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ABSTRACT
We propose a novel method of analysing data gathered from
TREC or similar information retrieval evaluation experi-
ments. We define two normalized versions of average pre-
cision, that we use to construct a weighted bipartite graph
of TREC systems and topics. We analyze the meaning of
well known — and somewhat generalized — indicators from
social network analysis on the Systems-Topics graph. We
apply this method to an analysis of TREC 8 data; among
the results, we find that authority measures systems perfor-
mance, that hubness of topics reveals that some topics are
better than others at distinguishing more or less effective
systems, that with current measures a system that wants to
be effective in TREC needs to be effective on easy topics,
and that by using different effectiveness measures this is no
longer the case.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Measurement, Experimentation

Keywords
IR evaluation, TREC, Social Network Analysis, Kleinberg’s
HITS algorithm.

1. INTRODUCTION
Evaluation is a primary concern in the Information Re-

trieval (IR) field. TREC (Text REtrieval Conference) [12,
15] is an annual benchmarking exercise that has become a
de facto standard in IR evaluation: before the actual con-
ference, TREC provides to participants a collection of doc-
uments and a set of topics (representations of information
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needs). Participants use their systems to retrieve, and sub-
mit to TREC, a list of documents for each topic. After the
lists have been submitted and pooled, the TREC organizers
employ human assessors to provide relevance judgements on
the pooled set. This defines a set of relevant documents for
each topic. System effectiveness is then measured by well es-
tablished metrics (Mean Average Precision being the most
used). Other conferences such as NTCIR, INEX, CLEF pro-
vide comparable data.

Network analysis is a discipline that studies features and
properties of (usually large) networks, or graphs. Of partic-
ular importance is Social Network Analysis [16], that studies
networks made up by links among humans (friendship, ac-
quaintance, co-authorship, bibliographic citation, etc.).

Network analysis and IR fruitfully meet in Web Search
Engine implementation, as is already described in textbooks
[3,6]. Current search engines use link analysis techniques to
help rank the retrieved documents. Some indicators (and
the corresponding algorithms that compute them) have been
found useful in this respect, and are nowadays well known:
Inlinks (the number of links to a Web page), PageRank [7],
and HITS (Hyperlink-Induced Topic Search) [5]. Several
extensions to these algorithms have been and are being pro-
posed. These indicators and algorithms might be quite gen-
eral in nature, and can be used for applications which are
very different from search result ranking. One example is
using HITS for stemming, as described by Agosti et al. [1].

In this paper, we propose and demonstrate a method
for constructing a network, specifically a weighted complete
bidirectional directed bipartite graph, on a set of TREC top-
ics and participating systems. Links represent effectiveness
measurements on system-topic pairs. We then apply anal-
ysis methods originally developed for search applications to
the resulting network. This reveals phenomena previously
hidden in TREC data. In passing, we also provide a small
generalization to Kleinberg’s HITS algorithm, as well as to
Inlinks and PageRank.

The paper is organized as follows: Sect. 2 gives some mo-
tivations for the work. Sect. 3 presents the basic ideas of
normalizing average precision and of constructing a systems-
topics graph, whose properties are analyzed in Sect. 4; Sect. 5
presents some experiments on TREC 8 data; Sect. 6 dis-
cusses some issues and Sect. 7 closes the paper.

2. MOTIVATIONS
We are interested in the following hypotheses:

1. Some systems are more effective than others;



t1 · · · tn MAP
s1 AP(s1, t1) · · · AP(s1, tn) MAP(s1)
...

. . .
...

sm AP(sm, t1) · · · AP(sm, tn) MAP(sm)
AAP AAP(t1) · · · AAP(tn)

(a)

t1 t2 · · · MAP
s1 0.5 0.4 · · · 0.6
s2 0.4 · · · · · · 0.3
...

...
. . .

...
AAP 0.6 0.3 · · ·

(b)

Table 1: AP, MAP and AAP

2. Some topics are easier than others;

3. Some systems are better than others at distinguishing
easy and difficult topics;

4. Some topics are better than others at distinguishing
more or less effective systems.

The first of these hypotheses needs no further justification
– every reported significant difference between any two sys-
tems supports it. There is now also quite a lot of evidence
for the second, centered on the TREC Robust Track [14].
Our primary interest is in the third and fourth. The third
might be regarded as being of purely academic interest; how-
ever, the fourth has the potential for being of major prac-
tical importance in evaluation studies. If we could identify
a relatively small number of topics which were really good
at distinguishing effective and ineffective systems, we could
save considerable effort in evaluating systems.

