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Abstract.
A basic notion of probability theory is the event space, on which the probability

measure is defined. A probabilistic model needs an event space. However, some
classes of events (which we may want to model probabilistically) exhibit structure
which does not fit well into the traditional event space notion. A simple one-to-many
example is discussed at length. The information retrieval case, involving queries,
documents and relevance, is analysed. The event space issue makes for some difficulty
in comparing different probabilistic models in IR.
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1. Introduction

There have been several attempts recently to reconcile, or at least to
understand the relationship between, traditional probabilistic models
of information retrieval and the newer language models. Since both
treat the retrieval problem probabilistically, it might be expected that
they can be formulated in comparable terms. However, this has proved
difficult. One question concerns the role of relevance, which takes a
central position in some traditional models (such as Robertson and
Sparck Jones, 1976, referred to as RSJ), but does not appear explicitly
in at least the early language models (e.g. Ponte and Croft, 1998).

The present author and others (Sparck Jones et al., 2003) have
recently claimed that the early language models assume that there
is only one relevant document per query. This claim is based on the
observation that language models ask the question of each document:
What is the probability that this document, or rather the model which
generated this document, also generated the query? Since each docu-
ment is taken to have its own language model, if it turns out that a
particular document is relevant (that is, its model did indeed generate
the query), it would seem that no other model could have done.

Lafferty and Zhai (2003), on the other hand, in a recent paper,
develop a basic probabilistic model from which they derive both the
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RSJ model and the simple language model. They claim in conclusion
(a) that RSJ and the simple language model are equivalent; and (b)
that the language model requires no such assumption as that there is
only one relevant document per query.

The present paper discusses an issue underlying all probabilistic
models, that of the event space assumed, and draws in part from a
pair of old papers (Robertson et al., 1982; Robertson et al., 1983). We
begin, however, with a discussion of an example which is rather different
from the IR case. This example is first used (section 2) to illustrate the
general problem, before event spaces are formally defined. Then (section
3) the same example is explored in more detail in order to tease out
some of the implications. In section 4 we discuss the structure of the IR
case, involving queries and documents, and in section 5 we attempt to
identify some specific event spaces appropriate for probabilistic models
in IR.

The general problem of understanding the connections between and
integrating different probabilistic models in IR has been considered by
a number of authors (e.g. Fuhr, 1992; Wong and Yao, 1995; Crestani
et al., 1998). It is suggested that many different models, not necessarily
explicitly probabilistic (the vector space model for example), can be
given probabilistic interpretations. However, the event space underlying
any probabilistic model is seldom discussed or even specified.

2. Random variables, conditional probabilities and event
spaces

Suppose we have two random variables, X and Y , with some assumed
relation between them. We can imagine (though this is not necessary)
that there is a causal relation X → Y . Then we might consider a model
which models the following quantities:

Model A: P (X), P (Y |X)

Can we now, without asking any further questions, apply such equa-
tions as:

P (Y ) =
∑
X

P (X)P (Y |X) ? (1)

Equation 1 is one of the basic relationships in probability theory. These
relationships imply that Model A provides a full description of the event
space involving these two random variables: that if we have Model A,
then we can infer any other quantity involving just these variables.

However, the following example will show that we cannot blindly
apply equation 1 to a situation in which we have all the information
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for Model A. There is, of course, a simple explanation for this apparent
contradiction of the laws of probability; however, the explanation needs
to be investigated.

Example: we have stars S, and planets T . Stars either have (X = 1)
or do not have (X = 0) magnetic fields. Planets either have (Y = 1)
or do not have (Y = 0) magnetic fields. We have a (complete) universe
consisting of 2 stars and 3 planets. Star s1 has x1 = 1; it has two
planets t11 and t12 with y11 = 1 and y12 = 0. Star s2 has x2 = 0; it has
one planet t21 with y21 = 0. In this universe, the following probabilities
may be calculated (not estimated, since the universe is complete, but
calculated exactly):

P (X = 1) = 1
2

P (Y = 1|X = 1) = 1
2

P (Y = 1|X = 0) = 0
From these we would infer using equation 1 that P (Y = 1) = 1

4 . But
we have three planets, one of which has a magnetic field, so actually
we have P (Y = 1) = 1

3 .
We could construct a similar example using parents and children and

some genetically-determined property (such as eye colour). We could
have a model that specified (for a population) the probability of each
combination of the relevant genes (X); also the probability of each eye
colour in a child conditional on the parents’ genes (Y |X). But if we
wanted to infer the probability of the parents’ gene combination on the
basis of the observed eye colour of a child (X|Y ), we would run into
the same problem.

