
Structure Recognition on Sequences with a Neuro-Fuzzy System

Klaus Dalinghaus
Institute of Cognitive Science

University of Osnabrück
kdaling@uos.de

Tillman Weyde
Research Department of Music and Media Technology

University of Osnabrück
tweyde@uos.de

Abstract

We present a neuro-fuzzy system capable of
recognizing and assigning rhythmic struc-
ture to musical input. The system is thereby
based on two stages, grouping of the raw
data and alignment of simple groups. Both
steps incorporate expert knowledge from
the musical domain. Furthermore, they are
optimized with learning algorithms from
the neural network domain according to
training data collected from real-life scenar-
ios. The performance of the system reaches
an accuracy of 97%.

Keywords: Neural Networks, Fuzzy-
Logic, Music, Alignment of Rhythmic
Data.

1 Introduction

Many problems dealing with the alignment of se-
quences can be solved with the minimal edit distance
algorithm or minimizing another well defined cost
function on sequences, such as comparison of words
when searching documents or alignment of DNA se-
quences (see [4] and [1]). But for some tasks it is dif-
ficult or impossible to find such a cost function, e.g.,
if the knowledge about the domain is incomplete or
vague. This is the case if MIDI1 data streams are to
be compared with respect to their underlying rhythmic
pattern. As an example the tempo may vary within
a sequence just because of the difficulty of the part
which is to be played. However, both, expert knowl-
edge partially describing the system and training data

1Musical Instrument Digital Interface

for correctly aligned rhythmic patterns are available,
such that a neuro-fuzzy system seems an appropriate
tool for this task. The interaction of fuzzy systems and
neural networks has grown in the last years because
the approach can use the advantages of both systems
and decrease the disadvantages of them (see [6], [3],
[7]). It is possible to put expert knowledge into the
system, to train the system according to given training
examples, and, after the training process, to interpret
the results. We here propose a neuro-fuzzy system for
the alignment of rhythmic structure. Thereby, the sys-
tem works on two different levels, the structure level
and the group level. That means the first step is to
look for a segmentation of the sequences into groups
and then, in the second step only single groups are
aligned. Due to this separation, a comparably efficient
alignment procedure can be used. Moreover, expert
knowledge, i.e. vague rules for both parts, segmenta-
tion of a sequence and comparison of two segments,
can be integrated as fuzzy rules into the system. The
interpreted system has been realized based on musical
theory and successfully trained real data sets.

2 Recognition of Rhythmic Patterns With a
Neuro-Fuzzy System

The task of recognizing and assigning rhythmic struc-
ture to unquantized musical input is fundamental for
developing educational systems and database search
on music. Music theory and music psychology have
determined features that are of importance in the
perception and cognition of music, but a coherent
paradigm to support computer models has not yet
been established. We now present the precise goal
and the neuro-fuzzy system (see [9]). Thereby, the
used rules can be seen as a partial implementation of



the grouping rules by Lerdahl and Jackendoff [5] with
some rules added for the comparison.

2.1 The Basic Problem

Rhythms are represented as sequences of note objects
based on MIDI data. Three values of these note ob-
jects are used as input for the system: onset time,
duration, and key velocity (loudness). The task is to
find an appropriate alignment for two given sequences
(task and input). Thereby, appropriate alignments as-
sign parts of similar rhythmic structure to each other.
A precise characterization of a good alignment is how-
ever not available, and an alignment can be best eval-
uated based on the two levels mentioned before: the
structure level and the group level. First, both se-
quences are segmented into groups, so called motifs.
This grouping depends on the context and on tempo-
ral proximity. Additional criteria are the accents on
the notes, the group length (amount of notes), and the
group duration (amount of time). Motifs are sponta-
neously recognized, even if they are not equal. They
are ’transposable’ in respect to time, dynamics and
pitch, i.e. their Gestalt is partially invariant to these
transformations.

Now the assignment can be done on both levels. Ev-
ery group of the input is assigned to a task group or to
no group. In the latter case an error value for the input
group is calculated. Then the assignment of the notes
inside the groups can be done. Because the assigned
groups need not have the same number of notes, some
notes cannot be assigned. These are marked as added
or omitted. We get a so called interpretation (see
figure 1), where information about the matching of
the groups is stored, which includes tempo, loudness,
added or omitted notes, etc.

Figure 1: Interpretation of a given example

As next step complex features can be extracted from
an interpretation for every group assignment. Four
main features are extracted: correctness, tempo, pre-
cision, and position. The calculation also determines
deviation of the tempo, of the note positions, of the
loudness patterns, and the deviation of the groups
from their expected positions. In addition some in-
put features on the structure level are calculated, e.g.
a value for the correct order of the groups in the input.

