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Abstract The task of recognizing patterns and assigning rhythmic structure to unquan-

tized musical input is a fundamental one for interactive musical systems and for search-

ing musical databases since melody is based on rhythm. We use a combination of combi-

natorial pattern matching and structural interpretation with a match quality rating by a

neuro-fuzzy system that incorporates musical knowledge and operates on perceptually

relevant features extracted from the input data. It can learn from relatively few expert ex-

amples by using iterative training by relative samples. It shows good recognition results

and the used methods of pre-filtering and optimization facilitate efficient computation.

The system is modular, so feature extraction, rules, and perceptual constraints can be

changed to adapt it to other areas of application.
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INTRODUCTION

Finding musically meaningful units and determining their relations is crucial for musi-

cally sensible user interaction. Cooper and Meyer already stated: “To experience rhythm

is to group separate sounds into structured patterns.”[1] Music theory and music psy-

chology have determined features that are of importance in the perception and cognition

of music. Although there is a large body of research on the properties of auditory tem-

poral pattern perception (see e.g. [2], [3], and [4]), a coherent paradigm or theoretical

framework to support computer models and applications has not yet been established.

Musical Pattern Processing

There are two main aspects of rhythmic structure which need to be considered for recog-

nition and analysis: segmentation and similarity. The segmentation process divides a se-

quence of events into groups or –musically speaking– motifs. The similarity of groups

determines the internal structure of a sequence or the relation to another sequence, e.g. a

given rhythm and its performance by a user or different variations of a rhythm.

Existing theories of musical similarity determine similarity ratings for motifs (e.g. [5]),

but they do not name the individual differences of notes which is important for interac-

tive or analytical applications. Approaches like musical string-matching (e.g. [6]) count

differences on a per-note basis, but they do not take into account gradual differences of

individual notes. An integrated model which accounts for gradual and structural similar-

ities on a note-by-note basis is needed. Musically meaningful structures are constrained

by the auditory perception of music, which should be taken into account.

Integrating Knowledge and Learning

A way of modelling uncertain and incomplete knowledge is needed for musical compu-

tation, since our knowledge of musical structures and processes shows more and more to

be incomplete and vague as we try to solve musical tasks with computers. Besides using

musical knowledge it should also be possible to let a model learn from data, since hu-

man experts can perform musical tasks well and the implicit knowledge in their actions

should be used.

There have been some approaches to interpret rhythm with neural networks by Linster

[7] and by Roberts [8]. They had limited success for reasons of representation of temporal

data to the network and of inflexible and hardly extensible systems due to a ‘black-box’

approach to neural nets. On the other hand purely algorithmic approaches (e.g. [9], [10],



and [11]) show a lack of flexibility and robustness.

In this paper an algorithmic framework, a learning method and experimental results

are presented. It integrates existing knowledge from music psychology as well as music

theory and learning from data with interpretable results and a musically meaningful and

differentiated system output.

SYSTEM ARCHITECTURE

The initial motivation for this work was to bring more musical intelligence into a music

tutorial application where the users should try to play back rhythms presented to them.

Our aim is to give differentiated and musically meaningful responses to the users about

how their input differs from the presented rhythm and what should be improved.

Our system currently supports three modes: segmentation only, matching patterns

and structural comparison. The segmentation mode emulates segmentation by a listener.

The pattern matching mode simulates the recognition of a single rhythmic group. It

assigns the notes in the matched patterns and yields thus detailed information on the

differences of the patterns. The interpretation mode combines and extends the former

two. It assigns groups and allows a detection and description of structural changes like

omissions, insertions or changed order of groups as well as differences on the note level.

The general processing scheme used in this system starts with the combinatorial gener-

ation of segmentations, assignments of groups, and assignments of notes within assigned

groups. The combination of segmentations and assignments of groups and notes in the

groups is called an interpretation. Features motivated by music theory and music psychol-

ogy are extracted from interpretations and a rating based on these features is calculated

by a neuro-fuzzy system. The interpretation receiving the best rating is used for deter-

mining system output.

