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1 Introduction

When we evaluate the effectiveness of informa-
tion retrieval systems, it is usual to take measure-
ments over a number of test queries or topics. In
the usual laboratory scenario, exemplified by TREC,
these measurements (for example Average Precision)
are averaged over topics, and when significance tests
are applied, the usual unit of measurement is the topic.
For example, we might perform a pairwise test com-
paring two systems on each of the test topics, and
treating each observation (that is, each per-topic mea-
surement) as having been sampled from some dis-
tribution. The model here is clearly that the topics
themselves are to be regarded as being sampled from
a population of topics.

This view disregards the process by which we ar-
rive at a measurement per topic. Such measurements
are based on the collection of documents, which itself
might be regarded as a sample from a notional pop-
ulation. There is a simple argument which suggests
that in most such tests, the number of topics is a much
more critical sampling issue than the number of docu-
ments (documents are plentiful and cheap, but topics
and the associated relevance judgements are expen-
sive). Thus tasks in TREC, for example, are typi-
cally evaluated on the basis of maybe 50 topics, but
(at the least) many hundreds of thousands of docu-

ments. Probably because of these relativities, we have
tended to ignore the issue of sampling of documents
and whether this might have any bearing on the relia-
bility of our conclusions, in favour of worrying about
the topic sample.

However, this argument is misguided. Most of the
measures in common use are based on relevance, and
therefore depend at least in part on the number of rel-
evant documents identifed for a topic. This number is
likely to be relatively small – in tens or hundreds or
possibly even single figures – for each topic.

We should then ask the question: does the reliabil-
ity of the per-topic measurement that we make vary
between topics? And in particular, does it depend on
the number of relevant documents for that topic? It
seems likely that it does, and if it does, then the mea-
surements that we average across topics must be re-
garded as having a variable amount of noise. Thus we
should probably place more reliance on an average
precision value (say) derived from a topic with many
relevant documents than on one with few. Butnone
of the methods in common use takes this view.1

1One exception to this statement is the so-called micro-
average method that can be applied to some measure, com-
monly reported in categorization experiments and used in
the past in some retrieval experiments. It would be of in-
terest to study this method following the ideas presented in
the present paper; however, it is not obviously applicable to



Typically in evaluation we make use of measures
(e.g. average precision) which are defined for a spe-
cific set of results from a specific collection of doc-
uments. How could we relate such a measure to an
arbitrary (possibly infinite)population of documents?
One possible answer would be to define a measure on
the infinite population, such that the chosen test mea-
sure can be regarded as anestimate of the population
measure. Just for example, uninterpolated average
precision is defined by locating each actual relevant
document in the actual ranked list, measuring preci-
sion (as a proportion) at that position, and averaging
these values. What would be the general measure, de-
finable for an infinite population, of which this would
be an estimate?

Another possible answer is to approach the prob-
lem in the opposite direction, by considering increas-
ing sample sizes. We then ask the question: if we take
this measurement on samples of increasing size, do
we approach a sensible limit as the sample size tends
to infinity? We take these two versions of the question
as equivalent at some level:

1. if there is a well-defined population measure of
which the sample measure is a reasonable esti-
mate, then the sample measure will converge to
the population measure as sample size goes to in-
finity;

2. if the sample measure converges to a sensible limit
as the sample size goes to infinity, this limit is a
well-defined measure on an infinite population.

The primary question to be investigated in the
present paper is: is it possible to interpret the mea-
sures in common use in this way? In cases where we
can make such an interpretation, we may additionally
be interested in how good the estimate is likely to be
for smaller samples. Specifically, we may be inter-
ested in statistical precision, and in bias.

The differences between topics are a complicating
matter in this investigation. One difference, as dis-
cussed, relates to the number of relevant documents
(almost always small compared to the collection size,
but nevertheless varying by several orders of magni-
tude). A second relates to the relative hardness of
topics, a subject of much current interest (see e.g.
(Voorhees, 2006)). These questions will be largely
avoided in the present discussion, by the device of
considering only a single topic at a time.

Some of the concerns of this paper are investi-
gated by Cormack and Lynam (Cormack and Lynam,
2006). In particular, they consider the test collection
of documents as a sample from some notional popu-
lation, and investigate the statistical precision of esti-

ranked results.

mates of MAP under these conditions, using a boot-
strap method. They make a strong case for this sam-
pling view of the document collection; they also argue
that the combination of evidence from different topics
should be treated in a different way, regarding each as
in some sense a different experiment. However, they
do not consider the question of whether specific mea-
surescan be interpreted in an infinite population, nor
of possible biasing.

The present paper draws some material from
Hawking and Robertson (Hawking and Robertson,
2003), much of which is devoted to studying subsam-
pled collections of documents and the effect of sub-
sampling on effectiveness measures. However, the
assumption in the present paper is that we do not nec-
essarily have access to the notional population from
which we are sampling; indeed we might assume it
to be infinite. The exploration in this paper is based
on a combination of theory and simulation; no actual
experimental results are reported here, although some
connection is made with experiments reported by oth-
ers.

Organization of the paper

In the following section, we discuss some ideas which
are basic to the present approach, including the score-
distribution model. In Section 3, we consider some
of the commonly-used test measures, and attempt to
interpret each as an estimate of a population measure.
This leads us to the conclusion that some measures
can be interpreted in this way and some cannot. For
those that can, we also discuss estimation issues. In
Section 4, we use simulation methods, in part to illus-
trate the estimation issues, and in part to confirm the
difficulty of making suitable interpretations of some
measures. Some related empirical evidence from pre-
viously reported real experiments is discussed in Sec-
tion 5. In Section 6 we briefly discuss a class of topics
for which one of the assumptions of the model is not
appropriate. Finally, we draw some conclusions.

2 Basic notions

2.1 Document population and test
collection

Considering a single topic at a time allows us to re-
gard relevance as a primary variable in this investiga-
tion: we can assume that the (maybe infinite) popu-
lation of documents is characterized in terms of this
variable. More particularly, we make the usual as-
sumptions about relevance (to this topic), namely that



it is a binary property of each document, defined in-
dependently of other documents. We now assume that
we have sampled this population in order to provide
the (finite) test collection.

