

x ← f −≺ z
y ← g −≺ z
returnA −≺ x + y

Similarly, the parser example of Figures 2 and 4 may be
rewritten as in Figure 6, which is similar to the monadic
version, though it works for a wider variety of parsers.

3.7 Improving the Translation
The rules of Figures 3 and 5 define the meaning of the new

constructs in clear way, but may produce less efficient pro-
grams than one might have written by hand. For example,
the arrow addA above would be translated to

addA f g = arr id &&& f ≫
arr id &&& (arr (λ(z , x )→ z ) ≫ g) ≫
arr (λ((z , x ), y)→ x + y)



Note that both the original input z and the first result x
are held during the computation of g , even though z is not
required. We can project out z when it is no longer needed,
obtaining the improved version

addA f g = arr id &&& f ≫
arr (λ(z , x )→ (x , z )) ≫ second g ≫
arr (λ(x , y)→ x + y)

which is essentially equivalent to what we would write by
hand. These projections may also be moved through oper-
ators, thanks to their naturality property. The prototype
implementation incorporates many such improvements.

4. EXAMPLE: DATA PARALLELISM
For each set S, the type aS → bS defines an arrow. Such

arrows may be used to model data parallel computation;
here S represents the set of processors, and the arr oper-
ation executes the same function on each processor. Addi-
tional combinators will be required for the various opera-
tions supported by a particular model.

Here we shall focus on a special case: algorithms operat-
ing on 2n elements, whose behaviour is defined by induction
on n. These arise in circuit design (cf. Ruby [15]), and de-
scriptions of parallel algorithms (cf. Misra’s powerlists [21]).

The objects of interest then consist of infinite sequences
of functions on arrays of increasing size

∞Y
n=0

a2n

→ b2
n

We can model a2n

as Pairn a, where

type Pair a = (a, a)

Thus the elements are organized as a perfectly balanced bi-
nary tree of depth n, and we are interested in functions that
preserve this depth. We call them “homogeneous functions”
and model them with the following Haskell datatype:

data Hom a b = (a → b) :&: Hom (Pair a) (Pair b)

Elements of this type have the form

f0 :&: f1 :&: f2 :&: . . .

where fn :: Pairn a→ Pairn b.
Before writing programs with this datatype, we need a

framework for executing them. We will define a type for
perfectly balanced binary trees:

data BalTree a = Zero a | Succ (BalTree (Pair a))
deriving Show

Here are some example elements:

tree0 = Zero 1
tree1 = Succ (Zero (1, 2))
tree2 = Succ (Succ (Zero ((1, 2), (3, 4))))
tree3 = Succ (Succ (Succ (Zero (((1, 2), (3, 4)),

((5, 6), (7, 8))))))

The elements of this type have a string of constructors ex-
pressing a depth n as a Peano numeral, enclosing a nested
pair tree of 2n elements.

The following function applies a homogeneous function
to a perfectly balanced tree, yielding another perfectly bal-
anced tree of the same depth:

apply :: Hom a b → BalTree a → BalTree b
apply (f :&: fs) (Zero x ) = Zero (f x )
apply (f :&: fs) (Succ t) = Succ (apply fs t)

Few other operations can be expressed in terms of the bal-
anced tree type. Typically one wants to split a tree into two
subtrees, do some processing on the subtrees and combine
the results. But the type system cannot discover that the
two results are of the same depth (and thus combinable).
Of course, this is exactly what homogeneous functions can
do, so we shall focus on them; the balanced tree type is used
only for test runs of our algorithms.

Firstly, Hom is an arrow:

instance Arrow Hom where
arr f = f :&: arr (f × f )
(f :&: fs) ≫ (g :&: gs) = (g · f ) :&:(fs ≫ gs)
first (f :&: fs) = first f :&:

(arr transpose ≫ first fs ≫ arr transpose)

transpose :: ((a, b), (c, d))→ ((a, c), (b, d))
transpose ((a, b), (c, d)) = ((a, c), (b, d))

The function arr maps a function over the leaves of the
tree. The composition ≫ composes sequences of functions
pairwise. The ∗∗∗ operator unriffles a tree of pairs (a, b) into
a tree of as and a tree of bs, applies the appropriate function
to each tree and riffles the results.

When describing algorithms, one often provides a pure
function for the base case (trees of one element) and a ex-
pression for trees of pairs, usually invoking the same algo-
rithm on smaller trees.