The combinatorial generation of interpretations causes a problem, since the number

of interpretations grows exponentially with sequence length. One way to reduce com-

plexity is filtering interpretations to remove perceptually implausible interpretations at

each processing stage. We also use a Branch-and-Bound optimization to further increase

efficiency. The system architecture is shown schematically in figure 1.

Musical Rhythm Patterns

Input data The Input data represent musical notes based on the MIDI data (Musical

Instrument Digital Interface). Three values of the input events are used: onset time,

duration, and key velocity (loudness). If there is a task sequence to which the input is to

be compared, the task is encoded in the same way.

Segmentation and group assignments There are perceptual constraints on the length

(number of notes) and the temporal duration of groups. The number of events in a

group is restricted as well known since Miller’s ‘magical seven’[12]. The maximum group

length is an adjustable parameter in our system and a setting of 4 or 5 has shown to be

adequate which agrees with the literature (see [13] and [14]).

Empirical evidence suggests that durations of perceptual groups lie in a range of ap-

proximately 0.5 to 2 seconds ([15]). It is also known that temporal proximity of events is

an important factor in segmentation, i.e. relatively long distances between events tend

to end a group (see [16]). Since grouping by temporal proximity is dominant over accent

grouping (see [2]) we can filter out segmentations that grossly contradict grouping by

proximity. We also assume that groups containing only one element should not occur

unless they have considerable distance to the neighbor notes (see [10]), else they are fil-

tered out. We model these constraints by generating all segmentations within the given

range of group lengths and testing the generated interpretations, if they do not meet the

constraints.

On the interpretation level input groups are assigned to task groups based on input and

task segmentation. All possible assignments for all combinations of segmentations are

calculated. Group assignments are filtered out, if the difference of group length exceeds

a limit. We tentatively set this limit to 2, which ensures with a maximum group length

of 5 that at least half of the notes are assigned.

Note assignments and tempo variants In a match of input and task groups the notes



of the input group are assigned to notes of the task group. Notes that are not assigned

are marked as additional (leaving the temporal relations of the other notes unchanged)

or inserted (the rest of the group being moved by the amount of time occupied by note).

Task notes are marked as assigned, subtracted, and removed respectively.

Tempo variants are calculated for every assigned input group based on pairs of as-

signed notes as anchor points. Different possibilities for the choice of the two anchor

notes yield different tempo variants. For every tempo variant transformations by trans-

lations, dilatations, additions, insertions, subtractions and deletions are performed until

the best match is found. The transformations determine feature values like tempo rela-

tion, relative position, and structural measures for extra and missing notes.

The transformations are shown schematically in figure 2. The result allows measuring

the deviation of the group from the expected position, the tempo deviation, and devia-

tions of the individual notes concerning timing, loudness and length. Only the tempo

variant which produces the best similarity rating is used for further calculation in order

to reduce calculation time. These features are used as input for the rating system.

Feature Extraction

On both, the group level and structure level, similarity and segmentation features are

extracted that form the basis for interpretation rating. For segmentations we calculate

ratings based on the groups’ lengths and number of notes. For duration we use four input

nodes which reach their maximum activation for group durations spaced approximately

even on a log scale (���, ���, ���, and ��� seconds). This design allows good fitting to

a preference curve on the considered range of group lengths. The same design is used

for the number of notes in a group. We have five different input nodes corresponding

to group lengths from one to five. The regularity of group lengths as well as of group

intervals (distance between the beginning of groups) is also rated by calculating their

variance. For each group we have a node representing whether the inter-onset-interval

(IOI) between the last note and the next group is larger than IOIs within the group, and

whether the first note is relatively loud, which perceptually indicates the beginning of a

group (see [3]).