We also assume that the ratio of relevant to non
relevant for this topic is in some way determined from
outside. (The proportion of the entire population that
is relevant is traditionally known asgenerality, and
will be denotedG below). If the entire population
were assumed to be finite, then we can formulate
this assumption in the following way: for a particu-
lar topic, the populations of relevant and non-relevant
are finite and therefore the ratio of their sizes is well-
defined. If the entire population is sampled without
reference to relevance, then the expected generality in
the sample is determined by this ratio. If, on the other
hand, we assume the population is infinite, we have
to abstract this notion. We assume instead that gen-
erality G is an inherent property of the topic (that is,
that the probability that a random document from the
population is relevant to the topic is a topic-dependent
property).

The fixed-generality assumption is problematic
for one class of queries: those for which it is reason-
able to assume that there is only one relevant docu-
ment (whatever the size of the collection). This issue
is discussed in section 6 below.

In reality, of course, a single document collection
is normally used for all topics. Although the collec-
tion looks different from the point of view of each
topic (because of the different relevance conditions),
it is actually made up out of the same documents; the
document samples for each topic are not made inde-
pendently. This is an extremely complex sampling
situation, very hard to analyse; for the purpose of the
present paper, we make the simplification that each
topic’s view of the collection may be treated indepen-
dently.

2.2 Score distributions

We assume that given a topic, a system will assign a
score to each document. As we have already assumed
that the documents (identified as relevant or not) have
been sampled from some notional large population
– actually two populations, one for the relevant and
one for the non-relevant documents – it follows that
given a system, the scores themselves might be re-
garded as having been sampled, again from two distri-
butions. These distributions (of scores of relevant and
non-relevant documente respectively) form the basis
of the arguments presented here. They depend on the
specific system and the population of documents.

Actually this assumption is arguable. If the scor-

ing system assigns scores to a document-topic pair
without reference to any other documents, the state-
ment is valid, but insofar as scores depend on other
documents, the statement is suspect. In (Hawking
and Robertson, 2003) this issue is discussed at length.
Here the assumption will be made without further jus-
tification.

The notion of score distributions was introduced
into IR by Swets (Swets, 1963), and has been devel-
oped in several more recent works (see e.g. (Robert-
son, 2007)). The usual issue concerns what specific
distributional forms might be assumed and/or fitted
to data. While certain specific distributional assump-
tions will be made for the simulation experiments be-
low, this paper is concerned with arguments which are
essentially independent of any such specific assump-
tions.

We note also that when documents are ranked by
score, the ranking is invariant under any monotonic
transformation of the score. In the sense that we are
primarily interested in the ranks and not the scores,
any arguments we choose to make about score distri-
butions should themselves be invariant to such trans-
formations.

The model is referred to here (as in (Hawking and
Robertson, 2003)) as the SD (signal detection or score
distribution) model. We denote the score distribution
density functions of relevant and non-relevant docu-
ments asfR(s) and fN(s) respectively (s represents
the score).

2.3 Multiple topics

The basic premise of this paper is that we look at a
single topic at a time. However, the issue of averaging
across topics (which is central to system evaluation)
clearly needs consideration, and is indeed part of the
motivation above for the present investigation.

The translation of the score distribution idea to
multiple topics is not straightforward. The simplest
way to do this would be to assume that the distri-
butions of scores for relevant and non-relevant docu-
ments are the same for all topics.2 However, we have
much evidence to suggest that this is a bad assump-
tion. One obvious reason for this is that scores seem
very clearly to be not comparable across topics.

We could view this problem as one of normalis-
ing or calibrating scores so that they are comparable
across topics (for example, making them into well-
calibrated probabilities of relevance). However, this
is a difficult problem in its own right, and would not

2In some sense, this assumption is implicit in the micro-
averaging method mentioned in the previous footnote.



deal with the issue that (in our current understand-
ing) some topics are harder than others. An alterna-
tive view is presented in the next section.

2.4 The big picture

We present here an overview of the conceptual
model of sampling-and-measurement that informs the
present paper. The paper only addresses a small part
of this domain, but it is necessary to provide context.

We consider a single system and a test corpus,
consisting of a set of topics and a collection of doc-
uments. Both topics and documents are assumed to
have been sampled from large or infinite notional pop-
ulations. We assume that (for this system) each topic
has its own ‘true’ effectiveness (by some measure),
which we would measure on the entire population of
documents if we could; in the event, the best we can
to is to make probabilistic inferences about it from
the sample of documents that we have. The true ef-
fectiveness measure may depend, for example, on the
hardness of the topic, and therefore can be expected
to vary between topics.

So in order to generalize over topics, we must as-
sume that the entire population of topics defines a dis-
tribution for this effectiveness measure (for the spe-
cific system), dependent on some (hyper-)parameters.
The generalized effectiveness of the system will be
represented by these hyperparameters. We would like
to estimate, or generally make probabilistic inferences
about, these hyperparameters, based in turn on the ev-
idence about individual topic effectiveness.

This paper does not address the question of what
this overall effectiveness distribution and its hyperpa-
rameters would look like; it focusses instead on the
per-topic question. However, it is the belief of the
present author that this second stage is necessary, and
that the overview presented is consistent with the ar-
guments made in (Cormack and Lynam, 2006). But
in order to progress in this direction, it will be neces-
sary to devise models which can take explicit account
of both topic hardness and generality.

3 Effectiveness measures on
infinite distributions

We suppose, then, that there exist for each topic
arbitrarily large or infinite notional populations of
both relevant and non-relevant documents, and that
the observed documents represent samples from these
populations. Furthermore, for a particular system and
topic, these populations are expressed as score distri-
butions. Now we should ask the following questions:

1. How would we measure effectiveness of the sys-
tem on a topic if weknew the distributions in full?

2. Having defined a measure on the full distributions,
how do we estimate it from the document samples
that we have?

3. Can we interpret the usual per-topic measures
used in IR (which are defined on the sample) as
estimates of document-population measures?