2.2 Description With Fuzzy-Logic

Based on the calculated features a rule set can be cre-
ated which is able to rate a given interpretation. Here
is a subset of the rules used in the system:

CQual(sa) ← CTpoQual(sa)∧CPrcsn(sa)∧
CCorrect(sa)∧CPosition(sa)

CTpoQual(sa) ← GTpoQual(ga1)∧ . . .∧GTpoQual(gan),

where sa = [ga1, . . . ,gan]

GTpoQual(gai) ← GTpoStbl(gai)∧GTpoPlsbl(gai)

CPrcsn(sa) ← GPrcsn(ga1)∧ . . .∧GPrcsn(gan),

where sa = [ga1, . . . ,gan]

CCorrect(sa) ← GCorrect(ga1)∧ . . .∧GCorrect(gan),

where sa = [ga1, . . . ,gan]

The first rule says that the quality of a structure assign-
ment (sa) depends on the tempo quality, the precision,
the correctness, and the positioning of sa. The sec-
ond, fourth, and fifth rule use a special feature which
can deal with a variable number of premises. This is
necessary to get from the structure level (sa) to the
group level (ga) because the number of groups in an
interpretation might vary.

Often t-norms and t-conorms like >min and ⊥min are
used to calculate the truth value of logical expressions
in fuzzy logic. However, we decided to use a compen-
satory operator:

µ⊗,q(α1, . . . ,αn) =

(
1
n

n

∑
i=1

αq
i

) 1
q

q > 0 (1)

This operator is related to the Yager operator (see
[10]). It converges to >min in the limit of q→ 0 and
to ⊥min in the limit of q→ ∞, so it is a compensation
between both operators. It is not a t-norm because it
violates the requirement of the identity and associa-
tivity. It can nevertheless be used in a neuro-fuzzy



system where only differentiability of the operator is
required. In our system we use q = 1

2 for the conjunc-
tion and q = 2 for the disjunction. The compensatory
operator give more robust and less extreme values, for
example, if only one αi is 0 or 1.

2.3 Transformation to a Neuro-Fuzzy Network

Using the algorithm in [6] we can transform the rule
basis into a neural network. This is done by assigning
a neuron to every proposition and to every conclusion.
For every rule, connections from the premises to the
conclusion are inserted into the network. The neurons
are calculating their input no longer as the weighted
sum but as the evaluation of the fuzzy operator used
in the corresponding rules. Note that the algorithm as
described in [6] can only deal with limited rule sets
which, in particular, need to be non-recursive. For our
rule set, transformation into a form suitable for [6] is
possible.

For training of network the standard backpropagation
algorithm has to be extended because the neurons are
no longer using the weighted sum to calculate their in-
put value. The modified backpropagation rule, which
is obtained as gradient decent on the quadratic error
on a given training set, can be written as

4wi j = η ∑
p∈P

o(p)
i ·drvt(p)

i j ·δ
(p)
j (2)

with

δ(p)
j =





f ′(net(p)
j )(t(p)

j −o(p)
j ), if j is outp. neur.,

f ′(net(p)
j )

m
∑

s=1
δ(p)

ks
·w jks ·drvt(p)

jks
, else

(3)
where drvt(p)

i j is the derivation of the used input func-

tion for neuron j given input pattern p, o(p)
i is the out-

put of neuron i for pattern p, t (p)
j is the target value for

pattern p and neuron j, wi j denote the weight from i to
j in the network, and f denote the activation function
of the neuron. The network is trained with a modifi-
cation of a simple gradient descent according to the
ideas provided in the R-PROP algorithm (see [8]).

2.4 Integration of the Network into the System

Since the rule set enables the system to rate an in-
terpretation, a preprocessing function is needed, that
calculates all possible interpretations for a given pair

of sequences. After this step, all implausible interpre-
tations are filtered out. The remaining of the interpre-
tations are sorted by a heuristic and complex features
are computed for them. The neuro-fuzzy system rates
every interpretation based on these features and the
one rated best is selected as output.

2.5 Choice of the Training Set

For the training process examples i.e. interpretations
of pairs of sequences together with a given rating are
needed. Yet it is very difficult to choose an appropri-
ate exact value for a given interpretation. However, it
can be stated very easily which of two given interpre-
tations should be rated higher. So we used a training
approach based on relative training examples as pro-
posed in [2] (see figure 2).