Parallel Prefix. This operation (also called scan) maps the
sequence

x0, x1, x2, . . . , x2n−1

to the sequence

x0, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, . . . , x0 ⊕ x1 ⊕ · · · ⊕ x2n−1

for some associative operation ⊕.
If there is only one element (i.e. the tree has zero depth)

then obviously the scan should be the identity function.
Otherwise, we need to deal with a tree of pairs, so the gen-
eral scan operation will have the form

scan :: (a → a → a)→ a → Hom a a
scan (⊕) b = id :&: proc (x , y)→ ...

where b is the identity of the ⊕ operation1. The missing part
will be defined using recursive calls of scan, but operating
on smaller trees.

An efficient scheme, devised by Ladner and Fischer [18],
is first to sum the elements pairwise:

x0 ⊕ x1, x2 ⊕ x3, x4 ⊕ x5, . . .

and then to compute the scan of this list (which is half the
length of the original), yielding

x0 ⊕ x1, x0 ⊕ x1 ⊕ x2 ⊕ x3, x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5, . . .

This list is half of the desired answer; the other elements are

x0, x0 ⊕ x1 ⊕ x2, x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4, . . .

1It is possible to do without the identity, at the cost of
slightly complicating the code.



which can be obtained by shifting our partial answer one
place to the right and adding x0, x2, x4, . . .. We can express
this idea directly in our notation:

scan :: (a → a → a)→ a → Hom a a
scan (⊕) b = id :&: proc (x , y)→ do

y ′ ← scan (⊕) b −≺ x ⊕ y
yl ← rsh b −≺ y ′

returnA −≺ (yl ⊕ x , y ′)

The auxiliary arrow rsh b shifts each element in the tree
one place to the right, placing b in the now-vacant leftmost
position, and discarding the old rightmost element. This
could be supplied as a primitive, but it is also possible to
code it directly:

rsh :: a → Hom a a
rsh b = const b :&: proc (x , y)→ do

yl ← rsh b −≺ y
returnA −≺ (yl , x )

Butterfly Circuits. In many divide-and-conquer schemes,
one recursive call processes the odd-numbered elements and
the other processes the even ones [14]:

butterfly :: (Pair a → Pair a)→ Hom a a
butterfly f = id :&: proc (x , y)→ do

x ′ ← butterfly f −≺ x
y ′ ← butterfly f −≺ y
returnA −≺ f (x ′, y ′)

The recursive calls operate on halves of the original tree, so
the recursion is well-defined. (The Fast Fourier Transform
has a similar structure.) Some examples of butterflies:

rev :: Hom a a
rev = butterfly swap

unriffle :: Hom (Pair a) (Pair a)
unriffle = butterfly transpose

Batcher’s ingenious sorter for bitonic sequences [1] is another
example of a butterfly circuit:

bisort :: Ord a ⇒ Hom a a
bisort = butterfly cmp

where cmp (x , y) = (min x y ,max x y)

This can be used (with rev) as the merge phase of a sorting
function.

5. RECURSION
Since arrows are Haskell values, they may be recursively

defined in the usual way, as we have seen. A different kind
of recursion involves recursive definition of values within a
computation, where an output is used as an input. To ex-
press this, we will define a feedback operator on arrows,
though not all arrows will have such an operator. We ex-
pect that it would generalize the fixed point operator on
monads, which has signature

class Monad m ⇒ MonadFix m where
mfix :: (a → m a)→ m a

An axiomatization of this operator is given by Erkök and
Launchbury [8]. Not all monads have such an operator,
but several important ones do, including state transformers,
readers, writers and Haskell’s built-in monads ST and IO .

The straightforward generalization of mfix would be the
class

class Arrow a ⇒ ArrowFix a where
fixA :: a (b, c) c → a b c

This could work, but it is neater to separate the output from
the feedback data, giving the more symmetrical definition

class Arrow a ⇒ ArrowLoop a where
loop :: a (b, d) (c, d)→ a b c

The trivial arrow type has such an operator:

instance ArrowLoop (→) where
loop = simple loop

simple loop :: ((b, d)→ (c, d))→ b → c
simple loop f b = c wherẽ (c, d) = f (b, d)

Monads with mfix give rise to Kleisli arrows with a loop
operator:

instance MonadFix m ⇒
ArrowLoop (Kleisli m) where

loop (K f ) = K (liftM fst ·mfix · f ′)
where f ′ x y = f (x , snd y)

We shall require that the loop operator satisfy the equa-
tions of Figure 7. These axioms are also presented in a
graphical form in Figure 8. Here the ovals represent loop
operators, which feed part of the output of the arrow inside
back to its input.