One possible direction from this point would be to attempt
direct identification of such small sets of topics. However, in
the present paper, we seek instead to explore the relation-
ships suggested by the hypotheses, between what different
topics tell us about systems and what different systems tell
us about topics. We seek methods of building and analysing
a matrix of system-topic normalised performances, with a
view to giving insight into the issue and confirming or re-
futing the third and fourth hypotheses. It turns out that
the obvious symmetry implied by the above formulation of
the hypotheses is a property worth investigating, and the
investigation does indeed give us valuable insights.

3. THE IDEA

3.1 1st step: average precision table
From TREC results, one can produce an Average Preci-

sion (AP) table (see Tab. 1a): each AP(si, tj) value mea-
sures the AP of system si on topic tj .

Besides AP values, the table shows Mean Average Pre-
cision (MAP) values i.e., the mean of the AP values for a
single system over all topics, and what we call Average Av-
erage Precision (AAP) values i.e., the average of the AP
values for a single topic over all systems:

MAP(si) =
1

n

nX
j=1

AP(si, tj), (1)

AAP(tj) =
1

m

mX
i=1

AP(si, tj). (2)

MAPs are indicators of systems performance: higher MAP
means good system. AAP are indicators of the performance
on a topic: higher AAP means easy topic — a topic on which
all or most systems have good performance.

3.2 Critique of pure AP
MAP is a standard, well known, and widely used IR ef-

fectiveness measure. Single AP values are used too (e.g.,
in AP histograms). Topic difficulty is often discussed (e.g.,
in TREC Robust track [14]), although AAP values are not
used and, to the best of our knowledge, have never been
proposed (the median, not the average, of AP on a topic
is used to produce TREC AP histograms [11]). However,
the AP values in Tab. 1 present two limitations, which are
symmetric in some respect:

• Problem 1. They are not reliable to compare the
effectiveness of a system on different topics, relative
to the other systems. If, for example, AP(s1, t1) >
AP(s1, t2), can we infer that s1 is a good system (i.e.,
has a good performance) on t1 and a bad system on
t2? The answer is no: t1 might be an easy topic (with
high AAP) and t2 a difficult one (low AAP). See an
example in Tab. 1b: s1 is outperformed (on average)
by the other systems on t1, and it outperforms the
other systems on t2.

• Problem 2. Conversely, if, for example, AP(s1, t1) >
AP(s2, t1), can we infer that t1 is considered easier
by s1 than by s2? No, we cannot: s1 might be a good
system (with high MAP) and s2 a bad one (low MAP);
see an example in Tab. 1b.

These two problems are a sort of breakdown of the well
known high influence of topics on IR evaluation; again, our
formulation makes explicit the topics / systems symmetry.

3.3 2nd step: normalizations
To avoid these two problems, we can normalize the AP

table in two ways. The first normalization removes the in-
fluence of the single topic ease on system performance. Each
AP(si, tj) value in the table depends on both system good-
ness and topic ease (the value will increase if a system is
good and/or the topic is easy). By subtracting from each
AP(si, tj) the AAP(tj) value, we obtain “normalized” AP
values (APA(si, tj), Normalized AP according to AAP):

APA(si, tj) = AP(si, tj)−AAP(tj), (3)

that depend on system performance only (the value will in-
crease only if system performance is good). See Tab. 2a.

The second normalization removes the influence of the sin-
gle system effectiveness on topic ease: by subtracting from
each AP(si, tj) the MAP(si) value, we obtain “normalized”
AP values (APM(si, tj), Normalized AP according to MAP):

APM(si, tj) = AP(si, tj)−MAP(si), (4)

that depend on topic ease only (the value will increase only
if the topic is easy, i.e., all systems perform well on that
topic). See Tab. 2b.

In other words, APA avoids Problem 1: APA(s, t) values
measure the performance of system s on topic t normalized



t1 · · · tn MAP

s1 APA(s1, t1) · · · APA(s1, tn) MAP(s1)
...

