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ABSTRACT

The basic ideas underlying two probabilistic models for document retrieval
are analysed. Maron and Kuhns’ model (Model 1) is seen as grouping users
together in order to compute a probability of relevance for a given
document; Robertson and Sparck Jones’ model (Model 2) groups
documents together in order.to compute a probability of relevance for a
given user. A unified theory is presented, which contains four specific
models: Models 1 and 2, a lower level Model 0 (which groups both
documents and users) and a higher level Model 3. In Model 3, the
individual event of a user making a relevance judgment on a document is
regarded as the interaction of two sets of events: individual user with group
of documents, and group of users with individual document. Some possible
solutions to Model 3 are discussed. A simplified system embodying an
application of the unified theory is described. Matters raised include: the
nature of indexing and query formulation; the complementarity of Models
1 and 2; the notion of probability of relevance and implications for the
probability ranking principle.

1. INTRODUCTION

The central concept in any proper formulation of the document retrieval problem
must be the concept of relevance. Relevance is a relationship that may (or may not)
hold between a document and a person in search of information: if that person
wants the document in question, then we say that the relationship of relevance
| holds. Whether or not a given person judges a given document as relevant is a
function of a large number of variables concerning that document (e.g., what it is
about, how and when it was written, etc.) and also, of course, concerning that
inquiring patron (e.g., what he already knows or believes, the problem that has
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2 Probability of relevance

motivated his search for information, his level of education). Because of all the
many variables involved, it is virtually impossible to make a strict prediction as to
whether the relationship of relevance will hold between a given document and a
given person. Therefore, the problem must be approached probabilistically. And in
fact, two separate and quite different probabilistic models for the document
retrieval problem have been described in the literature of this field.

One model was proposed by Maron and Kuhns (1960), the other by Robertson
and Sparck Jones (1976). Document retrieval systems based on each of these two
probabilistic models would operate as follows: given a request for information, the
system computes for each document of the collection its probability of relevance for
the inquiring patron. It then produces a ranked list (in descending order) of the
corresponding documents where the ranking corresponds to the computed value of
the probability of relevance for each document. By providing the inquiring patron
(or some intermediary searcher) with a ranking of the documents according to their
probability of relevance, the system thus provides that person with an ‘optimal’
strategy for searching through the output. In the first (Maron and Kuhns) model,
binary subject indexing is replaced by weighting indexing. In the second (Robertson
and Sparck Jones), binary query terms are replaced by weighted query terms.
However, in both systems the weights are interpreted as estimates of precisely
defined (but different) probabilities. Can these two different probabilistic models
for the document retrieval problem be unified under a single theoretical framework?

In order to develop a statistical (probabilistic) model of retrieval that is fruitful in
the sense of yielding useful rules (or principles) for retrieval, it is necessary to group
the individual events (described above) into classes, so that information from some
members of each class can be used to make predictions about other members. But the
individuality of the event lies in the individuality of its two components, namely the
individual properties of the document in question and the individual properties of the
person in search of information. Thus one may, as a first step, continue to regard the
documient as an individual but group together people according to the properties of
their information needs. On the other hand, one may group documents together
(according to their properties) and regard the person (in search of information) as an
individual. And, in fact, these two different approaches to the problem are exactly
the ones taken by the two probabilistic retrieval models described above.

The purpose of this paper is to present a unified theory which combines both of the
above approaches. We shall show that in addition to the two existing probabilistic
models two further models can be identified. A low-level model groups both
documents and people. (It appears that such an approach is already implicit in some
uses of the two earlier models.) The high-level model regards the individual event as
the interaction of two groups of events, namely, the individual person taken together
with the group of similar documents, and the individual document taken together
with the group of similar people (i.e., people who have similar information needs).
This paper will examine the nature of the grouping process, and the statistical
character of the unified formulation and the high-level model.

2. THE DOCUMENT RETRIEVAL PROBLEM

2.1 A first formulation of the problem

Here is a preliminary way to think about the document retrieval problem. There
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exists a corpus (or collection) of writings (or documents). These documents can vary
greatly in size, style of writing, depth and completeness of coverage, quality, subject
content, date of publication, affiliation of author, etc. However, each can be said to
‘contain’ information of some sort. In addition there exists a population of people
called ‘patrons’ who periodically seek recorded information for a variety of
purposes. For any particular patron (at any particular time) the information that he
wants or needs may be contained in one or more of the documents of the collection.
How can each patron find the information that he wants? Or, stated differently, how
can each patron find all and only those documents that contain the information that
he wants when he wants it? This, in a nutshell, is the document retrieval problem.

2.2 The meaning of relevance

We have said that the function of a document retrieval system is to retrieve all and
only those documents that the inquiring patron wants (or would want). We have
assumed implicitly that relative to every search for information each patron either
wants a given document or else he does not want it. We also have assumed that any
document that he wants, he continues to want even after seeing other documents. We
now make these assumptions very explicit. If a document is one that the patron
wants, then we call it a ‘relevant’ document, relative to his (i.e., the patron’s) search
for information. If it is one that he does not want, then we call it a ‘non-relevant’ (or
‘irrelevant’) document. The relevance of one document does not depend on which
other documents he has seen. The use of the terms ‘relevant’ and ‘non-relevant’
enables us simply to talk about the document retrieval problem in a more economical
fashion. It now enables us to formulate the document retrieval problem in terms of
the following question: how can one design a document retrieval system which can
accept requests for information (from an inquiring patron) and then divide the
collection into two exclusive and exhaustive sets, namely, into the set of relevant
documents which it selects and retrieves and the set of non-relevant documents which
are not retrieved?

