
Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

BIG CHORD DATA EXTRACTION AND MINING

Mathieu Barthet1, Mark D. Plumbley1, Alexander Kachkaev2, Jason Dykes2, Daniel Wolff2, Tillman Weyde2

1 Centre for Digital Music, Queen Mary University of London
2 City University London

Correspondence should be addressed to: m.barthet@qmul.ac.uk

Abstract: Harmonic progression is one of the cornerstones of tonal
music composition and is thereby essential to many musical styles
and traditions. Previous studies have shown that musical genres and
composers could be discriminated based on chord progressions modeled
as chord n-grams. These studies were however conducted on small-scale
datasets and using symbolic music transcriptions.
In this work, we apply pattern mining techniques to over 200,000
chord progression sequences out of 1,000,000 extracted from the I Like
Music (ILM) commercial music audio collection. The ILM collection
spans 37 musical genres and includes pieces released between 1907
and 2013. We developed a single program multiple data parallel
computing approach whereby audio feature extraction tasks are split
up and run simultaneously on multiple cores. An audio-based chord
recognition model (Vamp plugin Chordino) was used to extract the
chord progressions from the ILM set. To keep low-weight feature sets,
the chord data were stored using a compact binary format. We used the
CM-SPADE algorithm, which performs a vertical mining of sequential
patterns using co-occurence information, and which is fast and efficient
enough to be applied to big data collections like the ILM set. In order
to derive key-independent frequent patterns, the transition between
chords are modeled by changes of qualities (e.g. major, minor, etc.)
and root keys (e.g. fourth, fifth, etc.). The resulting key-independent
chord progression patterns vary in length (from 2 to 16) and frequency
(from 2 to 19,820) across genres. As illustrated by graphs generated
to represent frequent 4-chord progressions, some patterns like circle-
of-fifths movements are well represented in most genres but in varying
degrees.
These large-scale results offer the opportunity to uncover similarities
and discrepancies between sets of musical pieces and therefore to build
classifiers for search and recommendation. They also support the
empirical testing of music theory. It is however more difficult to derive
new hypotheses from such dataset due to its size. This can be addressed
by using pattern detection algorithms or suitable visualisation which we
present in a companion study.

1. INTRODUCTION

In Western tonal music, chord progressions form one of the funda-
mental building blocks of musical structure. A chord progression
is a series of two or more chords the qualities and order of which
contribute to establishing or changing the tonality of a musical piece
founded on a given key. Although the space of chord progressions is
more constrained than the space of melodies in a tonal system, due
to perceptual considerations and harmonic rules [1], determining
which of all possible chord progressions are sensible ones is not
straightforward. In this study, we adopt a bottom-up, data-driven,
approach to chord progression analysis, as in [2], as opposed to
a top-down approach which would rely on a predefined set of
rules fitting a chord progression model. Assuming that adequate
data mining techniques and large enough datasets are employed,
such approach offers the potential to uncover exemplar or idiomatic
chord progressions directly from empirical data analyses.
Building a chord progression model that would encompass every
styles and traditions is challenging, if not impossible. As a
matter of fact, the nature of chord progressions used by composers
varied and evolved across musical eras, styles and cultures in
complex ways. For instance, chords containing the dissonant tritone
(augmented fourth or diminished fifth) known colloquially as the
“Devil’s interval” were, successively, rejected until the end of
the Renaissance, used in the Baroque and Classical eras, albeit
in a controlled way, and finally, heavily exploited in Romantic,
Modern and Jazz music. Hence, the evolution of musical styles