For similarity on the group and interpretation level, nodes representing different kinds

of imprecision and incorrectness are used as input for the Fuzzy-Prolog program. On the

group level we use nodes for early notes, late notes, too loud notes, too soft notes, too

long notes, too short notes, which contribute to precision rating. Added notes, inserted

notes, subtracted notes, deleted notes are features contributing to a rating of correctness.

Group position and tempo stability are calculated relative to the previous group and

tempo plausibility is based on spontaneous and preferred tempo studies ([17], [18]), more

details on the calculations can be found in [19].

A feature specific for the interpretation level is a rating for the order of groups. This is

calculated by dividing the actual number of intersections in the group assignment graph

by the number of maximally possible intersections:
�

� � ��� ����

(1)

where � is the number of the intersections in the assignment graph and � the number of

group assignments (see figure 3). The other nodes on the interpretation level combine the

corresponding group-level nodes.

Combinatorial Considerations

The generation of interpretations causes a problem, since the number of interpretations

grows exponentially with sequence length. We reduce complexity by filtering interpre-

tations according to perceptual constraints at each processing stage using Branch-and-

Bound optimization to further increase efficiency.

Since we do not allow overlapping segments there are ���� possibilities of segmenting

a sequence of length �. For given upper and lower bounds of group length the possible

number of segmentations can be calculated recursively. Let � be a note sequence of length

�. Given minimal length��� and maximal length��� the number of segmentations 	
�



can be computed recursively in the following way:

	
���� �

���������
��������

������
�������

	
���� if � � ���

� 	
������

���

	
���� if��� � � � ���

� if �  ���

(2)

where ��������� � ��

	
���� grows exponentially with �. ��� and��� have also considerable influence, since

they determine the number terms in the sum for each �. The influence of ��� is greater

than that of ���, since the upper bound of the summation index � is more important

because of the growth of 	
����. The values for sequence length and values of ��� and

��� are shown in table .

For the number of possible assignments �� of two sequences �� � with given segmen-

tations ���� ��� containing � � ������ � � ����� groups the following holds:

����� �� � �� 	 ��� (3)

The basis is � 	 � because every input group can be assigned to a task group or noth-

ing. So the number ������ �� of all possible interpretations for sequences � and � can be

calculated as:

������ �� �
��	��
 ���

���

��	������
��

��������� ��� ��������� (4)

where ����� � and ����� iterate through alle possible segmentations of � and � . If we

set �� � � ��� � � and assess ����� and ���� as ����������
� 	 ��, we get a rough

approximation:

������ �� � 	
����� �
�

�

�������
� 	 �
	 �

� �

�������
� 	 �
� (5)

This yields with ��� = 1 for � � 
 ca. �� ��� and for � � �� already approximately

�� ���� ���� ��� interpretations. The number of interpretations to be rated grows fast with

� and for each interpretation all note assignments and tempo variants need to be calcu-

lated. Therefore, without filtering and optimization of the selection process a interactive

application in near real-time is not possible.

EXTENDED FUZZY-PROLOG

Fuzzy-Prolog

The module for rating segmentation quality and group similarity is based on an exten-

sion of Fuzzy-Prolog as described by Nauck, Klawonn, and Kruse [20]. Fuzzy-Prolog is

a programming language based on Prolog which operates on truth values in the interval

��� �. A Prolog program consists of a set of rules and facts in the following forms:

conclusion � premise� � � � � � premise

�
�

�� (6)

conclusion � �

In a Fuzzy-Prolog program a truth value is assigned to every rule and every proposition

(premise or conclusion). If the truth values ��� and ��� of two propositions � and � are

given, the truth value of the conjunction of these propositions can be evaluated as

��� � � � ������� ���� (7)

using the evaluation function �� of a fuzzy operator with values in the interval ��� �. For

the evaluation of implications the Goguen-Implication is being used:

���	 � �
����

���
���

���

if �  ��

� else�

(8)

A Fuzzy-Prolog program is a set of rules of the form �	 � and facts of the form 	 �



that have a non-zero truth value assigned. These values should not be interpreted as the

actual truth values of the propositions, but should be regarded as their lower bounds.