4. (equivalently) Could we expect a per-topic mea-
sure defined on the sample to approach a reason-
able limit as we increase sample size towards in-
finity?

5. How good are the sample estimates? Can they be
improved?

6. If a traditional per-topic measure cannot be inter-
preted in these ways, what does this tell us about
the measure?

We note again that we seek arguments that are in-
variant to monotonic transformations of the scores. In
particular, virtually all measures used in IR are based
on ranks, not scores, and are therefore invariant in this
sense. If we do define a measure on the full distribu-
tions, we have to ensure that it has this invariance.
Proving this invariance of a defined measure is fairly
straightforward but tedious. Below, we simply state
the invariance property for the measures to which it
applies; the formal details are discussed in the Ap-
pendix. Furthermore, we also note that virtually all
measures are ‘top-heavy’ in the sense of being heav-
ily weighted to the top end of the ranking.

The above is a formidable series of questions, and
the present paper will only scratch the surface of this
space. A parallel set of questions will arise later, when
we consider multiple topics; again, these are left for
future work.

3.1 Recall and precision

Recall and precision are usually defined on retrieved
sets rather than rankings of documents. If we define a
retrieved set by explicitly thresholding a scoring func-
tion, then (under the above assumptions) we can eas-
ily define the population equivalent of these measures.

The recall equivalent is simply the probability that
a random relevant document will be retrieved (i.e. that
its score exceeds the threshold). It is a function of
the relevant score distribution only. Furthermore, the
usual measure recall (defined on the observed sample)
is the obvious maximum likelihood estimate of this
population measure. The population measure may be
defined for a thresholdt as:

FR(t) =

∫ ∞

t
fR(s)ds (1)



that is, as the cumulative distribution function calcu-
lated from the right. It is also useful to define the
equivalent offallout3 as follows:

FN(t) =

∫ ∞

t
fN(s)ds. (2)

The precision equivalent can be defined as the
probability that a document scoring at or above the
threshold is relevant; it is a function of both score dis-
tributions, looking like this:

H(t) =
GFR(t)

GFR(t)+ (1−G)FN(t)
(3)

(this is exactly the usual formula relating recall, preci-
sion, fallout and generality, as reported for example in
(Cleverdon et al., 1966); it can also be derived by sim-
ple probability manipulations from the above proba-
bility definitions of these parameters). In this case it
is not so obvious that the usual sample proportion es-
timate is a good one. However, we may deduce that it
is at least the maximum likelihood solution, from the
observation that sampling randomly both relevant and
non-relevant with the same probability, and selecting
from both samples those whose scores exceedt, gives
us a random sample of the correct subset of the com-
bined population.

We note that if we assume that the distributions
FR andFN are independent of generalityG, then it fol-
lows from Equation 3 that precision is strongly depen-
dent onG. This will have implications when we try to
summarise evaluation data over multiple queries. We
also note that the assumption would be a strong one;
there may well be reasons why the parameters of the
distributions are not themselves independent of gen-
erality. However, it is important to be clear that these
other dependencies are extremely unlikely to cancel
out the one already identified. Thus we must assume
that the population parameter we are trying to esti-
mate,H, is highly dependent on generality.

This raises an additional problem: that of estimat-
ing generality. We have assumed above that general-
ity is a fixed property of a topic; however, the gener-
ality observed in a sample collection can only be an
estimate of the true population generality. This com-
pounds the issue of estimating measures which are in
some way dependent on generality. The problem will
be avoided in the simulation experiments reported be-
low, by fixing generality in the sample rather than by
allowing it to be determined by the sampling process.
However, this is an unrealistic simplification.

3Fallout is a measure conventionally defined along with
Recall and Precision, although not commonly used: it is
the proportion of non-relevant documents that are retrieved.
In other contexts it is known as the probability of a false
positive.

All of the above population measures are invari-
ant to monotonic transformations in the score vari-
able (although of course the thresholdt also has to
be transformed).

3.2 Pairwise error probability

One measure which comes from the signal detection
theory domain is the probability of a pairwise error,
which may also be interpreted as the area under the
ROC or Receiver Operating Characteristic curve – in
the information retrieval context, this is the recall-
fallout curve on linear scales. This measure is well-
defined for the population, has the necessary invari-
ance property, and can easily be estimated from a
sample. The population definition may be expressed
as: ∫ ∞

−∞
fR(s)FN(s)ds.

Pairwise error probability suffers as an IR effec-
tiveness measure because it is not at all top-heavy.
That is, it pays equal attention to pairwise errors way
down the ranking as to those at the top. Thus a rel-
evant document being lifted over 1000 non-relevants
from rank 2000 to rank 1000 has 1000 times more ef-
fect on the measure than a relevant being lifted over
one non-relevant from rank 2 to rank 1. Another diffi-
culty is that of averaging over topics. The difficulty
has to do with defining a single ROC curve which
summarises a set of topics. The same problem arises
in the context of the more common (in IR) recall-
precision curves, and will be discussed in the follow-
ing section. However, the general formulation of the
pairwise error probability as defined here for a popu-
lation (area under a curve = integral over some func-
tion of the distributions), and its invariance property,
will inform some of the subsequent discussion.

3.3 Ranked results and the R-P curve

If we were to take points defined by the score thresh-
old, and plot each point on the recall-precision graph,
we could use the same arguments as above – the graph
for the populations would be a well-defined function
of the distributions, and the observed graph would be
the obvious estimate of the population graph. This
would work for a single topic. However, a recall-
precision graph for a single topic is not usually re-
garded as very meaningful, and we look to averaging
across topics for a system evaluation.

At this point, we run into all the problems men-
tioned in section 2.3. Thus we do not fix the points
for merging across topics by score; this would involve
bad assumptions about the compatibility of the score



distributions for different topics. The normal method
is to use the recall level as the method of merging –
in other words to measure precision at each level of
recall, and average precision values across topics for
a given recall level.