For years the concept of relevance has been the subject of much discussion and
controversy in the literature of this field. At times it has been defined as a relationship
between a document and a topic. It has also been defined as a relationship between a
document and a search query. And there have been other definitions. However, we
feel that the concept of relevance, in its document retrieval sense, is best defined, as
described above, as a relation between a document and a person, relative to a given
search for information. Given this interpretation, the set of relevant documents is
simply the set of those documents that a patron wants.

2.3 Enter probability of relevance

Now let us look more closely at this central relationship of relevance that may or
may not hold between a document and a person in search of information. More
specifically, we now must ask how to decide, given a document and a person (with a
need for information), whether that document would be judged relevant by that
person. What are the functions that influence whether or not the relationship of
relevance holds between a given document and a given person?

A document is a complex entity. First of all it has a content, viz., what it is about,
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4 Probability of relevance

what it says, how what it says is written, whether the information is well-organized,
clear, consistent, up-to-date, etc. In addition and separate from the content is the
context of a document, viz., its author and his background and affiliation, where
the document was published and when, what it cites, etc. All of the above factors
(and many more) may influence whether a person in search of information will
judge that document as relevant.

And what about the person doing the judging (deciding) about relevance. From an
information point of view he is an even more complex entity than the document. He
is looking for information for some definite or perhaps vague reason. He may or
may not know clearly what will satisfy him. He may not know how to describe what
information he wants. Furthermore, he comes to the search situation with particular
knowledge, viz., with the content of his own internal memory. We speak of his
internal cognitive map as representing what he knows or believes, and of the gaps in
that map as representing areas of his ignorance. The terrain represented by his
cognitive map, his problems and objectives, and also the very nature of his cognitive
system (his intelligence, style, etc.) will influence whether he will judge a given
document as relevant.

Thus we see that there are dozens and dozens of extremely complex (and poorly
understood) factors (or properties) of a document and of a person that together
determine whether that person would want that document. It is for this reason that
relevance cannot be predicted with any certainty. Thus no document retrieval system
designed to ‘retrieve all and only the relevant documents’ can succeed completely.
And, in fact, any system designer who poses the document retrieval problem in the
above terms (viz., to retrieve all and only the relevant documents) has formulated his
problem improperly.

Given what we have just said about the complex set of factors which influence
relevance, we see that the document retrieval problem must be framed as a problem
of evidence and prediction. That is to say, the problem is to combine our knowledge
(or the system’s ‘knowledge’) of the various properties of a document with that of
the properties of a person in search of information and from that combination of
evidence attempt to predict whether or not the relationship of relevance holds
between the document and the patron. In other words (given our assumption about
relevance), the document retrieval system must combine available evidence in order
to compute (or assign a value to) the probability of relevance for any given
document and patron. If the system can compute these probabilities, then the values
can be used to rank the documents in question, i.e., it can provide the inquiring
patron with ranked output, where the documents are ranked in descending order by
their probability of relevance.

2.4 How to interpret probability of relevance

Because relevance is a relationship between a document and a person in search of
information, it has two aspects (or poles): the document aspect and the patron
aspect. These two poles of the relevance relationship point to two different ways of
making predictions about relevance. In order to predict relevance one must be able
to do one (or both) of the following:

1. Correlate documents with (the information properties of) those people who
would judge them relevant. -
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2. Correlate people with (the information properties of) those documents that they
would judge relevant.

These two approaches are represented by the two different probability models that
have been discussed in the literature of this field.

In 1960 Maron and Kuhns proposed a probabilistic model (which we will refer to
as Model 1) for the document retrieval problem. Model 1 interprets the situation as
follows: a patron submits a query (call it Q) consisting of some specification of his
information need. Different patrons submitting the same stated query may differ as
to whether or not they judge a specific document relevant. The function of the
retrieval system is to compute for each individual document the probability that it will
be judged relevant by a patron who has submitted a query Q. Thus, in Model 1,
probability of relevance is computed relative to evidence consisting of the type of
query that the patron has submitted.

Maron and Kuhns argued that probability in their model be interpreted in its
frequency sense. This means, for example, that in the case where the query consists
of a single term (call it IJQ ), the probability that a given document d,, will be judged
relevant by the patron submitting IJQ is simply the ratio of the number of patrons
who submit IJQ as their search query and judge d,, relevant, to the number of patrons
who submit IJQ as their search query. -

Thus in this model, documents and queries are looked at ‘historically’ over time,
i.e., probability of relevance for each document is interpreted as the number of
times that it is judged relevant by a patron whose search term is IJQ , divided by the
number of times that a patron submits /¢ as a search term.

Now consider a different interpretation (called here Model 2) of the document
retrieval problem. Model 2 is based on the work of Robertson and Sparck Jones
(1976), and interprets the document retrieval situation as follows: documents have
many different properties; some documents have all the properties that the patron
asked for, and other documents have only some or none of those properties. If the
inquiring patron were to examine all the documents in the collection he might find
that some having all the sought after properties were relevant, but others (with the
same properties) were not relevant. And conversely, he might find that some of
those documents having none (or only a few) of the sought after properties were
relevant, others not. The function of the document retrieval system is to compute
the probability that a document is relevant, given that it has one (or a set) of
specified properties. Thus in Model 2 (as opposed to Model 1) probability of
relevance is computed relative to evidence consisting of the properties of documents.