has led to the emergence of different chord progressions. In
addition to musical and psychoacoustical principles, the context
in which music is created is also of importance when considering
which chords were used and which weren’t. The development of
robust analysis methods for empirical data can help understanding
how musical styles have evolved. We aim to detect frequent
chord progressions, i.e. chord progressions that appear in a
systematic way given a specific context. For instance, the I-V-vi-
IV1 progression which has been used in countless Popular music
songs (e.g. Adele’s “Someone Like You”), as funnily illustrated in
the “Four-Chord Song” by comedy group The Axis of Awesome2,
was already used in Baroque music (e.g. Mozart’s Pachelbel’s
Canon is a variant of this progression). Other progressions are
highly idiosyncratic of certain musical genres, such as the III7-VI7-
II7-V7 circle progression (e.g. E7-A7-D7-G7 in C) or so-called
“ragtime progression”, which often appears in the bridge section of
Jazz standards. As authors from several previous works (e.g. [2],
[3], [4], [5]), we believe that chord progressions contain precious
information to find the commonalities and specificities of musical
styles and composers. We don’t attempt in this work to explain how
progressions are constructed or why some progressions have been
used but we are concerned with the problem of detecting significant
chord progressions based on given datasets.
In contrast to traditional musicological studies conducted on small
datasets, the proposed method - here applied to chord progression
analysis - addresses large-scale music corpora. This is only
made possible by the development of appropriate computational
models and music information retrieval techniques. Hence our
work follows an empirical musicology approach as advocated in
[6]. We used an audio-based chord recognition algorithm, the
Chordino Vamp plugin [7], to automatically predict the chord
progressions from over one million musical pieces part of I Like
Music3’s commercial music library (denoted ILM dataset in the
following). Although chord progression analysis and modeling
has been the focus of previous studies in the field of music
informatics (see Section 2), none had relied on such large-scale
corpus, to our knowledge. We developed for this purpose a single
program mutliple data (SPMD) parallel computing technique for
fast feature extraction from audio signals. Detecting frequent chord
progressions in this “big data” context is well suited to pattern
mining which aims at discovering hidden knowledge in very large
amounts of data, regardless of its form. Sequential pattern mining
(SPM) arose as a sub-field of data mining to focus on the detection
of frequent subsequences from sequences of events occurring in
an ordered way [8]. SPM has attracted a great deal of interest in
recent years as it can be applied to many situations such as web
user analysis, stock trend prediction, DNA sequence analysis, etc.
[9]. To the best of our knowledge, SPM had not been applied to
musical chord sequence analysis previously. In this study, we use
one of the state-of-the-art’s SPM algorithm, CM-SPADE, that relies
on a pruning mechanism based on co-occurrence information [10].
We focus on the analysis of frequent chord patterns in six musical
genres (Blues, Classical, Folk, Jazz, Reggae and Rock’n’roll)
based on over 200,000 tracks from the ILM dataset and present

1We use a classic notation based on Roman numerals to refer to the
modes of the seven-note major scale with upper and lower cases for major
and minor modes, respectively: I (ionian), ii (dorian), III (phrygian), IV
(lydian), V (mixolydian), vi (aeolian), viio (locrian); o: diminished triad.

2https://www.youtube.com/watch?v=oOlDewpCfZQ#t=56
3http://www.ilikemusic.com/

mailto:m.barthet@qmul.ac.uk
https://www.youtube.com/watch?v=oOlDewpCfZQ#t=56
http://www.ilikemusic.com/


Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

Alternative
Alternative Rock
Bluegrass
Blues
Celtic
Classic Rock
Classical
Country
Dance
Disco
Easy Listening
Electronic
Folk
Folk-Rock
Gospel
Grunge
Hard Rock
Heavy Metal
Jazz
Jazz-Funk
Latin
New Age
New Wave
Other
Pop
Punk
R&B
Rap
Reggae
Rock
Rock&Roll
Slow Rock
Soul
Soundtrack
Southern Rock
Spoken Word
World Music

Figure 1: Overview of the I Like Music (ILM) dataset across musical genre. The total number of pieces in each genre is reported in square
brackets. ILM’s genres are defined according to the ID3 tag standard (http://id3.org/).

some preliminary analytical results. In a companion study [11],
we developed visualisation algorithms adapted to the analysis of
frequent chord progression patterns.
The study of chord progressions presents interests in fields such
as musicology, music retrieval and music composition. We hope
that in the longer-term such study will contribute to creating
additional evidence to existing musicological findings (e.g. “Jazz
musicians started to frequently play Lydian augmented chords
from the 60s” [12]) and help discovering new ones, for instance
to (i) understand the similarities or discrepancies between pieces,
composers, and (ii) to study how styles have evolved over time.
From a retrieval perspective, many use-cases of chord progressions
can be thought of, such as genre and artist recognitions, retrieval of
pieces based on a reference chord sequence, the recommendation
of pieces for recreational listening or pedagogical applications, etc.
The analysis of frequent chord patterns may also be of help to
learn music composition and to find out which chord progressions
are regularly used, probably because they “hook” listeners (see
e.g. Hooktheory’s online “Trends” tool4 which presents data-
driven chord transition statistics). This work is part of a larger
project, the Digital Music Lab5 whose goals are to develop research
methods and software infrastructure for exploring and analysing
large-scale music collections, and to provide researchers and users
with datasets and computational tools to analyse music audio,
scores and metadata.
The remainder of this article is organised as follows. In Section
2 we review previous computational approaches for the study of
chord progressions. Section 3 presents the ILM dataset and our
parallel computing technique for audio-based chord extraction. The
sequential pattern mining methods developed for chord data are
presented in Section 4. In Section 5 we present and discuss some of
the obtained results, and in Section 6 we give our conclusions and
perspectives.