There is a question here about interpolation, since
the number of documents relevant to each topic is dif-
ferent, and one cannot necessarily find exactly the re-
call level required for each topic. However, putting
this question aside, there are two prior questions in the
terms of the present paper: if we measure precision at
a given recall level, is this a well-defined measure on
the populations, and is our way of estimating it good?

The issue here is that instead of estimating recall
at a given score threshold, we are estimating the score
threshold to achieve a given recall. Suppose, for ex-
ample, we want to measure precision at recall 10% for
a given query. This would be well-defined in terms of
populations (the recall level of 10% defined in terms
of populations is just the 10th percentile of the rele-
vant score distribution). This defines a score thresh-
old, and we can use this to measure precision. How-
ever, we estimate this threshold as the score thresh-
old that achieves 10% recall in thesample. It is not
immediately clear how good an estimate this is, nor
whether using this estimate in turn to estimate preci-
sion is good. In particular, it is likely that errors in the
estimation of the threshold are likely to be magnified
as errors in estimating the precision, because the latter
will be highly affected by the density of non-relevant
documents around the threshold.

Below, simulation evidence will indicate that for
small numbers of relevant documents, this method is
likely to give an over-estimate of the population mea-
sure (the smaller the relevant document sample the
greater the bias). We suggest an explanation in the
next section.

3.4 Average precision

Average precision (AP) may be regarded as the area
under the recall-precision curve; it can also be thought
of as a specific non-standard form of pairwise error
probability, or rather the reverse ((Aslam et al., 2005)
has a related interpretation). We can define it in a gen-
erative fashion which provides us with an equivalent
measure on the population, as follows:

1. Choose a random relevant documentd1;

2. Choose a random documentd2 scoring at least as
high asd1;

3. Measure the probability thatd2 is relevant.

This definition indicates the connection with pairwise
error; if the last step had saidnon-relevant, it would

have been a form of pairwise error. However, the par-
ticular form of this definition provides the desired top-
heaviness.

In the case of the sample, this definition translates
readily as the usual non-interpolated definition of av-
erage precision: that is, average precision is the ob-
vious estimate of this probability. In the case of the
population, this definition is a simple integration over
the score distributions:

J =

∫ ∞

−∞
H(s) fR(s)ds (4)

This measure satisfies the invariance requirement.
However, if we ask whether the sample measure

is a good estimate of the population measure, we run
into the same problem as in the previous section. Fur-
thermore, the formula gives us some clue as to why
this might be. In the sample, we estimate the popu-
lation fR as being loaded onto the points representing
the scores of the relevant documents; then we estimate
precisionH at those same points. Which means that
we choose to estimate precision in the sample at ex-
actly the points where this estimate peaks. If we had a
different sample of relevants from which to estimate
H than those we use forfR, then the bias problem
would not arise; but we use the same sample for the
two purposes.

Another version of the same explanation is given
in Section 4.3, grounded in what we actually do when
calculating precision at the rank of each relevant doc-
ument in the ranking.

We note also thatJ is almost certainly highly de-
pendent on generality, becauseH has such a depen-
dence.

Because we are dealing only with a single query,
the same argument about average precision applies
to the log of average precision, as used for GMAP
(Robertson, 2006): logJ is also a measure defined on
the population which satisfies the invariance require-
ment – but also the log of (sample) average precision
is likely to be a biased estimator of logJ.

3.5 Precision at rankn

The commonly-used measure precision at rankn
(P@n, for example P@10) cannot be expressed as a
measure on a distribution. This is consistent with the
results discussed in (Hawking and Robertson, 2003),
which confirm that in general in larger collections
P@n will increase. P@n as it stands is not an esti-
mate of any population parameter; under reasonable
assumptions about the distributions in the SD model,
it will tend to one as the sample size increases.

However, if we redefine the rank as a proportion
of the total collection size, the measure can be inter-



preted in population terms. If the total collection size
is N, we can consider the measure P@pN, wherep is
a (small) proportion: for example, ifN is a million,
and p = 10−5, then P@pN is equivalent to P@10.
This measure can now be defined in terms of the pop-
ulation as follows:

H(t) wheret satisfiesGFR(t)+ (1−G)FN(t) = p
(5)

(this will be well-defined if the distributionsfR and fN
are continuous, but might have to be approximated if
they are discrete). Again, this measure (H(t) with this
t) satisfies the invariance requirement: although the
thresholdt obviously gets transformed, the resulting
H(t) value is invariant.

Again, the question arises as to whether P@pN is
a good estimate ofH(t). It seems to suffer from the
same problem as precision at a specified recall level,
that we have to estimate the appropriate threshold be-
fore estimating the measure. This would be done by
choosing the document at rankpN – or (more likely)
interpolating between two neighbouring documents if
pN is not an integer. However, it is not so obviously
biased, in the sense that the choice of threshold is not
directly related to the sample distribution of relevants.

3.6 Some other measures

Success at rankn

This measure S@n (binary on a per-query basis,
whether or not there are any relevant in the topn
ranks) suffers from the same problem as P@n – un-
der reasonable distributional assumptions, it will tend
to one as sample size tends to infinity. The problem
cannot be resolved by the method suggested above
for P@n, however – under the same reasonable as-
sumptions, S@pN will also tend to one. It seems that
this measure makes no sense in the context of regard-
ing the observed collection of documents as a sample
from some large population.

Reciprocal rank

This measure is also hard to interpret in the present
context (like the previous one, it in effect takes ac-
count of the first relevant document only). However, it
was really defined for the situation where there is only
one relevant document. That in itself seems incom-
patible with the notion of a potentially large popula-
tion of relevant documents from which we have sam-
pled. This issue is discussed further in section 6 be-
low, where we see that reciprocal rank can be both in-
terpreted and estimated in the one-relevant-only case.

NDCG

Normalised discounted cumulative gain, NDCG
(Järvelin and Kekäläinen, 2000), is normally used for
situations where there are multiple relevance grades,
but it can be defined for the binary case as well.

