Numerical Simulation of Fluid Flow and Solid Structure in Screw Compressors

Ahmed Kovačević, Nikola Stošić, I.K. Smith

Centre for Positive Displacement Compressor Technology
City University London, UK
Screw compressor working principle
Flow and Deformation

Screw compressor performance is affected by:

- Temperature and pressure field,
- Distortion of rotors and housing,
- Reverse effects to the flow,
- Leakage through the gaps,
- Rotor wear or even seizure in extreme cases

One-Dimensional models assume that:

- Effects of pressure and temperature distortions are negligible!?

To overcome that:

3-D flow and stress calculation

CCM (Computational Continuum Mechanics) ⇒ FSI (Fluid – Solid Interaction)
Problems associated with numerical analysis and operation of Screw Machines

- Geometry ratio 300-1000
- Regions of highly turbulent flow and fully laminar flow
- Transonic velocities
- Large pressure gradients
- High temperature
- Rotor distortions
- Multi phase flow
CCM in Screw Compressors

- A commercial CCM solver(s) capable for efficient calculation
- “Expert system” for application in screw compressor

METHOD: Advanced Grid Generation & commercial CCM solver
- Finite volume method, block-structured hexahedral mesh
- Moving domains, sliding boundaries
- Automatic running and analysis of the results

TOOL: SCORG - Analytical grid generation & Pre-processor
- Multidimensional stretching Hermite transfinite interpolation,
- Boundary adaptation, smoothing, orthogonalisation and regularity check,
- Fast and reliable calculation of thermodynamic properties of real fluids
- Multiphase flow, novel boundary conditions, mesh movement
- Simultaneous generation and calculation of fluid/solid interaction
- Automatic transfer to the CCM solver, Post-processing
Screw Compressor FSI calculations

Conservation laws: continuity, momentum, energy, concentration and space

\[
\frac{d}{dt} \int_V \rho \phi dV + \int_S \rho \phi (\mathbf{v} - \mathbf{v}_s) \cdot dS = \int_S \Gamma_\phi \nabla \phi \cdot dS + \int_S q_{\phi S} \cdot dS + \int_V q_{\phi V} \cdot dV
\]

<table>
<thead>
<tr>
<th></th>
<th>(\phi)</th>
<th>(\Gamma_\phi)</th>
<th>(q_{\phi S})</th>
<th>(q_{\phi V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluid momentum</td>
<td>(\mathbf{v}_i)</td>
<td>(\mu_{\text{eff}})</td>
<td>(\left[\mu_{\text{eff}} (\nabla \mathbf{v})^T - \left(\frac{2}{3} \mu_{\text{eff}} \nabla \cdot \mathbf{v} + p \right) I \right] \cdot \mathbf{i}_i)</td>
<td>(f_{b,i})</td>
</tr>
<tr>
<td>Solid momentum</td>
<td>(\frac{\partial u_i}{\partial t})</td>
<td>(\eta)</td>
<td>(\left[\eta (\nabla \mathbf{u})^T + \left(\lambda \nabla \cdot \mathbf{u} - 3K \alpha \Delta T \right) I \right] \cdot \mathbf{i}_i)</td>
<td>(f_{b,i})</td>
</tr>
<tr>
<td>Energy</td>
<td>(e)</td>
<td>(\frac{k}{\partial e/\partial T} + \frac{\mu_i}{\sigma_T})</td>
<td>(\frac{k}{\partial e/\partial T} \frac{\partial e}{\partial p} \cdot \nabla p)</td>
<td>(T \cdot \nabla \mathbf{v} + \mathbf{h})</td>
</tr>
<tr>
<td>Concentration</td>
<td>(c_i)</td>
<td>(\rho D_{i,\text{eff}})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Space</td>
<td>(\frac{1}{\rho})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turbulent kinetic energy</td>
<td>(K)</td>
<td>(\mu + \frac{\mu_i}{\sigma_k})</td>
<td>0</td>
<td>(P - \rho \varepsilon)</td>
</tr>
<tr>
<td>Dissipation</td>
<td>(\varepsilon)</td>
<td>(\mu + \frac{\mu_i}{\sigma_\varepsilon})</td>
<td>0</td>
<td>(C_1 \frac{\varepsilon}{k} - C_2 \rho \left(\frac{\varepsilon^2}{k} - C_3 \rho \varepsilon \right) \nabla \mathbf{v})</td>
</tr>
</tbody>
</table>

\[\rho = \rho(p,T), \quad e = e(p,T) \]