4http://www.hooktheory.com/trends
5http://dml.city.ac.uk/

2. RELATED WORKS

Most of the previous works on chord progressions have been
carried out using symbolic score data. Paiement et al. proposed
a distributed representation for chords designed such that Euclidean
distances roughly correspond to psychoacoustic dissimilarities be-
tween chords [13]. The model parameters are learnt based on
the expectation-maximisation and junction tree algorithms. The
model captures the chords’ structure in given musical styles using
symbolic MIDI (Musical Instrument Digital Interface) data. The
representation is directly tied to the psychoacoustic properties of
chords, rather than on their qualities (minor, major, diminished,
etc.). This model can be used to interpret the structure of chord
progressions and to generate new ones for computational creativity
purposes but does not directly address the detection of frequent
chord progressions given a large amount of data. Several studies
have applied natural language processing (NLP) techniques for
chord progression analysis. [3] modeled chord progressions as n-
grams and strings in order to conduct automatic genre recognition
from symbolic data. Their experiments, conducted on 761 tracks
from Popular, Jazz, and Common Practice music, showed that
classification rates as high as 85% could be obtained for a three-
genre class discrimination problem using a naı̈ve Bayes classifier
with the multivariate Bernoulli statistical model. These results,
together with those from [5], give evidence that chord progressions
characterise some of the commonalities and specificities of musical
genres. [4] went further and proposed a model to characterise
the harmonic choices of composers using a weighted n-grams of
chord progressions. They define as n-gram profile of a chord
progression the collection of all chord n-grams appearing in the
progression given a weight proportional to the number of beats
it lasts. Experiments were conducted on 218 pieces by 8 Jazz
composers from various eras using symbolic notations extracted
from the Jazz standards’ Real Books. Similarity between composers
were obtained by computing a cosine-based distance measure
between composers’ n-gram profiles. The obtained results present
a hierarchical clustering of the 8 composers which seem to be con-
sistent with Jazz composition styles from an historical perspective.

http://id3.org/
http://dml.city.ac.uk/
http://www.hooktheory.com/trends
http://dml.city.ac.uk/


Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

The study [2] shares common goals with the present work, i.e. to
find frequent chord progressions from empirical data, but relies on
symbolic notations rather than audio predictions and only presents
results for four-chords progressions. The authors developed a
method to extract common subsequences of chord classes from
symbolic data, independent of key and context. Frequent chord
progressions or so-called “chord idioms” are obtained by ordering
the common subsequences by frequency of occurrence in the
dataset. In total 424 pieces were analysed from two collections
of annotations, Harte’s Beatles transcriptions [14] and some of the
Real Books. The results show that the prevailing idioms in the
Beatles songs present major chords alternating in fifths or fourths,
appearing in more than 40% of the songs (e.g. I-IV-I-IV and V-I-
V-I.). The most common chord sequences for the Jazz songs follow
the circle of fifths (ascending in fourths/descending in fifths), e.g.
VI-ii-V-I and vi-ii-V-I, appearing in 28% and 25% of the songs
respectively.
Other studies have focused on big music data problems. [15]
devised content-based retrieval and algorithmic analysis techniques
to parse and index hundreds of thousands of music scores from
the Petrucci Music Library (IMSLP). N-grams of melodies up to a
length of 16 notes were identified from over 65,000 IMSLP scores.
The indexing and metadata processing were run in the Hadoop and
HBase environments [16]. A web-based search engine6 was then
built to find melodies that occurred three or more times in scores
published or composed during specific years. We are interested in
developing a similar search engine for chord progressions as part of
the Digital Music Lab project.

3. BIG CHORD DATA EXTRACTION

3.1. Dataset
The I Like Music (ILM) commercial library we analysed comprised
1,293,049 musical pieces from 37 different musical genres with
release years ranging from 1907 to 2013. Fig. 1 shows the
number of pieces in the ILM dataset in each genre. Additional
figures describing the ILM dataset can be found on our Big Chord
Data Extraction and Mining webpage7. Almost all the tracks are
encoded in an high quality uncompressed WAV format. Amongst
the total number of pieces, about 22% were not available at the
time of the analysis (e.g. broken link, track not ingested in the
database yet), 0.2% were only available in the MP3 format, and
0.2% were rejected as their durations were either too short or too
long (e.g. whole albums such as compilations instead of single
piece). The chord feature extraction process described in Section
3.5 was hence conducted on 997,580 pieces in total. The results
from Section 5 were obtained for pieces from six genres, Blues
(31,618 pieces), Classical (21,446 pieces), Folk (45,194 pieces),
Jazz (35,991 pieces), Reggae (13,421 pieces) and Rock’n’roll (36,
654 pieces), corresponding to a total of 209,204 pieces.

3.2. Audio-based automatic chord recognition
A number of approaches have been proposed for the automatic
recognition of musical chords from audio signals (see e.g. [17],
[18], [19] for comprehensive reviews on the topic). In this study
we use an implementation of the model by Mauch described in
[7] available as the Vamp plugin ’Chordino’8. This model relies
on a chroma9 extraction method using a non-negative least squares
(NNLS) algorithm for prior approximate note transcription. The
NNLS chroma features achieved a state-of-the-art accuracy of 80%
when assessed using the dataset of the MIREX (music information
retrieval evaluation exchange) challenge in 2009, mainly composed
of Popular songs from the Beatles and Queen10. One of the
parameters which affects the accuracy of chord recognition models
is the number of chord classes (e.g. major, minor, dominant, etc.)