It is another case of a measure for which there is
no obvious parallel in the population. The explicit de-
pendence on numerical ranks (the discount function)
makes it hard to see how to make any equivalence, at
least for any choice of discount function.

Truncated measures

In general any measure that is defined by truncating
at a fixed rank, like P@n, will have problems. This
applies to NDCG and AP, which are commonly trun-
cated. In the case of NDCG@n, which is usually nor-
malized by the maximum possible discounted cumu-
lative gain at the samen, this will tend to one as sam-
ple size tends to infinity. In the case of AP, trunca-
tion implies assuming zero precision for relevant doc-
uments not yet retrieved; thus AP will tend to zero as
sample size goes to infinity.

3.7 Discussion

Thus we seem to have rather few measures that are
even analysable in these terms, and even they seem to
have problems.

Is this an issue? If we regard the document collec-
tion as fixed,and persist in regarding each per-topic
measurement as equally good, then no. The unit of
measurement is the topic, and we observe the value
we observe, and the only sampling issue is the sam-
pling of topics.

However, the question raised above about the de-
pendence of the measurement on the number of rel-
evant documents disturbs the assumption about the
equivalence of per-topic measurements, even if we
continue to regard the collection as fixed. If we mea-
sure (say) NDCG, then the precision of each (per-
topic) measurement must surely be affected by the
number of relevant documents. We should have more
confidence in a measurement based on 20 relevant
documents than one based on just two. Then sim-
ply averaging the two allows the first (good) estimate
to be polluted by the noise inherent in the second.
The usual practice of averaging a measure over top-
ics looks bad in these circumstance.

We may also be concerned with any possible bias
in the estimate that might be dependent on the number
of relevants.4

4Note that these are quite different questions from



It seems from the above arguments that we have
no way of investigating these questions for NDCG or
success at 10, say. We may be able to make such in-
vestigations for precision at fixed recall points or for
average precision. The arguments above suggest that
the usual estimates, as well as being less precise for
fewer relevants, may also be biased. Both these ques-
tions are investigated in a very preliminary way in the
simulation experiments that follow. The simulation
experiments will also be used to illustrate the prob-
lem with NDCG.

4 Simulation experiments

The primary object of these simulations is to pro-
vide some evidence about the sampling behaviour of
some of the measures discussed above, given vary-
ing sample sizes. In particular, we are interested both
in the statistical precision of the estimates and in any
biases that may be present. In addition, in the case
of NDCG, we would like some insight into how the
problem identified above might be reflected in the
sampling distribution. The simulations are clearly
very limited, and depend on the specific SD model
assumptions, so are intended to be indicative only.
Some of the conclusions are supported by other work
with real experimental data – see the following sec-
tion.

The starting point of the simulation is the previous
work on specific continuous distributions (Robertson,
2007). There are several possible distributional as-
sumptions (in pairs, one for relevant and one for non-
relevant). Some have been shown to fit observed data
well; there are also some theoretical considerations.
Two models have been investigated for the present
paper. The first has a Normal (Gaussian) distribu-
tion for relevant scores, and an exponential for non-
relevant. This has been used by several authors be-
cause it fits observed distributions well (Arampatzis
and van Hameren, 2001; Manmatha et al., 2001), but
has a theoretical problem: it behaves unintuitively at
either end of the score scale (Robertson, 2007). This
behaviour is not normally problematic in the ranges
of scores of practical interest, but the upper end could
be important if we went to extremely large samples.
The second model uses two Gaussian distributions of

whether the measure correlates with or is affected by the
generality. We are concerned not with whether ‘real’
NDCG is likely to be higher or lower for a topic with a
higher density of relevant documents, just whether the es-
timate we get from the sample is likely to be more or less
precise, and/or biased in either direction. However, for any
multi-topic analysis, we will need to address both questions.

equal variance; this is less realistic but is not subject
to these end effects.

All the results presented below (a small selec-
tion of the results obtained) are taken from the first
model, avoiding the problematic regions. However,
all the qualitative observations made about directions
of change between samples of different size have been
replicated in the second model. This may seem a lit-
tle surprising (the exponential and Gausssian distri-
butions are of very different shapes, and the recall-
precision graph in the second case looks somewhat
unrealistic). However, the conclusion fits well with
the fact that we are primarily interested in properties
that are invariant to monotonic transformations of the
scores, which could change the shapes of distributions
very drastically.

In order to simulate a collection with respect to a
particular topic, using this distributional approach, we
need to make the initial division between relevant and
non-relevant documents. As indicated above, we as-
sume that generality is a fixed property of the topic.
The simplest way to instantiate this assumption is to
sample in fixed ratio from the two distributions; a
more realistic way would be to draw an initial binary
variable with an appropriate probability, to determine
relevance or non-relevance, and then to draw from the
appropriate distribution. The simulations reported be-
low use the simpler method. This approach avoids the
problem about estimating generality from the sample;
however, the problem will require investigation in the
future.

The ideal way to use these distributions in the
present argument would be to derive explicit formu-
lae for the various document-population-based mea-
sures mentioned above, in terms of the parameters of
the two distributions. For example, the measureJ,
the generalisation of average precision, is defined in
Equation 4 and also makes use of Equation 3, and
could in principle be evaluated as a function of the
parameters of the normal and exponential pair of dis-
tributions. Then we could take samples of different
sizes from these distributions and evaluate average
precision under the usual definition, and compare the
result with the theoretical value.

Unfortunately, these equations (for average preci-
sion at least) are intractable. Instead, we use the the-
oretical distributions to generate a single large sam-
ple, which we take as defining the population from
which we will subsample. The value of average pre-
cision (usual definition) in the large sample is taken as
the true value, and we consider to what extent small-
sample results match the large-sample value. This is
less satisfactory from the point of view of theoreti-
cal understanding; however, it does make the exper-



iments more compatible with other sampling experi-
ments on real data (see Section 5 below). Also it re-
duces somewhat our dependence on the specific dis-
tributional assumptions: we only have to believe that
the large sample is plausible, not that the distributions
are truly exponential or normal.