This is because a higher truth value of a proposition may be derived by using the modus

ponens generalized for Fuzzy-Prolog:

�, �	 � ��� ��

� �� � ��

(9)

where � and � denote the truth values of � and �.

Operators

Fuzzy-Prolog can be used with various fuzzy-logical operators which are defined by their

evaluation function. Usually these functions are defined as t-norms and t-conorms (see

e.g. [21]). Yet t-norms are not differentiable, and we want to allow compensation be-

tween the operands, which is not possible with t-norms and t-conorms. Since we need

an operator that is differentiable for backpropagation and we want the results of the op-

erator to be independent of the number of operands, we defined an operator we call the

q-operator which has an adjustable parameter � and is related to the class of operators

Yager presented in [22]:

�������� � � � � ��� �
	

�
�

��
���

���

 �
�

� � � (10)

For � � � it calculates the average value of the operands. In the limit of � 	 � the

operator converges to the minimum operator 
���. In the limit of � 	� it approximates

the maximum operator ����. Thus we can define the following fuzzy logical �-operators

for conjunction and disjunction with �  �:

���� � ��� �
�

���� � ����

(11)

These operators allow for a certain amount of compensation between the operands that

can be adjusted by the � parameter. For our system we use a �-value of 2. For illustra-

tion figure shows graphs of the �-operators for conjunction and disjunction. Like most

compensatory operators the q-operator is not associative, but we do not make use of

associativity, so this is not a problem.

Fuzzy-Prolog and Neural Nets

When trying to model how the rules contribute to the output of a fuzzy system, the rules

must be assigned truth values individually. These values can be ad hoc estimates, but

they have to be adjusted to achieve good performance. The idea is now to automate this

process by optimizing the truth values using examples. It has been shown by Nauck and

colleagues [20] that Fuzzy-Prolog programs are equivalent to feed-forward neural nets.

If a Fuzzy-Prolog program matches certain requirements, it can be transformed into a

feed-forward neural net. Neural net learning algorithms can then be used to optimize

the fuzzy truth values.

For this purpose every proposition is assigned to a neuron and every rule is realized

by connecting every neuron representing a premise to the neuron representing the con-

clusion. This entails several issues concerning the appropriate net structure, which can

be resolved by inserting additional nodes (see [20]). A net generated from fuzzy-logical

rules is called a fuzzy-logical neural net (FLNN).

Extensions

If we require that every neuron has only one outgoing connection, we can simplify the

generated nets, by shifting the weight of a rule from the conclusion’s incoming to the

outgoing connections. The rule

� �  � � � � �� � 	  ��� (12)

can be transformed into the structure shown in figure 5. FLNNs generated by this sim-

plified transformation have an individual weight for every system input, which is useful



especially for interpreting learning results, and would need extra rules without simpli-

fied generation.

Apart from using the simplified transformation we extend Fuzzy-Prolog in two ways.

One is that we allow the use of the disjunction in rules. With the simplified transforma-

tion, the same effect can be obtained by using multiple rules, it is just a more convenient

notation. The other is the integration of a list processing feature into the Fuzzy-Prolog

system. This is necessary, since we do not know in advance how many groups there

will be in an interpretation. The number of groups varies for different segmentations of

the same input. We call these rules with variable numbers of premises multi-rules resp.

multi-neurons with variable numbers of connections. For learning the connections to a

multi-neuron share a single weight which corresponds to the truth value of the multi-

rule.

INTERPRETATION RATINGS

Fuzzy Rules

Fuzzy rules allow to express musical knowledge in a way similar to natural language.