Model 2 (like Model 1) also adopts a frequency interpretation of probability. This
means, for example, that the probability that a document having property I; is
relevant is the ratio of the number of relevant documents having the property I to
the total number of documents having the property 1;.

Here are two different models with different ways of interpreting and computing
probability of relevance. In Model 1, probability of relevance is computed relative to
the set of queries. In Model 2, probability of relevance is computed relative to the set
of document properties. Because probability is a relationship relative to evidence,
two probabilities of the same hypothesis relative to different evidence could have
different values. Again, in Model 1, the evidence consists in the search (query) term
(or terms) submitted by the patron. In Model 2, the evidence consists of the
properties of (i.e., index terms assigned to) the document.

Vastly different consequences flow from systems based on these two different
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6 Probability of relevance

models. The indexing and query formulation procedures would be different; the
output rankings would be different; and we could expect (and would find) that the
overall retrieval effectiveness of two such systems would differ.

Let us now look more carefully and in more detail at each of these two models and
at their implications and consequences. Only then will we ask whether and how these
two probabilistic models for the document retrieval problem might by synthesized to
form a single unified theory.

3. TWO PROBABILISTIC MODELS FOR THE DOCUMENT
RETRIEVAL PROBLEM

3.1 Model 1: the formal presentation

Model 1 was first proposed by Maron and Kuhns (1960) and extended by Cooper
and Maron (1978). The present description is close to that given in these papers,
though with some changes of notation.

We assume that at any time there exists a collection of » different documents
which we designate d;, d,, ds, . . ., d,. We assume also that there exists a vocabulary
of s different terms which we designate I}, I, I, . . ., I,. For simplicity and clarity of
exposition we will consider here the simplest case, namely, where the query consists
of a single term /;. Given a patron’s input query, the function of the system is to
compute the value of P(d% |A,1jQ for each document d,,. P(d% |A,IJ-Q) is the probability
that if a patron submits J; as his query, then he will judge document d,, as relevant.

The classes A, d and I that appear in the probability expression P(d%|A,I°) are
defined as follows:

the class of uses of the system by a patron in search of information.

the class of single term queries of the type I;.

the class of events each of which consists of a patron judging the mth
document d,, as relevant.

SQ%‘%:“
I

Given its frequency interpretation, the value of the above probability is equal to
the number of elements in the class ‘A,dx,I?* divided by the number in the class
‘AP e,

N(A,dp,17)

dnlA,I)) =
P(dn|A,I}) NADD)

where ‘M )’ stands for ‘number of” and ¢,” denotes logical intersection.
The theorem of Bayes allows us to write the following equality:

P(dy |4)- PU? |A,dy)
P(I7|4)

For any given query I}), the denominator of (1) is a constant and thus we may rewrite
(1) as follows:

P(dyAIP) = (1)

PEIALI) = kPR 1A)- PUPIA,dE).

[T ]
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P(d®) is the probability that the mth document d,, will be judged relevant,
independent of the query term that the patron submits. (Sometimes it is calied the
a priori probability of relevance.)

P(IjQ |4,d%) is the probability that if dy, were to be judged relevant by a patron,
then he would be using /; as his query term.

Given the values of P(d} |4) and P(I?|A,d%), the system can merely take their
product and use that value (after it has been normalized) to rank the output
documents. Where would the values of those probabilities come from?

Feedback from users could provide statistics needed to estimate the values of
P(d? |4). Similarly, user feedback could provide statistics needed to estimate the
values of P(I,Q |4,dy). However, in lieu of actual past statistics, an indexer could
attempt to estimate the values of P(d% |4) and P(I,Q |4,d%). In fact, according to this
model, called by Maron and Kuhns ‘Probabilistic Indexing’, the task of the indexer
is precisely defined; his job is to estimate the values of P(IJ»Q |A4,d%), for all I; and all
d,, and then to assign those index terms 1; to the corresponding documents with the
values of those estimates. Thus we end up with a theory of weighted indexing, where
the weights are estimates of the probability P(IJ-Q l4,dY).

3.2 Model 2: the formal presentation

We now consider the second probability model, called here Model 2. The origins of
this probabilistic model rest on the work of Robertson and Sparck Jones (1976). Its
most complete formulation was presented by van Rijsbergen (1979). In the
description that now follows we have kept the key ideas of their model; however,
our formulation is somewhat different. What is important for our purpose here is
not the computational details of how to calculate probability of relevance, but
rather the way probability of relevance is interpreted.

Let U be the class of events each of which consists of a document being judged
relevant by the same patron, relative to his information ‘need’. Then not-U,
designated ‘T, is the complement of U and consists of the class of events each of
which consists of a document being judged not relevant by that same patron.

Every document has one or more of s possible properties, which we designate 7,
I, I, . . ., I,. These properties are often the properties of being assigned some term
by an indexer. The problem of the document retrieval system, under this model, is to
compute the probability P(U Il , , , I)) that a randomly selected document will be
judged relevant, given that it possesses the properties I, ,,, I, where ‘,” denotes
logical conjunction.

For simplicity and clarity of presentation consider a document with only two
properties, /; and I;. In this case the problem for the document retrieval system is to
compute the value of

PU,LY 2

i.e., the probability that a randomly selected document which has the property I;
and also the property 7, will be judged relevant by the inquiring patron.
Probability of relevance in Model 2 may be computed as follows:

P(U)- P I [U)
vllly) = ————~, 3
P AR 6)
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8 Probability of relevance

If one makes the simplifying assumption that the properties /; and I are
independent of one another relative to U, then we may rewrite (3) as follows:

P(Uy- PU; [U)- P |U)
P(I,1) '

“)

PULL) =

(Expansions other than (4), based on other independence assumptions, are possible.)
Let us look at what the probabilities on the right hand side of (4) mean.