4.1 Basic simulation

In the first simulation, we consider a fixed pair of dis-
tributions and fixed generality; we are concerned with
both bias and error of estimation of various measures
from a sample collection.

The exact form of sampling used below is as fol-
lows. The large sample consists of 12.8 million non-
relevant scores, from an exponential distribution of
mean 0.1. Most of these are thrown away; only the
top-ranking scores are kept, enough to ensure that we
always have at least 1000 top-ranking documents in
any of the samples taken. 128 relevant scores are gen-
erated from a normal distribution of mean 1.0 and
standard deviation 0.25. This large sample now be-
comes the population for subsequent sampling.

The population is now sampled at a rate1
2n , where

n = 1, ...,5, following a procedure defined below.
Each of these samples is repeated 10,000 times, and
average precision is evaluated for every sample. We
examine the mean and distribution of values for each
n.

The procedure for the small samples is as follows.
In order to control the number of relevant documents
precisely (and in particular never have a sample with
zero relevants), we take a12n samplewithout replace-
ment from the 128 relevant documents. Thus when
n = 5 we have exactly four relevant documents in each
sample. The non-relevants, on the other hand, are
sampled independently: we step down the ranked list
and make a random draw for each non-rel to decide
whether to include it or not. This makes use of the
already-established ranking, which allows us to get
away with throwing away most of the non-relevant
scores before we start. The difference between the
sampling methods for relevant and non-relevant may
have had a very small effect on the results – see Sim-
ulation 2.

In Figure 1, we show a recall-precision graph.
Note that this is for a single topic – it has not been
smoothed, precision has been measured at every rel-
evant document. The solid line represents the full
large sample; this seems a perfectly reasonable recall-
precision graph, a small confirmation that the distri-
butional assumptions are at least reasonable. Each of
the other lines represents asingle sample from those
indexed byn as above. Although there is inevitably

some noise in these graphs, we already see some ten-
dency to over-estimate precision at fixed recall levels,
for smaller samples, as indicated in Section 3.3; we
will see this more clearly below.

Figure 1: Recall-precision graph for the single topic in the
whole population and in one each of the different sample
sizes.

4.2 Simulation 1: AP

In order to calculate AP, we perform the usual cal-
culation down to rank 1000. However, this misses a
few relevant documents further down the ranking; the
number may be affected by the sample size. In order
to improve our estimates of true AP over the whole
collection, we further estimate the small contribution
of the missed relevants. We have their scores, and
we can estimate how many non-relevants come above
them in the ranking, from the distributional assump-
tions. This correction actually makes very little differ-
ence to AP in the range of samples considered, but is
included for completeness (NDCG is more affected,
see below.)

The results are shown in Table 1 and Figure 2. We
see that (a) the standard deviation across samples of
size 1

2n increases withn (i.e. with decreasing sample
size); and (b) the mean values have an increasing bias
on the high side with increasingn. Thus in addition
to getting less precise estimates from smaller samples,
we get more bias.

Note on the error bars in Figure 2: These repre-
sent one standard deviation each side as given in the
table. Thus many individual samples will fall outside
this range. Note also that the precision of estimate of
the mean over samples of a given size is much bet-
ter: since each is based on 10,000 samples, the stan-
dard error of the mean is1100 of the standard deviation,
scarcely visible on the figure.



n Rels Mean AP Std dev
All 128 0.138

1 64 0.143 0.028
2 32 0.156 0.049
3 16 0.175 0.078
4 8 0.201 0.117
5 4 0.238 0.173

Table 1: Simulation 1: Average precision for simulated col-
lection and samples of size12n . Mean and standard deviation
are over 10000 samples

Figure 2: Simulation 1: Average precision for simulated
collection and samples of size12n . Error bars show a single
standard deviation over samples each side.

4.3 Simulation 2: Precision

In this simulation, we investigate various ways of
defining a point in the ranking at which to measure
precision, for the simulation parameters already de-
fined. We start with the traditional precision at fixed
rank (P@n), with n = 10.

Table 2 shows how P@10 is reduced for smaller
sample sizes. This fits with the discussion in Section
3.5 and with previously-reported results. The falling
standard deviation in this case is probably an artifact
of the falling mean (since precision cannot go below
zero).

n Mean P@10 Std dev
All 0.400

1 0.362 0.113
2 0.322 0.128
3 0.258 0.123
4 0.213 0.113
5 0.152 0.092

Table 2: Simulation 2a: Precision at fixed rank for simu-
lated collection and samples of size12n .

Next we investigate the proposal of Section 3.5 de-
noted P@pN, where we fix the proportion of the col-
lection rather than the absolute rank. Effectively we
setp at 320/12.8m, but we define the threshold in two
different ways. In the first, we set a score threshold
and apply it to all samples; the score threshold is taken
as the score of the 320th ranked document in the large
collection. Thus the expected number of documents
included in the calculation reduces from 160 atn = 1
to 10 atn = 5. However (takingn = 5 for example),
this is not exactly the same as calculating precision
at rank 10, because the exact number of documents
exceeding this score may vary from sample to sam-
ple. In the second method, we measure precision at
exactly the intended rank (from 160 down to 10); this
is more comparable to what would be done in a real
test. Results are given in Table 3.

n Rank Mean Std Mean Std
Prec dev Prec dev

Method 1 Method 2
All 320 0.150

1 160 0.150 0.017 0.152 0.016
2 80 0.151 0.029 0.152 0.028
3 40 0.151 0.045 0.152 0.043
4 20 0.153 0.068 0.152 0.064
5 10 0.154 0.104 0.152 0.092

Table 3: Simulation 2b: Precision at rank for simulated col-
lection and samples of size12n . Method 1 calculates pre-
cision at the threshold given by rank 320 in the collection,
Method 2 at the given rank in the sample.

For Method 1, we would expect the estimated pre-
cision values to be the same (within sampling error)
for all samples. In fact, there is a very slight increase
as we reduce sample size. This is probably the ef-
fect of the different sampling methods for relevant and
non-relevant items, mentioned above. Method 2 is re-
markably stable for smaller samples, perhaps slightly
more so than Method 1.