Input features extracted from the interpretations are combined and weighted on several

levels by using fuzzy rules to produce an overall rating of the interpretation. The rules

used represent knowledge from music theory and music psychology about the segmenta-

tion and similarity of musical rhythms. These are all the rules currently used. Rules that

operate on the group level have an index attached, indicating that this rule is applied

once for every group.

(Output neurons for different modes:)

!���"��
��
��#"�� � !���"��
��
������� (13)

�$��
#"��� � ����"�#"��� (14)

!!��
���%#"�� � !���"�#"�� (15)

(Overall rating and similarity:)

!����#"�� � !���"�#"�� � !&�'
� � !��	(�
��
������� �

!���"��
��
������� (16)

!���"�#"�� � ����"�#"��� � � � � �����"�#"��� (17)

����"�#"��� � ��
���� ��)�	*�� ��!���
*�� ��+
�)�	� (18)

��
���� � ������,�� �����) �	,�� (19)

������,�� � ���,� � ����,� � ����,� � ���,�� � ���,�� (20)

�)�	*�� � �������
� �����-���%� ���������� �

�����.���� �������"'� ���������� (21)

�!���
*�� � �/''������ ����	
������ ���",���*����� ��0
�
����� (22)

(Segmentation:)

!���"��
��
������� � !-�"���
� � !-�"��$"� � !���"��
� (23)

!���"��
� � ����"��
�� � � � � �����"��
�� (24)

����"��
�� � ����"�0"������� �����"��
���.� �����"�1
�����"'� �

����"�-�'����� �����"�-�'+
	�� (25)

����"�0"������� � ����"�0"���� �����"�0"���� �

����"�0"���� �����"�0"���� (26)

����"��
���.� � ����"��
��� �����"��
��� �����"��
��� �

����"��
��� �����"��
�
� (27)

!��	(�
��
�������  analogous to !���"��
��
������� � (28)

Not all the rules can be discussed in detail here, but the following remarks can give an

idea which considerations guided the system design. The rules for similarity on the struc-

ture level are based among others on the segmentation rating for input and task. So the

proposition CInputSegmentation represents the quality of an input segmentation based on

rules and facts on group and interpretation level. The truth values of propositions of the

form GInputDurXX (rule 26) are the inputs features mentioned earlier, which return val-

ues close to one if the length of the respective group is near to 0.4, 0.8, 1.3 or 2.0 seconds.



Similarly the rules GInputLenX (rule 27) represent group lengths of 1, 2, 3, 4, and 5. Rel-

atively loud events tend to mark a group beginning and long events tend to end a group,

which is reflected by propositions on the group level (rule 25)

Rule 24 is a multi-rule where the transition from the interpretation level to the group

level takes place and a variable number of inputs is combined to one node. The output

node CIntrQual returns the rating for a whole interpretation that comprises segmentation,

similarity of groups, and assignment of groups. The extra output neurons are needed for

implementation reasons, the weights of their connections is fixed to �. The stucture of the

net generated from the whole Fuzzy-Prolog program is shown in figures 6, 7, and 8.

Learning

After converting the Fuzzy-Prolog program into a fuzzy-logical neural net we can start

the training process. For this purpose some modifications of the backpropagation algo-

rithm are needed to adapt it to the evaluation functions of the fuzzy logical operators.

We replace the weighted sum as net input function �
� of every neuron by the evalu-

ation function for the operator that is used in the corresponding rule. These functions

get already weighted inputs as arguments. Therefore we need the derivative of the used

evaluation operators. For the �-operators we can calculate

2�
�
���

�

23��

� �
���

� � '�4�
���

�� (29)

where 3�� is the weight of the connection from neuron � to 5, �� is the output value of

neuron �, and '�4������ is defined as the outer derivative:

'�4�
���

�� �
�
�
�

� �
�

��
���

� 3���
���

	
��

���
��

���
�
3���

�

 �
�

��

(30)

The resultant modified backpropagation rule can be written as

�3�� � 6
�

���
�

���
� � '�4�

���
�� � Æ

���
� (31)

with

Æ
���

� �

�����
����

� ���
�
���

� ���
���

� � �
���

� � if 5 is output neuron,

� ���
�
���

� �
��

���
Æ

���
�

�3�� � '�4�
���

��

else
(32)

For a multi-neuron getting input from several instances of a neuron with different val-

ues, a weight update for every instance is calculated and the sum is applied to the shared

weight.