Constitutive relations, equation of state and turbulence model.
Pre-processing

- **Multiphase flow**
 - Oil - passive ‘species’ - exchange heat with gas
 - Liquid phase – active ‘species’ – exchange mass

- **Boundary conditions**
 - Suction, discharge, oil port receivers
 - Walls close the system
 - Mass is added to retain constant pressure

- **Properties of real fluids**
 - Based on the reality factor
 - Calculate compressibility factor
 - 2% error, fast calculation

- **User subroutines:** mesh movement, initial conditions, source terms
- **Control parameters** for CCM solver
Performance

- Volume flow (inlet and outlet)

- Mass flow (inlet, outlet, oil)

- Boundary forces

- Restraint Forces and Torque

- Compressor shaft power

- Specific power

- Efficiency

Volumetric and adiabatic

\[
\dot{V} = 60 \cdot \sum_{t=t_{\text{start}}}^{t_{\text{end}}} \dot{V}_{f}^{(i)} \left[\frac{m^3}{\text{min}} \right], \quad \dot{V}_{f}^{(i)} = \sum_{i=1}^{I} v_{fi} S_{fi}
\]

\[
\dot{m} = \sum_{t=t_{\text{start}}}^{t_{\text{end}}} \dot{V}_{f}^{(i)} \cdot \overline{\rho}^{(i)} \left[\frac{\text{kg}}{\text{sec}} \right]
\]

\[
F_x = p_b \cdot A_{xb}; \quad F_y = p_b \cdot A_{yb}; \quad F_z = p_b \cdot A_{zb}
\]

\[
F_{rS} = \sum_{i=1}^{I} F_{rS}(i), [N]; \quad F_{rD} = \sum_{i=1}^{I} F_{rD}(i), [N]
\]

\[
F_a = \sum_{i=1}^{I} F_a(i), [N]; \quad T = \sum_{i=1}^{I} T(i), [Nm]
\]

\[
P = 2 \cdot \pi \cdot n \cdot (T_M + T_F) \quad [\text{W}]
\]

\[
P_{\text{spec}} = \frac{P}{\dot{V}} \cdot 1000 \left[\frac{\text{kW}}{m^3 \text{min}} \right]
\]

\[
\eta_v = \frac{\dot{V}}{V_d}; \quad \eta_i = \frac{P_{ad}}{P}
\]
Grid generation

Block structured mesh for solid (rotors) and fluid passages

- Rack generating procedure
- Basic geometrical parameters
- Discretisation on boundaries
- Multiparameter adaptation

- Transfinite interpolation
- Hermite blending functions
- Multidimensional stretching functions
- Orthogonalization
- Smoothing
- Regularity check
Cross sectional view of numerical meshes

Rotors: 189,144
Entire mesh: 353,084

Rotors: 322,560
Entire mesh: 448,830

Rotors: 515,520
Entire mesh: 637,790
Moving mesh generated by SCORG
<table>
<thead>
<tr>
<th>SCORG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw COmpressor Rotor Geometry grid generator</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Rot (nang, nast, naen, irot)</td>
</tr>
<tr>
<td>Transf (imin, imax, jmin, jmax, ntr)</td>
</tr>
<tr>
<td>Rack (nang, nada)</td>
</tr>
<tr>
<td>Simple (imin, imax, jmin, jmax, ntr)</td>
</tr>
<tr>
<td>Distr (irot, ka, idi, ma)</td>
</tr>
<tr>
<td>Ortho (imin, imax, jmin, jmax)</td>
</tr>
<tr>
<td>Mesh (nang, nada, irot, ntr, imesh)</td>
</tr>
<tr>
<td>Gridsm (imin, imax, jmin, jmax, ir)</td>
</tr>
<tr>
<td>Inlet (irot, fi1c, radd, nn1, nn2, irax, imesh, nang)</td>
</tr>
<tr>
<td>Grireg (imin, imax, jmin, jmax, ir)</td>
</tr>
<tr>
<td>Outlet (irot, fi1c)</td>
</tr>
<tr>
<td>Smooth (ra, ar, fip, fik, dfi, ns, nsp)</td>
</tr>
<tr>
<td>Prep (radd, nd, om1, pinl, pout, nang, irax)</td>
</tr>
<tr>
<td>Names (iang)</td>
</tr>
<tr>
<td>Check (npos, jro, ynew)</td>
</tr>
<tr>
<td>Circ (r, nt, a, fip, fik, dfi, jhoce)</td>
</tr>
<tr>
<td>Equal (mp, m, np, n, j)</td>
</tr>
<tr>
<td>Celreg (i, j)</td>
</tr>
</tbody>
</table>
FSI for screw compressor