Finally, we evaluate precision at a given recall
level, set at 50%. Again, we calculate the precision
value in two different ways. In the first, we set as
score threshold the score of the 64th ranked relevant
document in the large collection. Thus the expected
recall level is 50%, though the actual recall level at
this threshold will vary between samples. In the sec-
ond method, we measure precision at the 50% recall
level in the sample, at the rank of relevant document
number 32 (n = 1) to 2 (n = 5); this is more compa-
rable to what is normally done in tests. Results are
given in Table 4.

Method 1 shows exactly the same pattern as for



n Rank Mean Std Mean Std
Prec dev Prec dev

Method 1 Method 2
All 64 0.116

1 32 0.112 0.010 0.109 0.028
2 16 0.113 0.017 0.118 0.053
3 8 0.113 0.027 0.140 0.092
4 4 0.114 0.040 0.186 0.156
5 2 0.115 0.060 0.274 0.260

Table 4: Simulation 2c: Precision at recall level for simu-
lated collection and samples of size12n . Method 1 calculates
precision at the threshold given by recall=50% in the collec-
tion, Method 2 at recall=50% in the sample.

P@pN; this is not surprising, since both amount to
fixing the same threshold score value for all samples.
Method 2, however, shows very strongly the kind of
effect seen for average precision, that there is increas-
ing upward bias for smaller samples.

We reiterate here, in a somewhat more concrete
form, the reason for this upward bias suggested in
Section 3.4. For a given topic and ranked list of re-
sults, if we perform no clever interpolation, the actual
shape of the recall-precision graph is a series of points
in vertical columns. This may be seen as follows.
Suppose we haveR total relevant documents; then
the observed recall values will be{0,

1
R , . . . ,

R−1
R ,1}.

Stepping down the ranked list, when we encounter
a relevant item, we fix a point on the graph at one
of thesex-values. Thereafter, any succeeding non-
relevant (until the next relevant) represents the same
recall but a lower precision. Now, with Method 2
(which simulates what we really do for uninterpolated
average precision), we choose to measure precisionat
the highest point in each column. The fewer the num-
ber of relevant documents, the fewer the columns, and
the greater this column effect.

This analysis might suggest various possible solu-
tions. We might for example perform some averaging
or smoothing over the points in a column. However,
it is hard to see how this could be done consistently,
since for example the last column will contain an ex-
tremely large number of points, almost all of them mi-
croscopically close to zero. Another suggestion might
be some form of interpolation; however, the tradi-
tional forms of interpolation on the R-P graph (being
based on the usual inverse relationship between re-
call and precision) probably all have the same upward
bias. It is in fact quite hard to see how to devise an
unbiased method.

4.4 Simulation 3: Generality effect

The next simulation is based on fixed distributions but
variable generality; we confirm that under these con-
ditions, a measure like average precision is indeed af-
fected by generality.

This time we construct the large sample with 3.2
million non-relevant and 128 relevant; we keep the
number of non-relevant fixed, but sample the relevant
on the same basis as previously. Thus differentn val-
ues give different generality –n = 2 gives the same
generality as in the other simulations. As noted above,
measures such as precision or average precision are
likely to be highly dependent on generality (decreas-
ing as generality decreases). But this dependence is
compounded with the biases revealed in the previous
simulation, based on sample size. Thus the decrease
in mean average precision asn increases in Table 5
is a combination of the decrease resulting from the
reduced generality and the increase due to the small-
sample bias; but we see clearly that the former effect
is much stronger than the latter. Also the variance of
average precision over the samples increases.

n Rels Mean AP Std dev
All 128 0.304

1 64 0.208 0.032
2 32 0.141 0.044
3 16 0.099 0.053
4 8 0.076 0.067
5 4 0.063 0.087

Table 5: Simulation 3: Average precision for a fixed collec-
tion size, but relevant document samples of size1

2n .

We note again that the assumption made here that
the population parameters themselves are indepen-
dent of generality is a strong one, for which we have
no real justification.

4.5 Simulation 4: NDCG

The final simulation evaluates NDCG – the discount
function is taken as log(rank+ 1), and since there is
only one level of relevance other than non-relevant,
the gain is treated as one. As with AP, we evalu-
ate DCG exactly for each sample down to rank 1000;
we then estimate the remainder using the method de-
scribed for AP. Note that NDCG is affected by this tail
much more than AP; the log-based discount function
causes a much thicker tail. For reasons discussed in
Section 3.6, we do not evaluate NDCG with a fixed
truncation point.



Results are shown in Table 6. Here we see (a)
that the precision of estimation of NDCG from sam-
ples does indeed fall with falling sample size, and
(b) that the mean value decreases as the sample size
decreases. The differences from the true popula-
tion mean are quite large (all the differences between
mean NDCG values are significant: for example, in
the case ofn = 5, the 95% confidence interval for the
true mean over samples of this size is approximately
(0.486,0.494)).

n Rels Mean NDCG Std dev
Collection 128 0.639

1 64 0.602 0.034
2 32 0.572 0.059
3 16 0.541 0.090
4 8 0.514 0.126
5 4 0.490 0.172

Table 6: Simulation 4: NDCG for simulated collection and
samples of size1

2n .

It is very clear that NDCG would increases with
increasing sample size. The pattern suggests that
NDCG would tend to one as the sample size tends
to infinity; however, we have not demonstrated this.

5 Comparison with previous work

In (Soboroff, 2004), it is shown that several
currently-used measures are particularly unstable
when applied to topics with very few relevant docu-
ments. This result fits very well with the arguments
presented above about the statistical precision of esti-
mates.

In (Hawking and Robertson, 2003), results are
presented of mean average precision on samples of
different size from a large collection. These are means
over 50 topics, rather than for a single topic, but on
the basis of the above simulation results, we would
expect to see that the sample results over-estimate the
full-collection results, and the effect should increase
for smaller samples (the extent of the over-estimation
will vary by topic, but all the biases should be in the
same direction).