. . .
...

sm APA(sm, t1) · · · APA(sm, tn) MAP(sm)
0 · · · 0 0

(a)

t1 · · · tn

s1 APM(s1, t1) · · · APM(s1, tn) 0
...

. . .
...

sm APM(sm, t1) · · · APM(sm, tn) 0

AAP AAP(t1) · · · AAP(tn) 0

(b)

t1 t2 · · · MAP
s1 −0.1 0.1 · · · . . .
s2 0.2 · · · · · · . . .
...

. . .
...

0 0 · · ·

t1 t2 · · ·
s1 −0.1 −0.2 · · · 0
s2 0.1 · · · · · · 0
...

. . .
...

AAP . . . . . . · · ·
(c) (d)

Table 2: Normalizations: APA and MAP: normalized
AP (APA) and MAP (MAP) (a); normalized AP (APM)
and AAP (AAP) (b); a numeric example (c) and (d)

according to the ease of the topic (easy topics will not have
higher APA values). Now, if, for example, APA(s1, t2) >
APA(s1, t1), we can infer that s1 is a good system on t2 and
a bad system on t1 (see Tab. 2c). Vice versa, APM avoids
Problem 2: APM(s, t) values measure the ease of topic t
according to system s, normalized according to goodness
of the system (good systems will not lead to higher APM

values). If, for example, APM(s2, t1) > APM(s1, t1), we
can infer that t1 is considered easier by s2 than by s1 (see
Tab. 2d).

On the basis of Tables 2a and 2b, we can also define two
new measures of system effectiveness and topic ease, i.e., a
Normalized MAP (MAP), obtained by averaging the APA

values on one row in Tab. 2a, and a Normalized AAP (AAP),
obtained by averaging the APM values on one column in
Tab. 2b:

MAP(si) =
1

n

nX
j=1

APA(si, tj) (5)

AAP(tj) =
1

m

mX
i=1

APM(si, tj). (6)

Thus, overall system performance can be measured, be-
sides by means of MAP, also by means of MAP. Moreover,
MAP is equivalent to MAP, as can be immediately proved
by using Eqs. (5), (3), and (1):

MAP(si) =
1

n

nX
j=1

(AP(si, tj)−AAP(tj)) =

= MAP(si)−
1

n

nX
j=1

AAP(tj)

(and 1
n

Pn
j=1 AAP(tj) is the same for all systems). And,

conversely, overall topic ease can be measured, besides by

t1 · · · tn

s1

... APM

sm

↘

t1 · · · tn

s1

... APA

sm

↗

s1 · · · sm t1 · · · tn

s1

... 0 APM 0

sm

t1
... APA

T 0 0
tn

MAP AAP 0

Figure 1: Construction of the adjacency matrix.

APA
T

is the transpose of APA.

means of AAP, also by means of AAP, and this is equivalent
(the proof is analogous, and relies on Eqs. (6), (4), and (2)).

The two Tables 2a and 2b are interesting per se, and can
be analyzed in several different ways. In the following we
propose an analysis based on network analysis techniques,
mainly Kleinberg’s HITS algorithm. There is a little further
discussion of these normalizations in Sect. 6.

3.4 3rd step: Systems-Topics Graph
The two tables 2a and 2b can be merged into a single one

with the procedure shown in Fig. 1. The obtained matrix
can be interpreted as the adjacency matrix of a complete
weighted bipartite graph, that we call Systems-Topics graph.
Arcs and weights in the graph can be interpreted as follows:

• (weight on) arc s→ t: how much the system s “thinks”
that the topic t is easy — assuming that a system has
no knowledge of the other systems (or in other words,
how easy we might think the topic is, knowing only
the results for this one system). This corresponds to
APM values, i.e., to normalized topic ease (Fig. 2a).

• (weight on) arc s← t: how much the topic t “thinks”
that the system s is good — assuming that a topic has
no knowledge of the other topics (or in other words,
how good we might think the system is, knowing only
the results for this one topic). This corresponds to
APA (normalized system effectiveness, Fig. 2b).

Figs. 2c and 2d show the Systems-Topics complete weighted
bipartite graph, on a toy example with 4 systems and 2 top-
ics; the graph is split in two parts to have an understandable
graphical representation: arcs in Fig. 2c are labeled with
APM values; arcs in Fig. 2d are labeled with APA values.