Iterative Training by Relative Ratings

The straightforward approach to learning ratings by example is to collect example rat-

ings, but this would need large numbers of ratings the expert. Since there is a large

number of possible interpretations it is in general not feasible to rate a substantial num-

ber of interpretations for a given input. The system is therefore trained with relative

ratings following the method by Braun, Feulner and Ulrich [23]. This approach is useful

for networks calculating a rating value and has been used for learning game strategies.

For this purposes the absolute values are not relevant. The relation between the rating

of two different reactions to a situation is important for the decision which move to take.

Similarly it is not important which ratings the interpretations actually get, it is sufficient

that the desired interpretation is rated best.

The network architecture for training by relative ratings is shown in figure 9. The

neural net is duplicated with shared weights and the output neurons are connected with

a comparator neuron. We can assume without loss of generality that interpretation rated

better by the expert is given as input 1. The output of the comparator neuron is then

calculated as ������ � ��� ��. Therefore the target value for the comparator neuron is

�. If the result is not �, it can be used as error value for backpropagation. This means

that pairs of interpretations are given and one of each pair is marked as better. After

successful learning the system assigns higher ratings to the better interpretations.

To further reduce the number of ratings needed from the expert we use iterative train-

ing. We take the interpretation preferred by the expert and dynamically generate relative



examples by comparing the expert interpretations to those preferred by the system. If

they differ a relative rating sample is generated. Normally, after training the relation of

ratings is correct for the given relative samples but other interpretations are rated bet-

ter than the ones provided by the expert. So the process of generating sample pairs and

training the network is iterated until for all samples the expert interpretation is rated best

by the system or a maximum number of iterations is reached.

The depth of the net makes standard backpropagation slow since the size of the gra-

dient gets very small on the lower layers of the net. To overcome this problem we use

the RPROP [24] algorithm for training the network with which our net converges dra-

matically faster than with other learning methods (in figure learning curves are shown

for standard backpropagation with momentum and for RPROP). Usually generalization

suffers from fast learning, but tests showed that it does not happen in this case. This

is probably because there is no distributed representation in the network unless it is ex-

plicitly encoded. So overlearning does not take place and the network is extended only

when needed. This capacity of the network is limited compared to a MLP, but it allows

to interpret training results and can lead to good generalization, if the structure defined

by the fuzzy rules is appropriate for the learning task.

APPLICATION

Implementation

We have implemented an experimental application of the system described in this paper

called RhythmScan which allows to generate samples, to train and test the system. It

is a Java application with a Graphical User Interface and the Fuzzy-Prolog interpreter

written in C connected via JNI and uses XML data format for storage to facilitate data

reuse. The system can be interactively used and trained by giving keyboard input and

preferred interpretations. User input can be provided via a MIDI or via the computer

keyboard, in the latter case without velocity information. The preferred segmentations

and assignments can be defined interactively by a user (an expert) on a graphical user

interface. Differing segmentations and assignments by system and user can be seen in

figure which shows the expert view of the user interface.

After training the system adequately to most segmentation tasks, e.g. modelling sub-

jective rhythmization and performs structural comparison of user input for a given task

like in interactive music tutorials. The system is able to detect delayed, interrupted, and

repeated input as well as tempo and timing deviations.

Optimization

It is the central idea of Branch-and-Bound to avoid calculations that cannot improve the

result when searching an optimal path in a graph. To do this, one tries to find bounds

on the maximal rating when incrementally calculating partial solutions. The maximal

rating of solutions containing the partial solution is compared to a value that has already

been reached or predetermined as a minimum. If the maximal rating is lower, it is not

necessary to complete and rate the solutions containing this partial solution.