What is observed in Figure 19 in that paper is that
there appears to be a small rise in the sample esti-
mates as we reduce the sample size, down to a 20%
sample. But for 10% the movement seems to reverse.
However, there is a confounding factor in these re-
sults. The evaluation was done with the treceval pro-
gram, which excludes any topics with no relevant doc-
uments. Obviously the topics with the fewest relevant

documents to start with (which are the ones most sub-
ject to the expected effect) are the most likely to be
excluded, and are more likely to be excluded from the
smaller sample results. In fact the 10% samples were
significantly affected by this rule, and the results for
this point are therefore based on significantly different
topic sets than the larger samples.

In (Yilmaz and Aslam, 2006), a similar experi-
ment is reported, with various sample sizes, but with
the rule that if a sample produces a set with no rele-
vant documents, then it is discarded and another sam-
pling is made. Figure 4 in that paper shows a consis-
tent over-estimate of mean average precision from the
sample.

6 Single-relevant-item searches

For some classes of topics, it is a reasonable as-
sumption that there exists only one relevant item in
the database. Known-item searches, and web searches
for home pages or named pages, come into this cate-
gory. Such topics sit uneasily with the assumption
of fixed generality, that if we draw a larger sample
of documents as the full collection, we will maintain
the proportion or density of relevant items by getting
more of them.

We can think of this situation as one where we
still draw the relevant document from a large popu-
lation of hypothetical relevant documents, but having
drawn one, we are constrained not to draw any more.
While the assumption of a population of hypothetical
relevant documents may seem a little strange for this
situation, we may think of it as all the ways the author
of the pagemight have chosen to write it. But hav-
ing written it once, it does not make sense to write it
again.

The commonest measure for this situation is the
reciprocal rank. This might be interpreted in two
ways as a population measure. First, the reciprocal
rank is identical to the average precision in the case
of a single relevant document; therefore it could be
interpreted in the same way as average precision. But
since we are assuming a single relevant document,
this is a case of minimal generality and therefore max-
imal bias as identified above. A second interpretation
is as the inverse of the pairwise error probability (tak-
ing the inverse provides the desired top-heaviness).
The maximum likelihood estimate of the inverse pair-
wise error is

N
r−1

whereN is the collection size andr is the rank of the
single relevant document. Unfortunately this is unde-



fined if r = 1, a very common situation. Replacing
it with N

r looks like a simple smoothing to avoid this
problem; and replacing this again with1r is a simple
normalisation to get it into a reasonable range (for a
fixed collection). It is likely that one could justify a
better form of smoothing, and thus make a strong in-
terpretation of reciprocal rank.

7 Final discussion

Over the last few years, considerable effort has
been devoted to questions of statistical variation, or
error, or significance in the results of retrieval tests. In
this paper, we argue that this work has concentrated
on just one of the two possible sources of statistical
variation or error. That is, it has been assumed that
the only sampling process involved is the sampling of
topics or queries.

This paper has presented a very preliminary explo-
ration of the consequences of considering the other
source of statistical variation, namely the sampling
of documents. These consequences are quite com-
plex, and suggest firstly that only a few of the mea-
sures commonly used in IR experiments can be anal-
ysed in these terms at all; the others, however good
they may be as pragmatic measures of effectiveness
on a given collection, are not capable of generalisa-
tion. Secondly, the analysis suggests that even for
those measures that can be analysed in these terms,
there are serious issues of estimation which present
methods do not address.

Again, we have not addressed directly the issue of
multiple topics. Nevertheless, in the light of the anal-
ysis presented in this paper, the normal practice of av-
eraging measures across topics (e.g. MAP, mean av-
erage precision in the usual sense) looks increasingly
fragile. First we have shown that the expected error in
estimation for a given topic depends very heavily on
generality, so that our knowledge of the true average
precision value is simply less good for a topic with
few relevant documents. Secondly we have shown
(for average precision) a systematic bias, also based
on generality. Thirdly, the true measure itself is also
likely to be highly correlated with generality. Aver-
aging over topics of differing generality looks highly
suspicious under these conditions.

This paper only scratches the surface of the prob-
lem. It is intended to open up the subject to further
debate.
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APPENDIX

The invariance requirement

In section 3, we stated the requirement that mea-
sures defined on the population distributions of scores
should be invariant under monotonic transformations
of the scores, because such transformations do not af-
fect the rank order of the documents. Here we sketch
a formal proof for some such measures that they do
indeed satisfy this requirement.

We suppose a monotonic strictly increasing tran-
formationφ on the score scale. We denote the orig-
inal and transformed scores bys and s′ (s′ = φ(s)),
and similarly the original and transformed thresholds
on the scores byt andt ′. We consider how the distri-
bution has to be transformed. It follows from mono-
tocity thatP(s > t) = P(s′ > t ′); hence any function
or measure defined as a cumulative distribution trans-
forms directly:F(t) = F(t ′). Since the density func-
tion f (s) is the derivative of the cumulative distribu-
tion, it follows that

f (s) = f (s′)
ds′

ds
= f (s′)

dφ(s)
ds

(since dφ(s)
ds is always positive, and the two functions

integrate to the same value over the full range, this
equation defines a valid transformation between dis-
tributions).

The measures corresponding to recall and fallout
defined at a threshold (FR(t) andFN(t)) are therefore
invariant, as is the measure corresponding to preci-
sion at a threshold,H(t), provided that the threshold
itself is suitably transformed. In order to demonstrate
invariance for other measures such asJ (equivalent to

average precision) or pairwise error, we simply equate
within each integral the componentf (s)ds with the
componentf (s′)ds′. In both these cases the integral
is over the full range(−∞,∞), thus no transforma-
tion of the bounds is required (if either score range is
actually bounded, we simply assume without loss of
generality that the density is zero outside the bounds).

We note also that any measure that assumes and
makes use of the interval property of scores will not
satisfy the invariance requirement. Specifically, for
example, anything based on the means or other obvi-
ous properties of the score distributions will fail this
test. The mean in generaldoes not survive a mono-
tonic but non-linear transformation.