4. ANALYSIS OF THE GRAPH

4.1 Weighted Inlinks, Outlinks, PageRank
The sum of weighted outlinks, i.e., the sum of the weights

on the outgoing arcs from each node, is always zero:

• The outlinks on each node corresponding to a system
s (Fig. 2c) is the sum of all the corresponding APM

values on one row of the matrix in Tab. 2b.

• The outlinks on each node corresponding to a topic
t (Fig. 2d) is the sum of all the corresponding APA



(a) (b)

(c) (d)

Figure 2: The relationships between systems and
topics (a) and (b); and the Systems-Topics graph for
a toy example (c) and (d). Dashed arcs correspond
to negative values.

h
(a)

s1

...

sm

t1
...
tn

=

s1 · · · sm t1 · · · tn

s1

... 0 APM

(APA)
sm

t1
... APA

T 0
tn (APM

T
)

·

a
(h)

s1

...

sm

t1
...
tn

Figure 3: Hub and Authority computation

values on one row of the transpose of the matrix in
Tab. 2a.

The average1of weighted inlinks is:

• MAP for each node corresponding to a system s; this
corresponds to the average of all the corresponding

APA values on one column of the APA
T

part of the
adjacency matrix (see Fig. 1).

• AAP for each node corresponding to a topic t; this
corresponds to the average of all the corresponding
APM values on one column of the APM part of the
adjacency matrix (see Fig. 1).

Therefore, weighted inlinks measure either system effective-
ness or topic ease; weighted outlinks are not meaningful. We
could also apply the PageRank algorithm to the network;
the meaning of the PageRank of a node is not quite so ob-
vious as Inlinks and Outlinks, but it also seems a sensible
measure of either system effectiveness or topic ease: if a sys-
tem is effective, it will have several incoming links with high

1Usually, the sum of the weights on the incoming arcs to
each node is used in place of the average; since the graph is
complete, it makes no difference.

weights (APA); if a topic is easy it will have high weights
(APM) on the incoming links too. We will see experimental
confirmation in the following.

4.2 Hubs and Authorities
Let us now turn to more sophisticated indicators. Klein-

berg’s HITS algorithm defines, for a directed graph, two
indicators: hubness and authority ; we reiterate here some of
the basic details of the HITS algorithm in order to empha-
size both the nature of our generalization and the interpreta-
tion of the HITS concepts in this context. Usually, hubness
and authority are defined as h(x) =

P
x→y a(y) and a(x) =P

y→x h(y), and described intuitively as “a good hub links
many good authorities; a good authority is linked from many
good hubs”. As it is well known, an equivalent formulation
in linear algebra terms is (see also Fig. 3):

h = Aa and a = ATh (7)

(where h is the hubness vector, with the hub values for all
the nodes; a is the authority vector; A is the adjacency ma-
trix of the graph; and AT its transpose). Usually, A con-
tains 0s and 1s only, corresponding to presence and absence
of unweighted directed arcs, but Eq. (7) can be immediately
generalized to (in fact, it is already valid for) A containing
any real value, i.e., to weighted graphs.

Therefore we can have a “generalized version” (or rather
a generalized interpretation, since the formulation is still
the original one) of hubness and authority for all nodes in
a graph. An intuitive formulation of this generalized HITS
is still available, although slightly more complex: “a good
hub links, by means of arcs having high weights, many good
authorities; a good authority is linked, by means of arcs hav-
ing high weights, from many good hubs”. Since arc weights
can be, in general, negative, hub and authority values can be
negative, and one could speak of unhubness and unauthority ;
the intuitive formulation could be completed by adding that
“a good hub links good unauthorities by means of links with
highly negative weights; a good authority is linked by good
unhubs by means of links with highly negative weights”.
And, also, “a good unhub links positively good unauthor-
ities and negatively good authorities; a good unauthority
is linked positively from good unhubs and negatively from
good hubs”.

Let us now apply generalized HITS to our Systems-Topics
graph. We compute a(s), h(s), a(t), and h(t). Intuitively,
we expect that a(s) is somehow similar to Inlinks, so it
should be a measure of either systems effectiveness or topic
ease. Similarly, hubness should be more similar to Outlinks,
thus less meaningful, although the interplay between hub
and authority might lead to the discovery of something dif-
ferent. Let us start by remarking that authority of topics
and hubness of systems depend only on each other; similarly
hubness of topics and authority of systems depend only on
each other: see Figs. 2c, 2d and 3.