We have already said that P(U) is simply the probability that a randomly selected
document will be judged relevant by this inquiring patron. We can imagine that the
patron himself might make some estimate of P(U) and input that estimate to the
system. (As a matter of fact, the use of the model for ranking documents does not
require a value to be assigned to P(U).) P(I;|U) is the probability that if this patron
were to judge a randomly selected document as being relevant, then that document
would have the property /;, and similarly for . In order for the system to compute
probability of relevance, it would need some estimate of these probabilities for each
term in the query. We can distinguish at least three different ways of obtaining
estimates of P(I;|U). One way would be to ask the patron himself to estimate the
value of P(I;|U) or some related quantity. A second would be to establish, from the
results of previous searches, term properties that could be used (by human or
machine) as predictors of P(I;|U): an example is term frequency. A third way would
be for the system to generate some ‘trial retrieval’ and then ask the inquiring patron
to examine those output documents and then divide them into two classes — those
that he judges relevant and those that he judges as not relevant. Given these data,
fed back from the patron, the system would compute the values of P(f;|U), P(Ix|U),
etc., assuming of course that the sample generated by trial retrieval is adequate in
size, representation, etc.

What about the third probability — the one that appears as the denominator of
(4)? P, I)) is simply the relative frequency among all the documents of those that
possess both properties /; and Ix. The values for this probability are ‘known’ by the
system, i.e., it can examine all of the records and compute the value of P(Z;,I;).

Thus we see that given the values of the above probabilities, the system could
compute the probability that a randomly selected document which has properties /;
and I, would be relevant. And, of course, it could compute the probabilities for the
other three cases, namely where a document has either one or else the other of those
properties, or neither.

If values of P(I;|U) are available for all possible ;, and again given a sufficiently
general independence assumption, then it is possible to compute the probability of
relevance in the case where a randomly selected document has any number of
properties.

3.3 A unifying notation

A unified model must deal with groups of documents and groups of uses. (The word
‘use’ is used here as shorthand for the event consisting of a person with a need for
information using the document retrieval system.) Thus the event-space (needed for
a unified model) must consist of all possible document—use pairs. The relevance
relationship will hold between some subset of the above. Thus the notation that we
need to describe this model requires the following symbols:
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the class of all (past and future) uses of the system;

the class of all (present and future) documents in the system;
an individual use;

an individual document.

[l

Ko

Thus the product set A x C, which consists of the class of all use—document pairs
(by,d,), is the event-space. The relevance relationship holds between some of those
pairs, therefore relevance is a subset of the event-space. We denote this as follows:

RcA X C,
where (by,d,,) € R if d,, would be judged relevant to by.
Since Model 1 proceeds by grouping similar uses according to the formal query

presented, and since Model 2 proceeds by grouping similar documents according to
the index terms assigned to each, we require a notation for such classes:

BcA
DccC

class of similar uses;
class of similar documents.

Without loss of generality, we can assume that

b, ¢ Bfor 1< k< K;
dneDforl< m< M.

This completes the essential notation for the unified model. Notice that the
probability of relevance, which is the central concern of Model 1, becomes

P(R|B,d,,).

And notice further that using this notation the Model 2 probability of relevance
becomes

P(R |b,D).

In what follows, we shall define a new model, to be called Model 3. The aim of
Model 3 will be to evaluate

P(R I bk’dm) ’
that is, to evaluate the probability that the individual document d,, would be judged
relevant for the individual use b,.
4. THE UNIFIED MODEL
4.1 Properties and predictions

In order to unify Models 1 and 2, we have first to ensure that the various entities
which figure in the two models are compatible, and to understand how they relate to

L
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each other. Each model includes documents, uses, index (query) terms, an indexing
operation and a query formulation operation. However, in respect of the last three
entities, the two models differ substantially.

The query formulation process assumed in Model 1 might be described as ‘naive’.
That is, the patron is assumed to express his need for information in terms of the
words available, without attempting in any way to prejudge the retrieval
consequences (e.g., to guess how a suitable document might be indexed). This query
formulation process takes place outside the framework of the system. Thus, as far as
the system is concerned, the query terms used simply describe (are properties of) the
need.

The process of indexing, on the other hand, is integral to the system. The indexer
has to estimate a set of probabilities concerning not only the document itself but the
various patrons who may or may not judge the document as relevant. The patrons
are identified by the properties of their needs (i.e., query terms). Thus both
documents and needs are represented by need properties.

In Model 2, the situation is reversed. Indexing takes place outside the system and
involves simply describing document properties; query formulation is integral to the
system and involves relating the need to document properties.

We now see that the phrases ‘indexing’ and ‘query formulation’ are ambiguous:
indexing means either simply identifying document properties (Model 2), or making
predictions about need properties (Model 1), and similarly for query formulation.
For a unified model, we need to allow for all four distinct processes to take place.
More specifically, we assume that documents and needs have properties which are
identifiable and nameable, and that the process of identifying and naming them
takes place outside the framework of the probabilistic mechanism. Within the
mechanism both kinds of prediction take place. Document and need properties need
not be expressed in terms of the same vocabulary; clearly, linguistic labels of some
sort are appropriate in both cases, but there may be other kinds of label which will
identify other kinds of property (e.g., author or cited document as property of a
given document). Because of the ambiguity of ‘indexing’ and ‘query formulation’,
we shall eschew these phrases, and refer to document or need properties on the one
hand, and a prediction process on the other.*

4.2 Event-space and probability measure

The event-space for the unified model has already been identified as 4 x C, i.e., the
set of all use—document pairs. Unless otherwise specified, all probabilities will be
assumed to be conditional on this event-space. Thus

P(X) = P((bi,dm) € X|br € A, dp € O);
PX|Y) = P((bk,dm) & X | (brsdm) € Y, b€ A, dp € C).