For applying Branch-and-Bound we organize the calculation of the interpretations cor-

responding to a tree structure. Every node represents a group assignment and every edge

represents a different way of combining them. The fist level below the root presents the

assignment of the first input group, then follow the branches to the assignment of the

second group, then the third group etc. In this tree we can determine for each node the

maximal rating that can be achieved with maximal rating of the not yet assigned groups.

If this maximal rating is better that another one already achieved, it is not necessary to

follow this branch any further. This is illustrated in figure . With � levels and a branch-

ing degree of �, corresponding to � and � � � groups in input and task, the complexity is

reduced from &���� to &�� � �� in the optimal case.

The increase of efficiency that is actually achieved depends mainly on the heuristic that

determines the order in which the interpretations are evaluated. The earlier good ratings

are found, the more branches can be skipped. We use the segmentation ratings, which

can be computed in advance and sort the interpretations accordingly before rating them.



Effect of Filtering and Branch-and-Bound

Influential factors for calculation cost of the selection algorithm are the length of the se-

quences, filtering and the Branch-and-Bound optimization. The result of a test with 20

samples with different lengths, each with and without Branch-and-Bound and filtering,

are listed in table 2. It can be seen clearly that both optimizations have more effect on

longer sequences. But even for short sequences the additional computation for the opti-

mizations has no negative effects. Filtering only has more effect than Branch-and-Bound

only, both methods combined have the best effect and reduce the computation time sig-

nificantly: for the examples used by a factor of more than 3000. Optimization has the

strongest effect for long sequences. This behavior is useful for interactive applications,

where maximal answer times should be kept low.

Training Results

For testing the system in comparison mode we used 100 samples, consisting of 50 se-

quences as performed by students in original form and with gaussian noise added (7 � 


MIDI units for loudness and 7 � �� msec for timing). The interpretations were defined

by graduate students. The data are not representative or suitable for drawing conclusions

on rhythm perception in general, but they are examples of the desired output in a tutorial

situation.

The fuzzy-logical net described before was trained with this data. For comparison a

linear net and a standard neural network (multi-layer perceptron, MLP) with one hid-

den layer of four neurons were also trained. The training results are shown in Table 3.

While the results of the linear net are much worse than the two others, the results of the

FLNN and the MLP are similar. We reach a percentage of 88% resp. 90% identical to the

expert interpretations on the training set and 80% on the test set. There are often many

acceptable interpretation possibilities and the interpretations that differ from those of the

experts are mostly musically acceptable. For both the FLNN and the MLP, the number of

musically implausible samples was 3 on the test set and training set combined, i.e. 3%.

The weights of the trained FLNN were mostly in the ranges which could be expected

from the music theory and psychology. One unexpected tendency was, that the regularity

of group length and duration received almost zero weights. This may be due to the

design of the measures or because of the rather unmetrical input sequences.

CONCLUSIONS

Modelling musical knowledge in combination with machine learning enables us to solve

musical tasks without a complete model or exact knowledge of perceptual and other

relevant processes. The system can be easily modified or extended by adding, changing

or removing rules or input features.

Overall 97% of the interpretations chosen by the system are musically acceptable, which

is a good result. Although the standard neural net gave similar results, the FLNN of-

fers the advantages of being interpretable, easily extendable, and more efficiently com-

putable because of fewer connections in the network and better effect of optimizations.

The weights in the trained system give insight to the relevance of rules, although the sam-

ple sets are not yet representative and too small to draw any generalized conclusions.

The results encourage to further explore this method of pattern recognition and analy-

sis. Next challenges are the integration of pitch and metrical information into the system,

which has already been begun for pitch with first promising results. The extension to

streaming mode and further optimization of the computational efficiency are important

for practical applications. It is planned to use the segmentation and similarity measures

described here for intelligent search in musical databases.
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Figure 1: System Modules.