Thus the two graphs in Figs. 2c and 2d can be analyzed
independently. In fact the entire HITS analysis could be
done in one direction only, with just APM(s, t) values or
alternatively with just APA(s, t). As discussed below, prob-
ably most interest resides in the hubness of topics and the
authority of systems, so the latter makes sense. However, in
this paper, we pursue both analyses together, because the
symmetry itself is interesting.

Considering Fig. 2c we can state that:



• Authority a(t) of a topic node t increases when:

– if h(si) > 0, APM(si, t) increases
(or if APM(si, t) > 0, h(si) increases);

– if h(si) < 0, APM(si, t) decreases
(or if APM(si, t) < 0, h(si) decreases).

• Hubness h(s) of a system node s increases when:

– if a(tj) > 0, APM(s, tj) increases
(or, if APM(s, tj) > 0, a(tj) increases);

– if a(tj) < 0, APM(s, tj) decreases
(or, if APM(s, tj) < 0, a(tj) decreases).

We can summarize this as: a(t) is high if APM(s, t) is high
for those systems with high h(s); h(s) is high if APM(s, t)
is high for those topics with high a(t). Intuitively, authority
a(t) of a topic measures topic ease; hubness h(s) of a system
measures system’s “capability” to recognize easy topics. A
system with high unhubness (negative hubness) would tend
to regard easy topics as hard and hard ones as easy.

The situation for Fig. 2d, i.e., for a(s) and h(t), is anal-
ogous. Authority a(s) of a system node s measures system
effectiveness: it increases with the weight on the arc (i.e.,
APA(s, tj)) and the hubness of the incoming topic nodes tj .
Hubness h(t) of a topic node t measures topic capability to
recognize effective systems: if h(t) > 0, it increases further
if APA(s, tj) increases; if h(t) < 0, it increases if APA(s, tj)
decreases.

Intuitively, we can state that “A system has a higher au-
thority if it is more effective on topics with high hubness”;
and “A topic has a higher hubness if it is easier for those
systems which are more effective in general”. Conversely for
system hubness and topic authority: “A topic has a higher
authority if it is easier on systems with high hubness”; and
“A system has a higher hubness if it is more effective for
those topics which are easier in general”.

Therefore, for each system we have two indicators: au-
thority (a(s)), measuring system effectiveness, and hubness
(h(s)), measuring system capability to estimate topic ease.
And for each topic, we have two indicators: authority (a(t)),
measuring topic ease, and hubness (h(t)), measuring topic
capability to estimate systems effectiveness. We can define
them formally as

a(s) =
X

t

h(t) ·APA(s, t), h(t) =
X

s

a(s) ·APA(s, t),

a(t) =
X

s

h(s) ·APM(s, t), h(s) =
X

t

a(t) ·APM(s, t).

We observe that the hubness of topics may be of particular
interest for evaluation studies. It may be that we can evalu-
ate the effectiveness of systems efficiently by using relatively
few high-hubness topics.

5. EXPERIMENTS
We now turn to discuss if these indicators are meaningful

and useful in practice, and how they correlate with standard
measures used in TREC. We have built the Systems-Topics
graph for TREC 8 data (featuring 1282 systems — actually,

2Actually, TREC 8 data features 129 systems; due to
some bug in our scripts, we did not include one system
(8manexT3D1N0), but the results should not be affected.
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Figure 4: Distributions of AP, APA, and APM values
in TREC 8 data

MAP In PR H A
MAP 1 1.0 1.0 .80 .99
Inlinks 1 1.0 .80 .99

PageRank 1 .80 .99
Hub 1 .87

(a)

AAP In PR H A
AAP 1 1.0 1.0 .92 1.0

Inlinks 1 1.0 .92 1.0
PageRank 1 .92 1.0

Hub 1 .93

(b)

Table 3: Correlations between network analysis
measures and MAP (a) and AAP (b)

runs — on 50 topics). This section illustrates the results ob-
tained mining these data according to the method presented
in previous sections.