6www.peachnote.com
7http://isophonics.net/content/big-chord-data-extraction-and-mining
8http://isophonics.net/nnls-chroma
9Chroma here refers to an audio representation for which the entire

spectrum is projected onto 12 bins representing a musical octave.
10http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_

Detection

which are considered. The results cited above were obtained in the
simplified case of two chord classes (major, minor) leading to a total
of 24 chords to be discriminated (12 chords per class associated
with the 12 distinct semitones of the musical octave in the twelve-
tone equal temperament). In the case of 10 chord classes (major,
minor, major in first inversion, major in second inversion, major 6th,
dominant 7th, major 7th, minor 7th, diminished and augmented),
i.e. 120 chords to be discriminated, the accuracy of the Chordino
models drops down to 63%. We use a recent version of the model
(Chordino Vamp plugin v0.3) which incorporates a dictionary of
16 chord classes (see Tab. 1), leading to 192 different chords in
total (as well as an additional “no chord” class). Unfortunately
no formal evaluation of this version of the model, nor evaluations
for other musical genres than Popular music, are available to
date. An obvious drawback of chord progression analysis based
on audio-based chord predictions as opposed to professionally-
obtained transcriptions comes from the error rates of the audio-
based chord recognition models in use. These error rates are far
from being negligible, even for a state-of-the-art model, such as the
one we use. However we assume that the most frequent patterns
emerging from the analysis should be robust to noise (generated by
erroneous predictions) given their high frequency of occurrence and
the large-scale nature of the dataset.

Table 1: List of chord qualities and specific chord classes for
the Chordino Vamp plugin (v0.3). The chord dictionary contains
192 chords in total (16 classes x 12 notes). A list of common
harmonic functions for these chords, as defined by the major and
minor natural scales are also reported: I (tonic), ii (supertonic), iii
(mediant), IV (subdominant), V (dominant) and V7 (dominant 7),
vi (submediant), vii, or viio, or viiø (leading tone); o: diminished
triad, ø: diminished triad + b7; subst.: substitute.

Chord Quality Chord Class Harmonic funct.

Major

Major I, IV, V
Major (1st inversion) I, IV, V
Major (2nd inversion) I, IV, V
Major 6 I, IV, V
Major 7 I, IV
Major 9 (4th inversion, root: 2nd) I, IV, V

Minor
Minor ii, iii, vi, vii
Minor 6 ii
Minor 7 ii, iii, vi, vii

Dominant 7
Dominant 7 V7
Dominant 7 (1st inversion) V7
Dominant 7 (3rd inversion) V7

Half-diminished (7b5) Half-diminished viiø

Half-diminished (3rd inversion) viiø

Diminished Diminished subst. V7 (major scale),
iiø (minor scale)

Augmented Augmented e.g. V+, I+, IV+

3.3. Parallel computing
Given the very large number of musical pieces to analyse (∼1m),
we developed a parallel computing approach adapted to audio fea-
ture extraction. This represents an extension of our previous work
on large-scale music similarity feature extraction [20]. Parallel
computing is a form of computation in which many calculations
are carried out simultaneously. In a typical parallel program,
multiple tasks run on multiple processors or cores. The computation
problems are divided into a set of discrete “chunks” of work that
can be distributed to the multiple tasks. The parallel computing
approach to audio feature extraction we propose follows a single
program multiple data (SPMD) architecture, according to Flynn’s
taxonomy [21]. In a SPMD program, tasks are split up and run
simultaneously on multiple processors executing different threads
(or processes) with different data input in order to speed up the
computation. The chord feature extraction on the million tracks is
divided into a set of parallel tasks, each of them working on portions
of the dataset, i.e. batches of tracks (domain decomposition). We
use a “pool of tasks” scheme as some tasks may run faster than
others (the computation time of a task is a function of the track
durations which vary). A master process holds the pool of tasks to

http://imslp.org
http://dml.city.ac.uk/
http://isophonics.net/content/big-chord-data-extraction-and-mining
http://isophonics.net/content/big-chord-data-extraction-and-mining
www.peachnote.com
http://isophonics.net/content/big-chord-data-extraction-and-mining
http://isophonics.net/nnls-chroma
http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_Detection
http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_Detection


Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

be distributed to the worker processes and sends the workers a task
when requested. The worker processes get tasks from the master
process, perform the computation (feature extraction) and produce
the results. This approach allows to dynamically balance the load
between the workers at run time. The faster the workers the greater
the number of tasks they will be able to complete. Feature extraction
is performed by using the Vamp plugin host Sonic Annotator11

together with the Vamp plugin Chordino (see Section 3.2). The
features corresponding to a given batch of tracks are written in
several output resource files. An important aspect in our program
is managing the synchronisation between the parallel tasks at run
time. This is important not to mix the audio features which have
been extracted over the course of various tasks. Synchronisation is
carried out using a lock so that the workers can acquire and then
release an output resource (output feature file)12. For a given batch,
the features are spread into as many output resource files as number
of execution threads which are used. We typically set up the number
of execution threads to the number of cores available on the server
where the program is run.