In cases where X explicitly consists of use—document pairs, the interpretation of

* It has been suggested (Robertson, 1977a) that Models 1 and 2 are fundamentally incompatible. The
argument was based on the assumption that only one set of labels is involved, and that ‘indexing’

‘therefore has only one interpretation (as has ‘query formulation’). The analysis here gets round that

objection. With the present perspective, we see that Model 1 on its own simply ignores document
properties; Model 2 alone ignores need properties.
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these expressions is clear. However, in some cases, X may refer just to uses or just to
documents. For example, we may want to consider P(B), where B is a class of uses,
as defined above. This will be interpreted as ‘probability of selecting a pair (by,d,y)
such that b, ¢ B’, with no condition on dm. More formally, if BcA, then

P(B) = P((by,d,,) is such that b, ¢ B,d,, ¢ C |bre A,d,, € C). 5)

The same holds for DcC. This implies that P(A) = P(C) = 1.

We must now specify the probability measure on this event-space. We shall
assume that the probability measure on A x C is uniform; i.e., that P(b;,d,) is
independent of k and independent of m.

One major reason for making the above assumption is that we wish the unified
model to reduce to either Model 1 or Model 2 under appropriate conditions. (Both
models assume uniform probability measures on their respective event-spaces.)
Another reason for making the above assumption is that we wish to use simple
frequency data to estimate probabilities where appropriate. (Nevertheless, the
probability-measure problem is not trivial, and it will be discussed further below.)

The assumption of a uniform probability measure on 4 x C actually has strong
consequences, simply because A x C is a product set. In particular, we can deduce
the following independence property:

P(by,dy) = P(by): P(d),). (6)
More generally, if BcA and DcC, then
P(B,D) = P(B): (D).

It follows that

P(B) = P(B|D) = P(Bld,,).

It is also the same as the probability of Bin an event-space consisting only of 4 (with
a uniform probability measure). Thus we can talk about P(B) without concern over
whether the event-space is 4 or A x C. This factis a justification for the (apparently)
arbitrary definition (5) of P(B). Similar remarks apply also to DcC.

4.3 Outline of the unified model

We will now consider, in more detail, a subset of the event-space A x C, namely,
B x D. B was defined as a class of ‘similar’ uses, and subsequently, we assumed
specifically that properties of the need or use were available to the system. Therefore
we adopt the following definitions:

B the class of uses (needs) which have identical properties;
e.g., they use the same query term (or terms).
the class of documents which have identical properties;

e.g., the same index term (or terms) is assigned to each.

I

Now consider (see below) a B x D matrix; i.e., whose columns refer to individual
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12 Probability of relevance

uses b, ¢ B (I < k < K) and whose rows refer to the individual documents d,, ¢ D
(1< m< M). The entries (individual cells) in this matrix would contain either 1s or Os
depending on whether the document d,, would be judged relevant in use by or not.
Thus the document retrieval problem is to make a prediction about relevance, i.e.,
assign a value to the probability of a 1 in a cell when the relevance judgement has not

yet been made.

[

Fic 1. The B x D matrix in the context of the entire event-space

There are three kinds of information (which the retrieval system may or may not
possess) and which may have a direct bearing on the above prediction of relevance.
There may be (1) data describing the relations between other uses in the same class
and this individual document. (This data is, essentially, the marginal information
concerning the row of the matrix in which the cell appears.) Similarly (2) there may
be data describing the relations between this individual use and other documents in
the same class, i.e., marginal information about the column. Also (3) we may have
data describing the relations between other uses and other documents (in the same
classes). This latter is undifferentiated information about the entire B X D matrix.

If we have only the first kind of information (or perhaps the first kind together
with the third kind), then we have exactly the situation appropriate for Model 1. If,
on the other hand, we have only the second kind of information (or perhaps the
second kind with the third), then we have the situation appropriate for Model 2. But
what about the case where we have (a) only the third kind of data or (b) all three
kinds?

Although it has not (to our knowledge) been formally specified before, case (a), in
fact, seems to underlie some uses of earlier models. The most obvious specification
of the model is: rank the documents in order of their probability of relevance, where
probability of relevance is defined as P(R |B,D). We shall refer to this as Model 0.

The use of frequency information to predict the Model 2 weight is an example of
an implicit use of (something like) Model 0. That is, the simple application of Model
2 requires relevance feedback from the user; however, prior to obtaining such
feedback we may be able to estimate the Model 2 parameters using other
information such as term frequencies (see Croft and Harper, 1979). Such estimates
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obviously are not use-specific, but rather they depend on the fact that for different
uses using the same terms there is some degree of predictability in the associated
relevance judgements.

The most interesting and also the most difficult problem arises when we assume
case (b), i.e., when all three kinds of information (discussed above) are available.
What we want is a model (called Model 3) which combines all of the above
information in order to compute probability of relevance. The path toward such a
model is not immediately clear. In terms of the B x D matrix we want to estimate the
value of a given (single) cell, given the two kinds of marginal information together
with information for the entire matrix. That is to say, we have estimates of
P(R|B,d,), P(R|bx,D) and also P(R|B,D). We now ask: what would be a good
estimate for P(R |by,d,,)?