Our intent, as with mfix , is that a value is recursively
defined, but the computation is executed only once. Thus
computations at the start or end that are independent of
the recursively defined value can by moved out of loop, us-
ing the tightening rules. On the other hand, the sliding rule
can move only pure computations on the recursively defined
value from the end of the loop to the start; moving gen-
eral computations would change the order of computational
effects. The vanishing rule states that nested recursive defi-
nitions are equivalent to simultaneous recursive definitions.
Superposing adds unrelated data to the recursion. Finally,
we require that loop should extend simple loop.

Instances of loop for specific arrows may well satisfy ad-
ditional axioms. For example, effect-free synchronous cir-
cuits would satisfy a stronger version of the sliding axiom,
in which arbitrary circuits could be moved around the loop.

5.1 Theoretical Aside
The simple loop operator is an example of a trace oper-

ator, as defined by Joyal, Street and Verity [16, 10]. Their
definition assumed a braided monoidal category (a relax-
ation of a symmetric monoidal category). The equations of
Figure 7 generalize their axioms to Freyd-categories, and the
names of all but the last are taken from the corresponding
trace axioms.

In this setting, loop defines a family of functions

C(B nD,C nD)→ C(B,C)

Then the tightening rules amount to naturality in B and C,
while sliding specifies dinaturality in D.



Left tightening loop (first h ≫ f ) = h ≫ loop f

Right tightening loop (f ≫ first h) = loop f ≫ h

Sliding loop (f ≫ arr (id × k)) = loop (arr (id × k) ≫ f )

Vanishing loop (loop f ) = loop (arr assoc−1 ≫ f ≫ arr assoc)

Superposing second (loop f ) = loop (arr assoc ≫ second f ≫ arr assoc−1)

Extension loop (arr f ) = arr (simple loop f )

Figure 7: Loop equations
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Figure 8: Loop equations in graphical form

It is straightforward to further generalize the signature of
loop and these axioms to any symmetric notion of compu-
tation. Indeed the Fudgets stream processor library [5] al-
ready includes a version of loop based on sums rather than
products.

5.2 Comparison with mfix
Our axioms, restricted to the special case of Kleisli ar-

rows, may be compared to the axiomatization of mfix given
by Erkök and Launchbury [8]. The three axioms they pos-
tulate correspond to our extension, left tightening and van-
ishing axioms respectively. They reject a possible law cor-
responding to right tightening, because it fails for certain
monads, the most important of which are those involving
exceptions. Parametricity of mfix implies a weaker form of
the sliding law, in which k must be strict, and this proves
to be necessary for the exception monads. They suggest
that a slightly stronger version of parametricity holds for all
monads of interest; this would imply a counterpart of the
superposing law.

It may be that a similar relaxation would be desirable in
the arrow context. For example, a loop operator on parser
arrows could be used to pass attributes between parsers in
either direction. (The parsers themselves are values of arrow
type, and would be recursively defined using the ordinary
recursion of Haskell.) However, such a loop operator would
not satisfy the right tightening axiom, because the compu-
tation h might cause the parse to fail, which would make the
attributes undefined if h were inside the loop. Similarly the

sliding axiom would fail for non-strict k, if the parse inside
the loop were to fail.

5.3 Extending the do-notation
We could use the loop operator directly, but is is more

convenient to add recursive bindings to our do-notation,
as foreshadowed in Figure 5. We use a form modelled on
the recursive let (O’Haskell [23] has a similar notation for
monadic do), rather than the recursive do of Erkök and
Launchbury. This form is more flexible, and has a simple
correspondence to loop, given by the following translation
rule:

do {rec A; B } ≡ do pB ← form loop (κ pA→ do
A
returnA −≺ (pA, pB))

B

where pA is a pattern containing those variables defined in
A that are required in A, and pB is a pattern containing
those variables defined in A that are required in B .

6. EXAMPLE: SYNCHRONOUS CIRCUITS
A synchronous circuit receives an input and produces an

output on each tick of some global clock. The output for
a given tick may depend on the input for that tick, as well
as previous inputs. Such circuits fit well with the data-flow
model of computation, and several languages of that type
have been used to model them [2, 6, 29].



Consider the following simple circuit (taken from [20]):
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reset

next
DELAY 0

COND
CONST 0 out

INCR

This circuit represents a resettable counter, taking a Boolean
input and producing an integer output, which will be the
number of clock ticks since the input was last True. To
achieve this, the output is incremented and fed back, delayed
by one clock cycle. The first output of the delay component
is its argument, here 0; its second output is its first input,
and so on.