Configuration 5/6

\[d_1 = 126.7 \text{ mm}, \quad d_2 = 101.4 \text{ mm}, \quad a = 90 \text{ mm} \]
\[l = 212 \text{ mm}, \quad l/d = 1.66, \quad \text{wrap angle} = 320 \text{ deg} \]

Nominal clearance 65 mm

n = 5000 rpm

442 130 cells, 25 time steps/cycle
FSI for screw compressor

Examples:

Case 1: Oil injected air screw compressor
\(P_{\text{inl}} = 1 \) bar, \(P_{\text{out}} = 6, 7, 8, 9 \) bar
\(t_{\text{inl}} = 20 \) degC, \(t_{\text{out}} = 40 \) degC

Case 2: Dry air screw compressor
\(P_{\text{inl}} = 1 \) bar, \(P_{\text{out}} = 3 \) bar
\(t_{\text{inl}} = 20 \) degC, \(t_{\text{out}} = 150 \) degC

Case 3: High pressure oil injected screw compressor
\(P_{\text{inl}} = 30 \) bar, \(P_{\text{out}} = 90 \) bar
\(t_{\text{inl}} = 0 \) degC, \(t_{\text{out}} = 40 \) degC
Oil injected – Pressure/Velocity

'N' rotors 5/6
Velocity
Pressure

-1.000e+04
5.600e+04
1.220e+05
1.880e+05
2.540e+05
3.200e+05
3.860e+05
4.520e+05
5.180e+05
5.840e+05
6.500e+05
Oil injected - Pressure 3D view
Oil injected - Oil concentration
Oil injected - Oil distribution 3D view
Experimental verification

- Test rig enables oil flooded and dry air compressors to be measured. Limits:
 - Power \(\leq 100 \text{ kW} \)
 - Delivery \(\leq 16 \text{ m}^3/\text{min} \)
- High accuracy test equipment
- \(p-\alpha \) diagram – piezoelectric transducers
- Computerized data logger
- Real time calculation and presentation

- Meets Pneurop/Cagi standards
- Compressor tested to ISO 1706
- Flow measurements BS 5600
- Certified by Lloyd’s of London
P-α diagram

P-α diagram for the Screw Compressor
'N' profile, 6/6, 128mm, 5000rpm

Pressure [bar]

Angle of rotation [deg]
Integral parameters – Power, Delivery

Screw compressor integral parameters
‘N’ Profile, 5/6, 128 mm, 5000 rpm
Oil injected

$P_{inl} = 1 \text{ b} \quad P_{out} = 7 \text{ b} \quad n = 5000 \text{ rpm}$

$t_{inl} = 20 \degree \text{C} \quad t_{out} = 40 \degree \text{C} \quad \text{mag} = 20,000 \times$
Oil free

\[P_{\text{in}} = 1 \text{ b} \quad P_{\text{out}} = 3 \text{ b} \quad n = 5000 \text{ rpm} \]

\[t_{\text{in}} = 20 \degree \text{C} \quad t_{\text{out}} = 150 \degree \text{C} \quad \text{mag} = 1,000 \times \]
High pressure oil injected

$P_{inl}=30\, \text{b}$ $P_{out}=90\, \text{b}$ $n=5000\, \text{rpm}$

$t_{inl}=0\, ^\circ\text{C}$ $t_{out}=40\, ^\circ\text{C}$ $mag=2,000\times$
FSI integral parameters

Power-Flow diagram

Screw compressor integral parameters
"N" Profile, 5/6, 128 mm, 5000 rpm
FSI integral parameters

Screw compressor integral parameters
"N" Profile, 5/6, 128 mm, 500 rpm

Specific Power [kW/m³/min] vs Flow [m³/min] diagram

- $P = 7$ bar
- $P = 6$ bar

City University London
CONCLUSIONS

- Compressor rotors deform. Due to that, clearances change. That influence internal leakage, and deteriorate compressor performance.

- Computational continuum mechanics is employed to analyse interaction between fluid and solid,

- **SCORG** - A stand alone program is developed to transfer screw compressor geometry and parameters to CCM solver automatically;

- **COMET GMBH** ICCM was used for CCM calculation;

- Calculation results for oil injected compressor are compared with measurements

- Method is used to estimate influence of rotor deflection on overall screw compressor parameters.