Figure 2: Training with relative examples

Thereby, a training example for the neural network
consists of a pair of two different interpretations of
the same input and task sequence: one given from an
expert and one from the system. The output of the net-
work shall be 0 if the expert ranking is larger than the
ranking from the system, and it shall be the difference
of the two rankings otherwise. The motivation behind
is, that then a constant output 0 would correspond to a
perfectly trained system. To handle this procedure we
duplicate the network and create a so called compara-
tor neuron k. The two networks use weight sharing.

Now the training process runs as follows: First an ex-
pert selects for every example (pair of sequences) the
best interpretation. Then for every example the inter-
pretation rated best by the current system is calculated
to build the relative training examples. To guarantee
that the training algorithm works correctly, we iterate
the training process, because even if the expert inter-
pretation is rated better than the system interpretation
after training, there could be a third interpretation now
rated best by the system.



2.6 Results

For testing the system we used 100 samples consist-
ing of 50 samples as performed by students in orig-
inal form and with noise added. The expert inter-
pretations were defined by graduate students. Three
types of networks were trained with these data: a lin-
ear network2, a multi-layer perceptron3 and the neuro-
fuzzy network. With the linear network only for 28%
of the samples the estimated interpretation was rated
best. For the other networks 80% of the samples were
processed correctly. But even if the system output is
not the expected interpretation, it can nevertheless be
a musically acceptable which is the case for another
17% of the samples. Overall 97% of the interpre-
tations chosen by the system trained with the multi-
layer perceptron or the neuro-fuzzy network are mu-
sically acceptable, which is a good result. But it is not
possible to extract any knowledge from the calculated
weights of the multi-layer perceptron wich is the case
for the neuro-fuzzy network.

3 Conclusions

We have proposed a system to solve the task of seg-
menting rhythmic patterns and it has been solved sat-
isfactorily. Thereby, knowledge modelling in combi-
nation with machine learning tools enables us to solve
the task without a complete model or exact knowl-
edge of perceptual and other relevant processes. The
concept of the presented system is general such that
it should be possible to transfer the design to other
fields of application: the alignment of phonemes and
graphemes in orthography for example. A transfer to
another ares as well as automatization of rule acquisi-
tion will be the topic of future research.

References

[1] Abdullah N. Arslan and Ömer Egecioglu. Ef-
ficient algorithms for normalized edit distance.
Journal of Discrete Algorithms, 1(1):3–20,
2000.

2The input features responsible for the group quality are lin-
early connected to a single neuron. The same is done for the seg-
mentation quality. These two neurons and other input features
constitute the top layer and are linearly connected to the output
neuron

3In addition to the structure in the linear network, a fully con-
nected hidden layer is put in between the top layer and the output
neuron.

[2] Heinrich Braun. Neuronale Netze: Optimierung
durch Lernen und Evolution. Springer Verlag,
Berlin, Heidelberg, 1997.

[3] Giovanna Castellanoa, Ciro Castiello, and
Anna Maria Fanelli. KERNEL: A matlab tool-
box for knowledge extraction and refinement by
neural learning. In Lecture Notes in Computer
Science, volume 2329, pages 970–979. Springer
Verlag, Berlin, 2002.

[4] Dan Gusfield. Algorithms on Strings, Trees, and
Sequences : Computer Science and Computa-
tional Biology. Univ. Press, Camebridge, 1999.

[5] Fred Lerdahl and Ray Jackendoff. A Generative
Theory of Tonal Music. MIT Press, Camebridge,
MA, 1983.

[6] Detlef Nauck, Frank Klawonn, and Rudolf
Kruse. Foundations of Neuro-Fuzzy Systems.
Wiley, Chichester, 1997.

[7] Detlef Nauck and Rudolf Kruse. NEFCLASS
– a neuro–fuzzy approach for the classification
of data. In K.M. George, Janice H. Carrol,
Ed Deaton, Dave Oppenheim, and Jim High-
tower, editors, Applied Computing 1995. Proc.
of the 1995 ACM Symposium on Applied Com-
puting, Nashville, Feb. 26–28, pages 461–465.
ACM Press, New York, 1995.

[8] Martin Riedmiller and Heinrich Braun. A di-
rect adaptive method for faster backpropaga-
tion learning: The rprop algorithm. In ICNN-
93: IEEE International Conference of Neural
Networks, pages 586–591, San Francisco, CA,
1993.

[9] Tillman Weyde und Klaus Dalinghaus. Recog-
nition of musical rhythm patterns based on a
neuro-fuzzy-system. In Smart Engineering Sys-
tem Design: Neural Networks, Fuzzy Logic,
Evolutionary Programming, Data Mining and
Complex Systems, volume 11, pages 679–684,
New York, NY, 2001. ASME press.

[10] Ronald R. Yager. On a general class of fuzzy
connectives. Fuzzy Sets and Systems, 4:235–
242, 1980.