Hardware description languages embedded in Haskell can
achieve considerable flexibility by parameterizing descrip-
tions over type classes. The microarchitecture design lan-
guage Hawk [20] abstracts over the type of values that may
pass through wires. Low-level descriptions deal with bits
(Bool), but any Haskell type may be used, allowing Hawk
to scale to much more abstract descriptions, and also allow-
ing the same circuit description to be simulated or symboli-
cally executed. Further interpretations are possible with the
hardware description language Lava [3], where circuits have
the form

V alue→Monad V alue′

where both value and monad types are parameters described
by Haskell classes. By selecting appropriate instances, a
single description may be simulated, symbolically executed
or presented in a variety of styles2.

6.1 A Circuit Class
We propose to generalize, treating circuits as arrows, so

that a wider range of interpretations will be possible. It
suffices to consider circuits with a single input and output,
because multiple inputs may be treated as input of a tuple,
and similarly for output.

• The arr operation defines circuits where each output is
a pure function of the corresponding input (e.g. cond
and incr in the above circuit).

• Composition connects the output of the first circuit to
the input of the second.

• The first operation channels part of the input to a
subcircuit, with the rest copied directly to the output.

As usual, we shall require additional operations. We define
circuits as arrows that support cycles and a delay arrow:

class ArrowLoop a ⇒ ArrowCircuit a where
delay :: b → a b b

The argument supplies the initial output; subsequent out-
puts are copied from the input of the previous tick. A circuit
built with loop must include a delay somewhere on its second
input before using it, as in the example above. One could

2The most recent release of Lava has however removed mon-
ads from the language, partly by pushing impure features
into their variant of Haskell.

newtype SeqMap b c = SM (Seq b → Seq c)

instance Arrow SeqMap where
arr f = SM (mapSeq f )
SM f ≫ SM g = SM (g · f )
first (SM f ) =

SM (zipSeq · (f × id) · zipSeq−1)

instance ArrowLoop SeqMap where
loop (SM f ) =

SM (simple loop (zipSeq−1 · f · zipSeq))

instance ArrowCircuit SeqMap where
delay x = SM (Cons x )

Figure 9: A circuit arrow type

enforce this by combining the two in a single construct, but
the present formulation is better suited to algebraic manip-
ulation.

Here is the resettable counter circuit in arrow notation:

counter :: ArrowCircuit a ⇒ a Bool Int
counter = proc reset → do

rec next ← delay 0 −≺ out + 1
out ← returnA −≺

if reset then 0 else next
returnA −≺ out

This corresponds rather directly to the graphical presenta-
tion given earlier. The variables denote the values passing
through wires on a particular clock tick.

6.2 Interpretations
One implementation uses an idea introduced by Kahn [17]:

components define functions from infinite sequences of in-
puts to infinite sequences of outputs. This idea is the basis
for several data-flow languages [2, 6, 29], for which hardware
simulation is just one application, as well as the microarchi-
tecture design language Hawk mentioned above.

Infinite sequences may be modelled in Haskell by defining

data Seq a = Cons a (Seq a)

A circuit description in Hawk consists of a simultaneous re-
cursive definition of several such sequences (there called sig-
nals), each representing the entire sequence of values that
pass through a particular wire over time. We can use this
idea to define a circuit arrow type as in Figure 9. The defi-
nitions use the obvious functions

mapSeq :: (a → b)→ Seq a → Seq b
zipSeq :: (Seq a,Seq b)→ Seq (a, b)
zipSeq−1 :: Seq (a, b)→ (Seq a,Seq b)

The underlying model is the same as in Hawk, but program-
ming with arrows has a different feel. In Hawk one works
with circuits and wires, with variables denoting the entire
history of wires. Each primitive operation on values must
be lifted to an operation on sequences, and one often has to
convert back and forth between tuples of sequences and se-
quences of tuples. In the arrow formulation, one works with
circuits and values. The conversions are still happening, but



they are built into the arrow combinators, and thus hidden
by the arrow notation.

Other implementations of the ArrowCircuit class are pos-
sible. Instead of maps of sequences, we could use automata
that map an input to an output and a new circuit, as follows:

newtype Auto b c = A (b → (c,Auto b c))

The external behaviour is the same, but this interpretation
may have different operational characteristics.

We can define further implementations, and thus addi-
tional interpretations, by two strategies.