3.4. Light-weight binary feature format
Sonic Annotator allows to output audio features computed with
Vamp plugins in various formats (Comma Separated Values, Re-
source Description Framework, etc.). With the standard CSV
format, the chord annotations provided by the Chordino plugin
are expressed as a series of string time stamps and chord labels
(e.g. “26.145668934”, “Dm7”13. We developed a light-weight
binary format for Chordino chord annotations. We map each
chord label to a single integer value. Hence Chordino’s chord
dictionary of 193 chords (192 chords and one “no chord” class, see
Section 3.2) is represented by 193 integer values. Timestamps are
represented by two integer values, one representing the number of
seconds, the other the number of nanoseconds. The representation
of a chord change at a specific moment in time across a piece
is made using only three integer values. We adapted the binary
feature writer for Sonic Annotator developed in [20] for such chord
features. Once a feature batch has been processed, the binary output
resource files produced by the various threads (see Section 3.3) are
compressed14. The combined use of our binary feature format and
of compression led us obtain feature compression ratios of about
4:1. The total size of the chord features for the million tracks in
binary compressed format is about 407 MB (approx. 2MB per
batch of 5,000 tracks). Given the light-weight nature of the chord
feature computed on the server-side, we set up an automatic back
up mechanism using the Mercurial version control system provided
by our code.soundsoftware.ac.uk resource15.

3.5. Results
The chord feature extraction process was launched on a virtual
machine running Ubuntu 12.04.2 LTS (x86 64 architecture). The
virtual machine had 8 cores running at 2.6 MHz with 8 GB of RAM
and 12 MB of L3 cache. The processing of the ∼1m tracks took
6 weeks and 2 days. We estimate the speedup (wall-clock time of
serial execution / wall-clock time of parallel execution) obtained
thanks to our parallelised approach to be about the number of cores
(8 in this case) which means that the process would have taken
about a year without parallelisation. On a 24-core server, the time
taken for the chord extraction process for the million tracks could
be reduced to about two weeks.

11http://www.vamp-plugins.org/sonic-annotator/
12In our Python implementation, this is done using the mutex module

which defines a class that allows mutual-exclusion.
13We use a standard letter notation for chords. For instance, Dm7

represents a D minor 7 chord (m stands for minor, 7 here implicitly stands
for the b7).

14In our Python implementation, we used the bz2 module which provides
an interface for the bz2 compression library.

15Note that we use this resource in the first instance as a code repository
which is the main purpose of the code.soundsoftware.ac.uk platform.

4. BIG CHORD DATA MINING

4.1. Sequential Pattern Mining of Chord Progressions
In order to apply sequential pattern mining we first convert the
audio-predicted chord annotations (list of time and chord labels, see
Section 3.2) into a chord sequence (e.g. A7, D7, G7, etc.) database.
The chord sequence database comprises the chord sequences for
each piece from the ILM dataset (see Section 3.1). The normalised
(or percentage) support of a sequential pattern is the number of
sequences where the pattern occurs divided by the total number of
sequences in the sequence database [22]. Open sequential patterns
are patterns whose elements can be separated by other items in
the sequence database (e.g. in the sequence A7-Bmin7-D7-G7,
A7-D7-G7 is an open pattern). Closed sequential patterns are
sequential patterns which are not strictly included in other patterns
having the same support. As audio-predicted chord annotations
are error-prone, we chose a technique looking for open rather than
closed sequential patterns. Indeed, if the prediction of a sequence
including a specific chord progression pattern (e.g. CP: A7-D7-G7)
contained wrong chords between the correct ones (e.g. CS1: A7-N-
D7-G7, where “N” refers to the non chord state from the model),
and that the nature of these errors differed for other sequences
including that pattern (e.g. CS2: A7, N, D7, N, G7), then a
closed sequential pattern technique would not uncover the pattern
of interest. Conversely, open sequential pattern techniques will
uncover the relevant chord pattern independently of errors that may
occur between the chords: in both chord sequences CS1 and CS2
above, the chord pattern CP will be detected with an open sequential
pattern technique.
We applied the CM-SPADE sequential pattern mining algorithm for
open patterns [10]16 to the chord sequence databases corresponding
to the six genres described in Section 3.1 (Blues, Classical, Folk,
Jazz, Reggae and Rock’n’roll). The algorithm yields a list of
frequent chord patterns ranked according to their support. As we
are interested in comparing the relative importance of the patterns
across genres, we computed the percentage support for each pattern
based on the total number of pieces in each genre.