Fig. 4 shows the distributions of AP, APA, and APM:
whereas AP is very skewed, both APA and APM are much
more symmetric (as it should be, since they are constructed
by subtracting the mean). Tables 3a and 3b show the Pear-
son’s correlation values between Inlinks, PageRank, Hub,
Authority and, respectively, MAP or AAP (Outlinks val-
ues are not shown since they are always zero, as seen in
Sect. 4). As expected, Inlinks and PageRank have a perfect
correlation with MAP and AAP. Authority has a very high
correlation too with MAP and AAP; Hub assumes slightly
lower values.

Let us analyze the correlations more in detail. The corre-
lations chart in Figs. 5a and 5b demonstrate the high cor-
relation between Authority and MAP or AAP. Hubness
presents interesting phenomena: both Fig. 5c (correlation
with MAP) and Fig. 5d (correlation with AAP) show that
correlation is not exact, but neither is it random. This, given
the meaning of hubness (capability in estimating topic ease
and system effectiveness), means two things: (i) more ef-
fective systems are better at estimating topic ease; and (ii)
easier topics are better at estimating system effectiveness.
Whereas the first statement is fine (there is nothing against
it), the second is a bit worrying. It means that system ef-
fectiveness in TREC is affected more by easy topics than by
difficult topics, which is rather undesirable for quite obvious
reasons: a system capable of performing well on a difficult
topic, i.e., on a topic on which the other systems perform
badly, would be an important result for IR effectiveness; con-
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Figure 5: Correlations: MAP (x axis) and authority (y axis) of systems (a); AAP and authority of topics
(b); MAP and hub of systems (c) and AAP and hub of topics (d)

versely, a system capable of performing well on easy topics
is just a confirmation of the state of the art. Indeed, the cor-
relation between hubness and AAP (statement (i) above) is
higher than the correlation between hubness and MAP (cor-
responding to statement (ii)): 0.92 vs. 0.80. However, this
phenomenon is quite strong. This is also confirmed by the
work being done on the TREC Robust Track [14].

In this respect, it is interesting to see what happens if we
use a different measure from MAP (and AAP). The GMAP
(Geometric MAP) metric is defined as the geometric mean of
AP values, or equivalently as the arithmetic mean of the log-
arithms of AP values [8]. GMAP has the property of giving
more weight to the low end of the AP scale (i.e., to low AP
values), and this seems reasonable, since, intuitively, a per-
formance increase in MAP values from 0.01 to 0.02 should
be more important than an increase from 0.81 to 0.82. To
use GMAP in place of MAP and AAP, we only need to take
the logarithms of initial AP values, i.e., those in Tab. 1a
(zero values are modified into ε = 0.00001). We then repeat
the same normalization process (with GMAP and GAAP
— Geometric AAP — replacing MAP and AAP): whereas
authority values still perfectly correlate with GMAP (0.99)
and GAAP (1.00), the correlation with hubness largely dis-
appears (values are −0.16 and −0.09 – slightly negative but
not enough to concern us). This is yet another confirma-
tion that TREC effectiveness as measured by MAP depends
mainly on easy topics; GMAP appears to be a more balanced
measure. Note that, perhaps surprisingly, GMAP is indeed
fairly well balanced, not biased in the opposite direction –
that is, it does not over-emphasize the difficult topics.

In Sect. 6.3 below, we discuss another transformation, re-
placing the log function used in GMAP with logit. This has
a similar effect: the correlation of mean logitAP and average
logitAP with hubness are now small positive numbers (0.23
and 0.15 respectively), still comfortably away from the high
correlations with regular MAP and AAP, i.e., not presenting
the problematic phenomenon (ii) above (over-dependency on

easy topics).
We also observe that hub values are positive, whereas au-

thority assumes, as predicted, both positive and negative
values. An intuitive justification is that negative hubness
would indicate a node which disagrees with the other nodes,
e.g., a system which does better on difficult topics, or a
topic on which bad systems do better; such systems and
topics would be quite strange, and probably do not appear
in TREC. Finally, although one might think that topics with
several relevant documents are more important and difficult,
this is not the case: there is no correlation between hub (or
any other indicator) and the number of documents relevant
to a topic.

6. DISCUSSION

6.1 Related work
There has been considerable interest in recent years in

questions of statistical significance of effectiveness compar-
isons between systems (e.g. [2, 9]), and related questions of
how many topics might be needed to establish differences
(e.g. [13]). We regard some results of the present study as
in some way complementary to this work, in that we make a
step towards answering the question “Which topics are best
for establishing differences?”.