1. We can generalize the types SeqMap and Auto, replac-
ing the function type with an arrow parameter, so that
they become arrow transformers that may be applied
to any arrow type that provides loop, such as state
transformers.

2. Alternatively, we can apply other arrow transformers
to an existing circuit arrow type to create a new one
with additional features.

For example, to add debugging probes to circuits, we define
a class

class ArrowCircuit a ⇒ ProbedCircuit a where
probe :: Show b ⇒ String → a b ()

so we can extend the counter example

counter :: ProbedCircuit a ⇒ a Bool Int
counter = proc reset → do

rec probe "Reset" −≺ reset
next ← delay 0 −≺ out + 1
out ← returnA −≺

if reset then 0 else next
probe "Output" −≺ out

returnA −≺ out

The intention is that when this circuit is run, the sequence
of values passing through the named wires will be recorded.
Achieving this in Hawk seems to require non-declarative ex-
tensions to Haskell [20].

In the arrow setting, we can use the second technique
above, defining a Writer arrow transformer that adds out-
put to any arrow, and indeed preserves all the ArrowCircuit
structure, as in Figure 10. (We have used the Haskell string
output type ShowS , but this is easily generalized to any
monoid). The simulator may then pick off the probe output
from the circuit outputs.

6.3 Conditionals
All the interpretations considered above are also instances

of ArrowChoice. For example, here is an instance for the
SeqMap type:

instance ArrowChoice SeqMap where
left (SM f ) =

SM (λxs → replace xs (f (getLeft xs)))

getLeft :: Seq (Either a b)→ Seq a
getLeft (Cons (Left x ) xs) = Cons x (getLeft xs)
getLeft (Cons (Right ) xs) = getLeft xs

replace :: Seq (Either a b)→ Seq c → Seq (Either c b)
replace (Cons (Left ) xs )̃ (Cons y ys) =

Cons (Left y) (replace xs ys)
replace (Cons (Right x ) xs) ys =

Cons (Right x ) (replace xs ys)

newtype Writer a b c = W (a b (c,ShowS))

instance Arrow a ⇒ Arrow (Writer a) where
arr f = W (arr (λx → (f x , id)))
W f ≫ W g = W (proc x → do

(y , s1 )← f −≺ x
(z , s2 )← g −≺ y
returnA −≺ (z , s1 · s2 ))

first (W f ) = W (proc (x , y)→ do
(x ′, s)← f −≺ x
returnA −≺ ((x ′, y), s))

instance ArrowLoop a ⇒
ArrowLoop (Writer a) where
loop (W f ) = W (proc b → do

rec̃ (̃ (c, d), s)← f −≺ (b, d)
returnA −≺ (c, s))

instance ArrowCircuit a ⇒
ArrowCircuit (Writer a) where
delay x = W (delay x &&& arr (const id))

write :: Arrow a ⇒Writer a ShowS ()
write = W (arr (λs → ((), s)))

instance ArrowCircuit a ⇒
ProbedCircuit (Writer a) where
probe label = proc x →

write −≺ showString label ·
showString " = "·
shows x · showChar ’\n’

Figure 10: Adding output to an arrow

The subsequence of inputs tagged with Left is extracted by
getLeft and fed to the subcircuit f . The outputs of f are
then tagged with Left and merged with the original sequence
by replace, replacing the corresponding inputs. The effect is
to conditionally propagate the clock to subcircuits, as with
the when construct of Lustre [6].

For arrows in ArrowChoice, we can define conditional
commands as follows (case commands may be defined sim-
ilarly):

proc p → if e then c1 else c2 =
arr (λp → if e then Left p else Right p) ≫
(proc p → c1) ||| (proc p → c2)

A circuit inside an if -then-else command only takes an
input and produces an output on clock ticks for which the
condition is true. For example, the command

if b then counter −≺ reset
else counter −≺ reset

is not equivalent to counter −≺ reset , because it maintains
two counters, only one of which is reset or incremented on
each clock tick (depending on the value of b on that tick).

7. CONCLUSION
Arrow types, as defined by Hughes, or the equivalent

Freyd-categories defined by Power and Thielecke, provide
useful expressiveness beyond that of monads. We have shown



how a simple and useful arrow-based sublanguage may be
embedded in the functional language Haskell. As with the
monadic style, we can use the full machinery of the host
language in defining new operators, and thus defining new
sublanguages. We have explored three examples here, but
expect that many existing DSLs could be simplified and
strengthened by being recast in this form.
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