4.2. Chord Progression Pattern Modeling
We aim to uncover frequent chord progression patterns indepen-
dently of the key of the musical pieces. However we don’t know
the keys of the pieces from the ILM dataset. To tackle this issue,
we post-processed the output of the CM-SPADE algorithm based
on the following modeling. As in [2], we model a chord by a
tuple (bi, ci) where bi∈{0,...,11} refers to the bass note in semitones
above the chord root (e.g. 0 for a bass note corresponding to the
chord root, 4 for a bass note corresponding to the major third, etc.),
and ci∈{0,...,16} refers to the chord class, as described in Tab. 1 (0
corresponds to the non chord state, 1 to major, etc.). We model a
chord transition by a tuple ((t1 = (b1

i , c1
i ), t2 = (b2

i , c2
i ), di)) where

t1 and t2 are the first and second chord tuples, and di∈{0,...,11} refers
to the root differences in semitones (modulo 12) between the two
chords. We model a chord progression by a sequence of chord
transitions ((t1,t2,d1), (t2,t3,d2), ..., (tn,tn+1,dn)), where the length
of the chord progression is given by n+1. By using such chord
progression modeling, we are able to group together progressions
with identical changes of chord class and root key. For instance,
Dm-G-C and Em-A-D will both correspond to a chord progression

of type: min
+ f ourth−−−−−→ maj

+ f ourth−−−−−→ maj, and which may be a ii-V-I
progression (however we can’t be certain of the latter as we don’t
have the key).

5. FREQUENT CHORD PROGRESSION PATTERNS

5.1. Chord Progression Length and No of Frequent Patterns
Chord progressions may differ by their length and complexity.
Amongst common progressions some only exhibit a few chord
transitions, e.g. four chord progressions such as I-bVII-IV-IV (e.g.

16We used the implementation of the CM-SPADE algorithm
provided by the SPMF toolbox available at: http://www.

philippe-fournier-viger.com/spmf/index.php.

https://code.soundsoftware.ac.uk
http://www.vamp-plugins.org/sonic-annotator/
https://code.soundsoftware.ac.uk
http://www.philippe-fournier-viger.com/spmf/index.php
http://www.philippe-fournier-viger.com/spmf/index.php


Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chord progression length

0

2

4

6

8

10

N
u
m

b
er

 o
f 

p
at

te
rn

s 
(l

og
 s

ca
le

)

Blues
Classical
Folk
Jazz
Reggae
Rock'n'roll

Figure 2: Number of frequent chord progression patterns as a
function of the chord progression length in each genre.

Skynyrd’s “Sweet Home Alabama”) and I-IV-V-IV (e.g. Taylor’s
“Wild Thing”), whilst others are built on a larger number of chord
transitions, e.g. the sixteenth chord progression I-vi / ii-V / I-vi /
ii-V / I-I7 / IV-iv / I-V / I-I (e.g. Gershwin’s “I Got Rhythm”). In
this study, we seek to uncover frequent chord patterns of different
lengths, based on a set of lengths defined a priori (the minimal
and maximal lengths of the patterns are input parameters of the
CM-SPADE algorithm). We looked for frequent patterns of lengths
ranging from 2 to 16. Fig. 2 shows the number of frequent patterns
uncovered for each of these lengths for the six genres analysed
in this study. The number of possible patterns for a given chord
progression length is related to the variation of chord qualities and
chord root keys in the progressions. The pattern frequency curves
all have a bell-shape form with a maxima obtained for lengths of
3 or 4 chords. 3- and 4-chord progressions have been shown to
be common in many genres (some interesting examples can be
found on the Hooktheory website17 for instance). The shape of
the curves also demonstrates that the space of chord progressions
is constrained by underlying rules as a curve counting all possible
chord combinations as length increases would grow exponentially
and rapidly tend towards infinity for 192 possible chords. For 4-
chord progressions, the total number of obtained frequent patterns
across genres ranks as follows: Jazz (19,820), Classical (1,235),
Folk (906), Blues (337), Reggae (116) and Rock’n’roll (111). These
results tend to show that a more diverse set of chords (and hence
chord changes) is used in Jazz compared to the other genres. This
is likely to be due to the fact that Jazz progressions often include
chords with a tetrad (e.g. C7, Fmaj7) in addition to chords with a
triad (e.g. C, F) increasing the number of possible patterns.