The results on evaluation without relevance judgements
such as [10] show that, to some extent, good systems agree
on which are the good documents. We have not addressed
the question of individual documents in the present analysis,
but this effect is certainly analogous to our results.

6.2 Are normalizations necessary?
At this point it is also worthwhile to analyze what would

happen without the MAP- and AAP-normalizations defined
in Sect. 3.3. Indeed, the process of graph construction
(Sect. 3.4) is still valid: both the APM and APA matrices
are replaced by the AP one, and then everything goes on as



above. Therefore, one might think that the normalizations
are unuseful in this setting.

This is not the case. From the theoretical point of view,
the AP-only graph does not present the interesting proper-
ties above discussed: since the AP-only graph is symmetri-
cal (the weight on each incoming link is equal to the weight
on the corresponding outgoing link), Inlinks and Outlinks
assume the same values. There is symmetry also in comput-
ing hub and authority, that assume the same value for each
node since the weights on the incoming and outgoing arcs
are the same. This could be stated in more precise and for-
mal terms, but one might still wonder if on the overall graph
there are some sort of counterbalancing effects. It is there-
fore easier to look at experimental data, which confirm that
the normalizations are needed: the correlations between AP,
Inlinks, Outlinks, Hub, and/or Authority are all very close
to one (none of them is below 0.98).

6.3 Are these normalizations sufficient?
It might be argued that (in the case of APA, for example)

the amount we have subtracted from each AP value is topic-
dependent, therefore the range of the resulting APA value
is also topic-dependent (e.g. the maximum is 1 − AAP(tj)
and the minimum is −AAP(tj)). This suggests that the
cross-topic comparisons of these values suggested in Sect. 3.3
may not be reliable. A similar issue arises for APM and
comparisons across systems.

One possible way to overcome this would be to use an
unconstrained measure whose range is the full real line. Note
that in applying the method to GMAP by using log AP, we
avoid the problem with the lower limit but retain it for the
upper limit. One way to achieve an unconstrainted range
would be to use the logit function rather than the log [4,8].

We have also run this variant (as already reported in
Sect. 5 above), and it appears to provide very similar re-
sults to the GMAP results already given. This is not sur-
prising, since in practice the two functions are very similar
over most of the operative range. The normalizations thus
seem reliable.

6.4 On AAT and ATA

It is well known that h and a vectors are the principal
left eigenvectors of AAT and ATA, respectively (this can
be easily derived from Eqs. (7)), and that, in the case of ci-
tation graphs, AAT and ATA represent, respectively, bib-
liographic coupling and co-citations. What is the meaning,
if any, of AAT and ATA in our Systems-Topics graph? It
is easy to derive that:

AAT[i, j] =

8><>:0


if i ∈ S ∧ j ∈ T
or i ∈ T ∧ j ∈ SP

k A[i, k] ·A[j, k] otherwise

ATA[i, j] =

8><>:0


if i ∈ S ∧ j ∈ T
or i ∈ T ∧ j ∈ SP

k A[k, i] ·A[k, j] otherwise

(where S is the set of indices corresponding to systems and T
the set of indices corresponding to topics). Thus AAT and
ATA are block diagonal matrices, with two blocks each, one
relative to systems and one relative to topics:

(a) if i, j ∈ S, then AAT[i, j] =
P

k∈T APM(i, k)·APM(j, k)
measures how much the two systems i and j agree in

estimating topics ease (APM): high values mean that
the two systems agree on topics ease.

(b) if i, j ∈ T , then AAT[i, j] =
P

k∈S APA(k, i) ·APA(k, j)
measures how much the two topics i and j agree in esti-
mating systems effectiveness (APA): high values mean
that the two topics agree on systems effectiveness (and
that TREC results would not change by leaving out one
of the two topics).

(c) if i, j ∈ S, then ATA[i, j] =
P

k∈T APA(i, k) ·APA(j, k)
measures how much agreement on the effectiveness of
two systems i and j there is over all topics: high val-
ues mean that many topics quite agree on the two sys-
tems effectiveness; low values single out systems that
are somehow controversial, and that need several topics
to have a correct effectiveness assessment.