4.4 Exact solutions to Model 3

We now assume that the three kinds of information (discussed above) are available
and furthermore we assume that there is sufficient frequency information to provide
rather precise estimates for those three probabilities. Although we will not attempt
to provide an estimation theory for our Model 3, we will indicate, qualitatively,
some desirable properties of such a theory.

Because we have only marginal data, we require what might be called a ‘non-
interaction’ model. An obvious kind of non-interaction model is that used in the 2
test. It would take the following form:

P(R[B,D)

Unfortunately, however, it is easy to construct an example for which formula (7)
gives a result outside the range [0,1], i.e., it gives a value which cannot be interpreted
as a probability. Before explaining this discrepancy, we shall introduce a second
solution. We shall use the notation ‘O( )’ to denote odds; i.e.

Q)

P(R |bi,dm) =

P(X)
o0 =

Using the odds notation the following solution suggests itself by analogy with .

O(R|B,d) - O(R |by,D)
O(R |B,D) '

We shall presently show how (8) may be derived formally. Obviously, it could be
expressed in terms of probabilities rather than odds, but then its behaviour would
not be so transparent. Formula (8) avoids the problem of (7) because it always will
give a value in the correct range. However, it introduces a different problem,
namely, that the individual cell values derived by means of (8) (for an entire row or
column) do not square exactly with the marginal data on the corresponding row or
column.

OR |bi,dm) = ®

TP




14 Probability of relevance

Why do these problems arise? Essentially because any non-interaction model must
use specific independence assumptions. Some candidate assumptions would be:

A, P(bdy) = P(bp)- P(dy,).

(Note that A; is exactly equation (6) above, and derives from fundamental
assumptions about the event-space.)

Ay : P(by,dm|R) = P(bc|R)- P(d|R)
Ay: PlondnlR) = PlbeR) Pdy[R).

The problem however is that 4; is not compatible with either A, or A;. Formula (7)
is based on 4, and A,, and therefore it contains internal contradictions: hence the
‘difficult’ values. Formula (8) is based on A, and A3, which are consistent between
themselves, and therefore it is internally consistent.* However, because A, and A;
are incompatible with A4, this ‘causes’ (8) not to fit the marginal data.

What other solutions are possible? We first reformulate (8) as follows: we use
‘AC )’ to denote log-odds, i.e.,

P(X)
A =1 =1 .
(X) = log O(X) = log 1P
Then (8) becomes
AR |by,dm) = MR |B,dy) +A(R |by, D) — MR |B,D). )]

* The derivation of (8) from A, and A; is as follows. Assume all probabilities (and odds) are
conditional on B and D. Then

P(R |brdi)
P(R b, dr)
P(by,dm|R) P(R)
P(bk,dm |R) P(R)
P(by|R) Pd R) PR)
P(bR) P(dyy IR)* P(R)
P(R b)) P(R|dy) PR)
PR by P(R|dp)- P(R)
O(R b+ O(R ldm)
OR)

O(R lbk’ dm)

Inserting B,D into the appropriate places, yields formula (8).
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By analogy with (9), we are able to suggest a log-linear model
AR Ibk’dm) =apy + ﬁk +y. (10)

It is possible, in principle, to find values @,y such that the individual cell
estimates for a column or row match the marginal data exactly. Also (10) will always
give a value in the correct range. In fact, (10) is a non-interaction version of a
general log-linear model,

AR lbk’dm) =am+ Bty + 6m,k
where ‘non-interaction’ means using the assumptions
Ompk =0 I<m<M I<k<K

which are a form of independence assumption. Models of this kind are proposed as
a general approach to binary data by Cox (1970), chiefly on the grounds that they
constitute the best and simplest equivalent for binary variables to normal-theory
linear models for continuous variables.

4.5 The Maximum Entropy Principle and some further thoughts

One further solution elaborated on elsewhere (Cooper and Huizinga, 1981) is the use
of the Maximum Entropy Principle. This solution seeks values of the probabilities
P(b;,d,,;,,R) and P(b;,d,,,R) such that the entropy,

2.

jéf,él}(w[P(bk,dm,R) IOgP(bk:dmyR) + P(bk:der) IOgP(bk’dm9R)]-
11

is maximized, subject to the marginal data. The maximum entropy principle has
been defended as providing the ‘least prejudiced’ distribution which can be specified
under such circumstances (Tribus, 1969).

It turns out that the maximum entropy solution and the log-linear solution are
identical. Thus we have strong reasons for adopting such a solution. Unfortunately,
however, it does not appear possible to put this solution in a computationally simple
analytical form. Some method of approximation is therefore called for. Iterative
methods for obtaining the maximum entropy distribution are described by Gokhale
and Kullback (1978); to carry out two or three steps of such an iteration would be
one way of obtaining such an approximation. Another possibility is simply to use
the odds formula (8) as an approximation.

It is not known, in general, how good an approximation the odds formula will
give. Since the odds formula can be expressed in exactly the same form as the log-
linear model, but differs from it in that the marginal totals are not correct, it is
appropriate (as a first step) to establish just how far out the marginal totals are. It
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16 Probability of relevance

can be shown that how far out they are depends on the extent of variation between
individual rows or columns, and on the overall probability of relevance P(R |B,D); if
the extent of variation is small, and P(R |B,D) is neither too large nor too small, then
the discrepancy is small. However, the question of whether simple, good
approximations can be found requires further investigation. In the interim, we make
use of the odds formula solely in order to illustrate the properties of Model 3.