5.2. Genre-Based Frequent Patterns
Tables listing the 50 most frequent 4-chord patterns for ILM
pieces in the Blues, Classical, Folk, Jazz, Reggae and Rock’n’roll
genres are available on our Big Chord Data Extraction and Mining
webpage. In order to facilitate the interpretation of the frequent
chord progression patterns obtained with sequential pattern mining
we developed a method to represent them based on directed graphs:
nodes correspond to chord classes (e.g. major, minor, etc.) and
oriented edges characterise the transition between chord classes.
We express the key-invariant patterns (see Section 4.2) in the
DOT graph description language and use the Graphviz visualisation
software to generate the graphs. We represent the pattern percentage
support (see Section 4.1) by the thickness of the edges (hence, the
higher the support, the thicker the edge). Fig. 3 shows the graphs
corresponding to the 100 most frequent 4-chord progressions in

17http://www.hooktheory.com/theorytab/

common-chord-progressions

the Blues, Classical and Jazz genres for our audio-predicted chord
sequences. Additional graphs can be visualised online on our Big
Chord Data Extraction and Mining webpage. It can be seen from
the tables and the graphs available online that the prevailing 4-chord
patterns for the six genres are major chords alternating in fifths

and fourths (+7 and + 5 semitones, respectively): (a) maj +7−−→ maj
+5−−→ maj +7−−→ maj and (b) maj +5−−→ maj +7−−→ maj +5−−→ maj. These
progressions occurs in a very large proportion of the pieces: Blues
(44%), Classical (14%), Folk (28%), Jazz (43%), Reggae (37%)
and Rock’n’roll (68%). This in line with the results obtained from
symbolic data for Popular and Jazz pieces in [2]. Although we
don’t know the key, it is very likely that progression (a) corresponds
to a I-V-I-V progression, i.e. an alternation of perfect (V-I) and
half cadences (I-V)18, and progression (b) corresponds to a I-IV-
I-IV progression, which includes a plagal cadence (IV-I). These
progressions are not discriminative though as they appear in every
genre. The progression alternating major and dominant chords in
intervals of fourths and fifths, which is presumably a I7-IV7-I7-IV7
progression, is characteristic of the Blues genre (pattern #45, 15%
of the pieces) as it’s not one of the 50 most frequent patterns in
other genres. Progressions including the relative minor (a minor
third below the tonic) are more frequent in the Classical genre than
in other genres (e.g. the pattern #5, I-vi-V-I, appears in 10% of
the Classical music pieces). Progressions including tetradic minor
7 and major 7 chords are more frequent in the Jazz genre (see Fig.
3c).

6. CONCLUSIONS AND FUTURE WORK

In this study we propose a data-driven methodology for the anal-
ysis of frequent chord progressions from large-scale audio music
collections. We developed a parallel computing software for audio
feature extraction reducing the overall processing time by a factor
roughly equal to the number of execution cores. This software
was used together with the Chordino audio-based chord prediction
model [7] in order to extract a million chord progressions for pieces
from the I Like Music commercial musical library. Frequent chord
progression patterns were uncovered using one of the state-of-
the-art’s sequential pattern mining algorithm (CM-SPADE [10]).
Preliminary results obtained from the analysis of over 200,000
pieces from six musical genres highlighted 4-chord progressions
that prevail in every genre, e.g. progressions with major chords
alternating in fifths and fourths. Other progressions act as signatures
of specific genres, e.g. frequent progressions with dominant 7
chords in Blues, with the relative minor in Classical music, etc.
In future work we aim to extend this study in several ways. We
plan to extract additional features from audio using our parallel
computing software in order to facilitate the interpretation of chord
progressions; having knowledge of the key would for instance make
functional harmony analysis possible, meter and tempo information
would help characterising the rhythmic structure of the chord
sequences. We also wish to develop other collection-level analysis
techniques to investigate how chord progressions evolve over time
within musical styles. Some of these analysis tools will hopefully be
made available for users via an online platform which will include
interactive visualisations such as that proposed in our companion
study [11].

7. ACKNOWLEDGEMENTS

This project has been partly funded by the AHRC project Digital
Music Lab - Analysing Big Music Data (grant AHL01016X1).

REFERENCES

[1] W. Piston: Harmony. Norton, W. W. & Company, Inc., 5. edition,
1987.

[2] M. Mauch, S. Dixon, C. Harte, M. Casey, and B. Fields: Discovering
Chord Idioms Through Beatles and Real Book Songs. In Proc. of
the Int. Society for Music Information Retrieval (ISMIR) Conference.
2007.

18For a definition of cadences, see e.g. http://en.wikipedia.org/

wiki/Cadence_(music)

http://isophonics.net/content/big-chord-data-extraction-and-mining
http://isophonics.net/content/big-chord-data-extraction-and-mining
http://www.graphviz.org/
http://www.graphviz.org/
http://www.hooktheory.com/theorytab/common-chord-progressions
http://www.hooktheory.com/theorytab/common-chord-progressions
http://isophonics.net/content/big-chord-data-extraction-and-mining
http://isophonics.net/content/big-chord-data-extraction-and-mining
http://isophonics.net/sites/isophonics.net/files/blues-table-50-patterns.png
http://isophonics.net/sites/isophonics.net/files/classical-table-50-patterns.png
http://en.wikipedia.org/wiki/Cadence_(music)
http://en.wikipedia.org/wiki/Cadence_(music)


Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

(a) Blues (b) Classical

(c) Jazz

Figure 3: Graph representations of the 100 most frequent 4-chord progressions in the ILM dataset for various genres. The nodes represent
the chord classes predicted from audio (Chordino Vamp plugin). The oriented edges describe the transitions between two chords. The
thickness of the edges is proportional to the pattern support. The interval between chord roots is expressed in number of semitones above
the chord root of the first chord and reported next to the edges (e.g. 5 semitones corresponds to a 4th, 7 semitones to a 5th, etc.).