Figure 2: Calculation of tempo variants.

Figure 3: Group assignments for a rhythmic interpretation.
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Figure 4: Graphs of the q-operator for conjunction and disjunction with � � �.

Figure 5: Simplified net structure.
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Figure 6: Structure of the neuro-fuzzy program on the structure level: Nodes on the top

are output nodes (rectangles), nodes on the bottom (gray) are net inputs (Fuzzy-

Prolog facts). Nodes with bold border operate on the structure level, all other

nodes operate on the group level. Connections to Nodes marked with ‘� � � ’ are

transitions from structure to group level.
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Figure 7: Structure of the neuro-fuzzy program on the group level for segmentation.
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Figure 9: Scheme for relative training
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Figure 10: Learning curves for Standard Backpropagation with Momentum and RPROP.

Leaps in the curve show generation of new training samples between training

iterations.
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Figure 11: Branch-and-Bound scheme: representation of group assignment as a tree. Us-

ing a depth-first search starting from the left a upper bound can be determined

at the bold nodes. In the optimal case the ratings for the dotted nodes do not

need to be calculated, which reduces the computational effort from 27 to 9 rat-

ings in this example.

Figure 12: RhythmScan user interface: black lines show segmentation and assignments

calculated by the system, yellow lines show input by an expert user

TABLES

	
���� for ��������

n ��� 
 ��� � ��� � ��� 
 ��� � ��� �

1 0 0 0 1 1 1
2 1 1 1 2 2 2
3 1 1 1 4 4 4
4 2 2 2 8 8 8
5 3 3 3 16 16 16
6 4 5 5 31 32 32
7 7 7 8 61 63 64
8 10 12 12 120 125 127

10 24 29 31 464 492 504
12 57 71 79 1793 1936 2000
14 134 175 200 6930 7617 7936

Table 1: Number of possible segmentations depending on sequence length and permitted

group lengths.



Summed
sequence-
length

Filters and
Branch-and-
Bound

Only Filters Only Branch-
and-Bound

No
Optimization

4 0,03 0,03 0,04 0,05
6 0,06 0,07 0,19 0,32
6 0,14 0,24 0,19 0,30
6 0,03 0,03 0,20 0,32
8 0,13 0,33 0,77 5,35
8 0,20 0,54 1,60 5,34
8 0,15 0,22 0,77 5,33
9 0,21 0,34 3,36 25,79

10 0,41 1,07 19,23 128,37
10 0,19 0,22 15,80 163,25
10 0,36 1,07 25,91 163,67
10 0,35 0,79 20,46 163,60
10 0,19 0,48 3,67 162,96
10 0,36 1,08 15,68 163,25
11 0,50 2,56 6,30 1069,03
11 0,28 1,62 5,74 1070,62
12 0,62 4,43 11,69 4322,32
12 0,68 4,43 11,25 4323,07
12 0,70 4,43 11,29 4325,34
12 0,80 4,25 12,69 4323,47

Mean 0,32 1,41 8,34 1021,09
Median 0,25 0,67 6,02 163,11

Minimum 0,03 0,03 0,04 0,05
Maximum 0,80 4,43 25,91 4325,34

Table 2: Calculation time of interpretation selection in seconds. The first column shows

the sum of the lengths of input and task, which were equal in most samples.

LN FLNN MLP

Deviating interpretations on training set 6 (12%) 6 (12%) 5 (10%)

Error value (SSE) 3.95e-7 3.94e-7 2.40e-7

Generated relative samples 267 230 250

Error on relative samples 97 (36%) 26 (11%) 26 (10%)

Deviating interpretations on test set 36 (72%) 10 (20%) 10 (20%)

Table 3: Training results of different network types: LN: Linear net, FLNN: fuzzy-logical

neural net, MLP: multi layer perceptron, one hidden layer.