4.6 Probability measure revisited

We have seen that the best solution for Model 3 is not easy to express in a simple
form. Further, a candidate simple solution, the odds formula (8), depends on the
independence assumptions A, and A4; And these are not compatible with the
assumption A;, which itself is a direct consequence of our choice of probability
measure on the event-space A x C. Thus the question arises, could we choose a
different probability measure, with which A4, and A; were compatible? If so, then
the odds formula would be identical with the two ‘good’ solutions (10) and (11).

Abandoning the uniform probability measure would mean abandoning Model 1
and Model 2 in their present form, and also abandoning simple frequency data.
Although we cannot see any logical argument against such a course of action, it does
seem likely to be counter-productive. Therefore, we do not pursue that course of
action in this paper, but will continue to regard the odds formula as a useful (but not
necessarily a highly accurate) approximation to a better solution.

4.7 Generalization to utility theory

Although the details will not be explored here, it is a straightforward task to
generalize the unified model to take account of degrees of relevance, or document
“utilities’. The output ranking of documents is thus in descending order of estimated
expected utility rather than estimated probability of relevance. For a utility-theoretic
development of Model 1 see Cooper and Maron (1978).

5. A SIMPLE APPLICATION OF THE UNIFIED MODEL
5.1 First remarks

In this section we shall describe a retrieval system designed on the basis of the
unified probabilistic model presented above. This is not intended as a proposal for a
real system. Rather, it is deliberately simplified in a number of respects for the
following reasons: firstly, we want to bring out what we consider the essential
features of the new model, and secondly, some development work would be required
before a realistic retrieval system using these ideas could be designed. In the course
of the discussion that follows we shall indicate the simplifications built into this
example, and some aspects of the model which require further development.

5.2 The basic system

We assume that the properties of the documents and needs have been identified and
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named, as discussed above. Furthermore, we assume that the named properties take
the form of one word per document or need. (Needless to say, this is one of the
unrealistic simplifying assumptions referred to above.) Thus the documents (and
also the uses) are classified into a number of exclusive classes according to the single
word used. The vocabulary of document property names need not be the same as
that of need property names; however, having the same vocabulary for both may be
useful, as we shall presently see.

Assume further that the retrieval system has been operational for some time and
that relevance feedback has been obtained from users. Thus we assume that for each
class of uses B, and for each class of documents D, there exist frequency data from
which accurate estimates of P(R |B,D) can be made. Furthermore, assume that for
each individual document d,, that has been in the system long enough, we have an
estimate of

P(R|B,d,).

Since we will be using the odds formula (8) we shall use the odds instead of the
corresponding probabilities.

When a new use b, is made of the system, an iterative search is performed;
initially it is identified only as a member of a class of uses B. Each document in the
system belongs to a class D; also there may be enough data for any document so that
it can be treated as an individual d,,. Thus, for the initial search each document is
given a value which is either

(@) O(R|B,D)
or (b) O(R|B,d,),

according to whether that document is a recent or else an older acquisition. The
documents of the collection are then ranked by these values and those with the
highest computed values are retrieved for relevance evaluation.

The second pass for b, involves using the relevance judgements obtained from the
first pass in order to estimate

O(R by, D).

‘The values'initially assigned to the documents then are corrected by a factor

O(R by, D)
— “
O(R|B,D)
and the documents are reranked.
It can be seen that for documents in class (a) above, the corrected value reduces to

O(R |b, D).

For those documents in class (b) above, the corrected value is the odds formula
solution to Model 3. Thus we can describe the system as follows:
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18 Probability of relevance

1. Given data about the individual document and the individual use, it is a full
Model 3 system.

2. Given data about the individual document, but not the individual use, it is a
Model 1 system.

3. Given data about the individual use, but not the individual document, it is a
Model 2 system.

4. Given individual data about neither documents nor uses, it is a
Model 0 system.

Let us now turn and consider some extensions to the simple system.

5.3 Bayesian ideas

For each of the probabilities required by the system, we either assumed that we had
adequate data to estimate it accurately or else we proposed a method that did not
involve estimating it at all. In general, one would be more likely to have some partial
(small sample) data from which could be obtained a rather imprecise estimate. How
could the system be adapted so as to deal with this aspect of the real situation?

We seek Bayesian methods which can be used to modify estimates whenever data
are available, given prior expectations. For example, if we already know P(R |B,D),
this can serve as a prior expectation for P(R |B,d,;) and it can be modified gradually
as we acquire data about d,, in relation to uses B.

What prior expectation might be advanced for P(R |B,D)? We need this not just
when the system first starts up, but for some pairs B,D, we will need it for a long
time thereafter, because data about some pairs will be less readily forthcoming than
about others. If the same vocabulary is used for documents and uses, the obvious
prior expectations would be:

P(R|B,D) = {

1, if B and D are associated with the same term

O, otherwise.

The use of this technique would, unfortunately, have one major disadvantage,
namely, for any pair (B,D) for which the prior P(R |B,D) = O, no use in B would
ever retrieve a document in D. Hence no document in D would ever be judged for
relevance against a use in B, and no data would ever be obtained which might serve
to modify the prior P(R|B,D) = O; the situation would be self-perpetuating.
However, it might be possible to find alternatives, such as techniques based on
thesaural connections between terms. The problem might be alleviated in a system
that allows multi-term indexing and/or searching (see below).