[3] C. Perez-Sancho, D. Rizo, and J. M. Inesta: Genre classification
using chords and stochastic language models. In Connection Science,
volume 0(0):1–13, 2008.

[4] M. Ogihara and T. Li: N-gram chord profiles for composer style
representation. In Proc. of the International Society for Music
Information Retrieval (ISMIR) Conference, pages 671–676. 2008.

[5] A. Anglade, E. Benetos, M. Mauch, and S. Dixon: Improving Music
Genre Classification Using Automatically Induced Harmony Rules. In
Journal of New Music Research, volume 39(4):349–361, 2010.

[6] E. Clarke and N. Cook: Empirical Musicology: Aims, Methods,
Prospects. Oxford University Press, 2008.

[7] M. Mauch and S. Dixon: Approximate Note Transcription for the
Improved Identification of Difficult Chords. In Proc. of the Int. Society
for Music Information Retrieval (ISMIR) Conference. 2010.

[8] C. H. Mooney and J. F. Roddick: Sequential Pattern Mining -
Approaches and Algorithms. In ACM Computing Surveys (CSUR),
volume 45(2), 2013.

[9] M. Esmaeili and F. Gabor: Finding Sequential Patterns from Large
Sequence Data. In IJCSI International Journal of Computer Science
Issues, volume 7(1), 2010.

[10] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas:
Fast Vertical Mining of Sequential Patterns Using Co-occurrence
Information. In PAKDD Part I, LNAI 8443, pages 40–52. Springer,
2014.

[11] A. Kachkaev, D. Wolff, M. Barthet, M. D. Plumbley, J. Dykes, and
T. Weyde: Visualising Chord Progressions in Music Collections: A Big
Data Approach. In Proc. of the 9th Conference on Interdisciplinary
Musicology (CIM). 2014.

[12] M. Levine: The Jazz Theory Book. Sher Music, 1995.

[13] J.-F. Paiement, D. Eck, S. Bengio, and D. Barber: A Graphical Model
for Chord Progressions Embedded in a Psychoacoustic Space. In
Proc. of the 22nd International Conference on Machine Learning.
2005.

[14] C. Harte, M. Sandler, S. A. Abdallah, and E. Gomez: Symbolic
representation of musical chords: A proposed syntax for text
annotations. In Proc. of the Int. Society for Music Information
Retrieval (ISMIR) Conference. 2005.

[15] V. Viro: Peachnote: Music score search and analysis platform. In
Proc. of the Int. Society for Music Information Retrieval (ISMIR)
Conference. 2011.

[16] J. Dean and S. Ghemawat: MapReduce: Simplified data processing on
large clusters. In ACM, volume 51(1):107–113, 2008.

[17] K. Lee and M. Slaney: Automatic Chord Recognition from Audio
Using an HMM with Supervised Learning. In Proc. of the 1st ACM
workshop on audio and music computing multimedia. 2006.

[18] C. Harte: Towards Automatic Extraction of Harmony Information from
Music Signals. Ph.D. thesis, Queen Mary University of London, 2010.

[19] M. Mauch: Automatic Chord Transcription from Audio Using
Computational Models of Musical Context. Ph.D. thesis, Queen Mary
University of London, 2010.

[20] G. Fazekas, M. Barthet, and M. Sandler: Demo paper: The BBC
Desktop Jukebox music recommendation system: A large scale
trial with professional users. In Multimedia and Expo Workshops
(ICMEW), 2013 IEEE International Conference on, pages 1–2. 2013.

[21] M. J. Flynn: Some Computer Organizations and Their Effectiveness.
In IEEE Trans. Comput., volume C–21(9):948–960, 1972.

[22] D. Perera, J. Kay, I. Koprinska, K. Yacef, and O. Zaiane: Clustering
and Sequential Pattern Mining of Online Collaborative Learning
Data. In IEEE Trans. on Knowledge and Data Engineering,
volume 21(6):759–772, 2009.


	Introduction
	Related works
	Big Chord Data Extraction
	Dataset
	Audio-based automatic chord recognition
	Parallel computing
	Light-weight binary feature format
	Results

	Big Chord Data Mining
	Sequential Pattern Mining of Chord Progressions
	Chord Progression Pattern Modeling

	Frequent Chord Progression Patterns
	Chord Progression Length and No of Frequent Patterns
	Genre-Based Frequent Patterns

	Conclusions and Future Work
	Acknowledgements