(d) if i, j ∈ T , then ATA[i, j] =
P

k∈S APM(k, i)·APM(k, j)
measures how much agreement on the ease of the two
topics i and j there is over all systems: high values mean
that many systems quite agree on the two topics ease.

Therefore, these matrices are meaningful and somehow
interesting. For instance, the submatrix (b) corresponds to
a weighted undirected complete graph, whose nodes are the
topics and whose arc weights are a measure of how much
two topics agree on systems effectiveness. Two topics that
are very close on this graph give the same information, and
therefore one of them could be discarded without changes in
TREC results. It would be interesting to cluster the topics
on this graph. Furthermore, the matrix/graph (a) could be
useful in TREC pool formation: systems that do not agree
on topic ease would probably find different relevant docu-
ments, and should therefore be complementary in pool for-
mation. Note that no notion of single documents is involved
in the above analysis.

6.5 Insights
As indicated, the primary contribution of this paper has

been a method of analysis. However, in the course of ap-
plying this method to one set of TREC results, we have
achieved some insights relating to the hypotheses formulated
in Sect. 2:

• We confirm Hypothesis 2 above, that some topics are
easier than others.

• Differences in the hubness of systems reveal that some
systems are better than others at distinguishing easy
and difficult topics; thus we have some confirmation of
Hypothesis 3.

• There are some relatively idiosyncratic systems which
do badly on some topics generally considered easy but
well on some hard topics. However, on the whole, the
more effective systems are better at distinguishing easy
and difficult topics. This is to be expected: a really
bad system will do badly on everything, while even a
good system may have difficulty with some topics.

• Differences in the hubness of topics reveal that some
topics are better than others at distinguising more or
less effective systems; thus we have some confirmation
of Hypothesis 4.



• If we use MAP as the measure of effectiveness, it is
also true that the easiest topics are better at distin-
guishing more or less effective systems. As argued in
Sect. 5, this is an undesirable property. GMAP is more
balanced.

Clearly these ideas need to be tested on other data sets.
However, they reveal that the method of analysis proposed
in this paper can provide valuable information.

6.6 Selecting topics
The confirmation of Hypothesis 4 leads, as indicated, to

the idea that we could do reliable system evaluation on a
much smaller set of topics, provided we could select such an
appropriate set. This selection may not be straightforward,
however. It is possible that simply selecting the high hub-
ness topics will achieve this end; however, it is also possible
that there are significant interactions between topics which
would render such a simple rule ineffective. This investiga-
tion would therefore require serious experimentation. For
this reason we have not attempted in this paper to point to
the specific high hubness topics as being good for evaluation.
This is left for future work.

7. CONCLUSIONS AND FUTURE DEVEL-
OPMENTS

The contribution of this paper is threefold:

• we propose a novel way of normalizing AP values;

• we propose a novel method to analyse TREC data;

• the method applied on TREC data does indeed reveal
some hidden properties.

More particularly, we propose Average Average Precision
(AAP), a measure of topic ease, and a novel way of normal-
izing the average precision measure in TREC, on the basis
of both MAP (Mean Average Precision) and AAP. The
normalized measures (APM and APA) are used to build a
bipartite weighted Systems-Topics graph, that is then ana-
lyzed by means of network analysis indicators widely known
in the (social) network analysis field, but somewhat gen-
eralised. We note that no such approach to TREC data
analysis has been proposed so far. The analysis shows that,
with current measures, a system that wants to be effective
in TREC needs to be effective on easy topics. Also, it is sug-
gested that a cluster analysis on topic similarity can lead to
relying on a lower number of topics.

Our method of analysis, as described in this paper, can
be applied only a posteriori, i.e., once we have all the top-
ics and all the systems available. Adding (removing) a new
system / topic would mean re-computing hubness and au-
thority indicators. Moreover, we are not explicitly proposing
a change to current TREC methodology, although this could
be a by-product of these — and further — analyses.

This is an initial work, and further analyses could be per-
formed. For instance, other effectiveness metrics could be
used, in place of AP. Other centrality indicators, widely
used in social network analysis, could be computed, although
probably with similar results to PageRank. It would be in-
teresting to compute the higher-order eigenvectors of ATA
and AAT. The same kind of analysis could be performed at
the document level, measuring document ease. Hopefully,

further analyses of the graph defined in this paper, accord-
ing to the approach described, can be insightful for a better
understanding of TREC or similar data.
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