This problem is an extreme instance of a more general problem in this area,
namely, the problem of bias in estimation. In general, in order to get unbiased
estimates of any parameter, one seeks to obtain random samples of events.
However, in any realistic retrieval situation, one starts with those pairs which are
most likely, according to prior information, to be judged relevant. Thus all small-
sample estimates are biased. This is a vexing problem for those who now are
developing Model 2 retrieval systems involving user feedback, and no general
solutions are yet forthcoming.

Finally we point out that, in general, Bayesian methods require not merely prior
expectations (i.e., means), but prior probability distributions. (The amount of
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spread in the prior distribution may be regarded as a measure of the degree of
confidence in the prior expectation, relative to incoming data.)

5.4 Multi-term representations

Our assumption for the basic system that only single-term descriptions of documents
and needs are permitted clearly is unrealistic. In fact, Model 2 depends on the use of
many terms for indexing and especially for query formulation.

As can be seen from the prior discussion, in any multi-term situation the exclusive
classes which are required for these probability models consist of classes defined by
combinations of terms — not by single terms alone. Thus any combination of terms
(implying negation of terms not explicitly included) defines a unique class of items
(documents, uses, or whatever), and these classes are exclusive in that no item can
belong to more than one.

A problem with such classification is that each class is likely to contain only a
very small number of items. (Indeed, most potential ‘classes’ will be empty.) Hence
any collection of statistical data on this basis is likely to be fruitless: it is highly
unlikely that one would be able to deduce anything about a new event (document
and/or use) from previous ones.

A technique adopted by Model 2 in order to circumvent this problem may be
useful in the unified model. This technique was to consider the properties of an item
defined by a combination of terms (present and absent) to be derived from the
properties of the terms taken singly. This may be done most simply by making
strong assumptions about independence between terms; it is also possible to allow a
limited form of dependence. It must be stressed, however, that trying to allow for
any dependence relation would lead us back to the previous situation, of not having
enough items in each class. Thus, some kind of independence assumption is central
to this type of model.

Multi-term operation would help to get over the problem of finding appropriate
prior expectations for P(R|B,D), in that it would not necessarily matter if some of
these were taken as zero, since particular documents in this class might be retrieved
for particular uses in this class by virtue of the presence of other terms in both.

5.5 Humans in the basic system

The basic system as described was seen as a purely mechanical device: given the
input of document and need properties and relevance judgements, the system would
automatically collect the appropriate statistics and apply the appropriate formulae.
We could, however, imagine human indexers and searchers playing a more direct
part in the operation of the system. Thus there could, for example, be a human
indexer making explicit predictions of P(R |B,d,,) with Model 1. Equally, we may get
searchers to make predictions of P(R|b;,D), as suggested recently for Model 2
(Cooper and Huizinga, 1981). The unified model would accept either or both kinds
of information, either without frequency data or as a Bayesian prior expectation to
be modified by frequency data as discussed above. Should both kinds of estimate be
available, Model 3 indicates how they should be combined.

It should be noted, in the light of the earlier discussion on ‘indexing’, that such a
system would actually include two quite different kinds of ‘indexing’ operations: the
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identification and naming of document properties, and the prediction of the
properties of needs to which the document may be appropriate (i.e., the estimation
of P(R|B,d,;))). Even though one might imagine a system in which the two processes
are performed by the same person at the same time, they must be regarded not only
as distinct operations, but as having quite different characters. Similar remarks
apply to the two aspects of ‘query formulation’ discussed earlier.

6. CONCLUSIONS
6.1 Probability of relevance

The major conclusion to be derived from the analysis presented in this paper is that
‘probability of relevance’ has several different interpretations (or meanings),
depending on the class of events to which this probability applies. In Model 1,
probability of relevance P(R |B,d,,) is a relationship between an individual document
and a class of uses. In Model 2, probability of relevance P(R |b;,D) is a relationship
between an individual use and a class of documents. In our (newly discovered)
Model 0, probability of relevance P(R |B,D) is a relationship between a class of uses
and a class of documents. Finally there is our new Model 3 where probability of
relevance P(R |b,,d,) is a relationship between an individual document and an
individual use. We can depict the relationships among these four models with Figure
2.

Model 3
P(RI by, dm)

Model 1 Model 2
P(RIB,dm) P(R1b,,0)
Model ]

P(RIB, D)

Fig. 2. Components of the unified model

The value of probability of relevance, like any probability, is relative to the
evidence. In Model 1 and in Model 2, the values of probability of relevance are
based on different kinds of evidence. Since Model 3 in fact makes use of the Model 1
and Model 2 interpretations of ‘probability of relevance’, it reveals that they are
complementary, rather than competing with each other. Thus, our Unified Model,
which uses both kinds of evidence, shows us that it would be mistaken to consider
either Model 1 or Model 2 as ‘false’ relative to the other; they are, as we have said, to
be seen as complementary.
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6.2 The Probability Ranking Principle: a final remark

A major assumption of this paper has been that the function of the retrieval system
is to estimate a probability of relevance, whereby to rank documents for retrieval for
a given user. This assumption is known as the Probability Ranking Principle, which
states that ranking by probability of relevance will yield optimal performance
(Robertson, 1977b). There exists proof of its validity under some conditions.
Although there are also counter-examples, these appear to be of little importance.

The probabilistic model presented in this paper suggests that a reconsideration of
the Probability Ranking Principle is needed, since there are now four different
interpretations of the phrase ‘probability of relevance’. It may be observed that the
existing counter-examples use a Model 1 interpretation of the phrase; the proofs
appear to use a Model 2 interpretation. Clearly the matter requires further
investigation.
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