2.1. Brief specification of the problem

What is the problem here? In short, it is the event space. The laws of
probability are written in terms of a single event space with a single
probability measure defined on it; for historical reasons (which I believe
to be unfortunate), the standard notation P (.|.) does not provide for
the denotation of the event space. If we denote a probability for a
particular event space E as PE(.|.), then we should rewrite the data we
have for the example as:

PS(X = 1) = 1
2

PT (Y = 1|X = 1) = 1
2

PT (Y = 1|X = 0) = 0,
referring to the event spaces of stars and planets. It is immediately
obvious that we cannot apply equation 1 to this data, because the
probabilities are defined in different event spaces.1

1 What does it mean to refer to a set of objects as an event space? The simplest
interpretation is that the basic event is to choose one of the objects at random. In
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So the answer to our question above is: We emphatically cannot
apply the equation without asking any questions.

But this situation deserves much more detailed analysis. The combi-
nation of event spaces we have exemplified, involving stars and planets,
has a slightly complex but not particularly unusual structure (that of
every many-to-one relation in every relational database in the world).
It is worth asking questions about what we can say about such combi-
nations.

2.2. Overview of event spaces

The traditional view is that the event space is the set of all possible
outcomes of an experiment, that the probability measure is a measure
satisfying certain properties on this event space, that a random variable
is a deterministic function of the outcome of an experiment. One could
discuss this at length, but it will do for the present discussion. If we
want to define a probability PE(X), we need to assume that we do
indeed have a well-defined event space E , probability measure P , and
random variable X defined on E . For PE(Y |X), we need both Y and X
to be defined on E ; the values of X are used to induce a partition on
E .

We will also observe that in a finite event space, the usual sim-
plest probability measure assigns equal probability to each elementary
event. However, there are many circumstances in which that is simply
inappropriate, to the extent that one would not even consider it a
candidate. For example: suppose the experiment consists in tossing
two coins, with outcomes HH,HT,TT. Our knowledge of the structure
of this event space is such that we would (probably without thinking)
reject the simple probability measure (1

3 , 1
3 , 1

3) and instead use (1
4 , 1

2 , 1
4).

Our understanding of the structure of this event space is enough to
convince us that the simple one is simply bad.

In the following section, we look at the same example in some-
what more detail, with a view to understanding how we might apply
the traditional statistical idea of an event space to this (structured)
situation.

this case, the probability PS(X = 1) = 1
2

means “if we choose a star at random from
this universe, this is the probability that it has a magnetic field”. For the other two
probabilities, we have to choose a planet at random.
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3. Detailed analysis of the example

The full event space of the stars and planets example is a set of stars, a
set of planets, and a one-to-many relation between them. We have this
knowledge of the structure, and we need to work out the implications
of this knowledge for any probabilistic statements about our models for
the event space. We will refer to this full event space as ST . To help
focus the discussion, we will imagine that one question we might want
to ask is the following:

What is the probability that a star has a magnetic field, given that
I know that it has two planets with magnetic fields?

This is a perfectly reasonable question to ask, though it may need some
refining. But first we will explore some possible ways of looking at the
event space ST . We can consider several simpler event spaces. The
first is just S. This is easy: it stands on its own (does not need T to
define it), has X defined on it, and has no internal structure. It makes
perfect sense to define a uniform probability measure on it; this yields
the above value for P (X = 1) = PS(X = 1) in the specified universe.

The second is T . This is also moderately straightforward, if we look
at Y alone; however, it does have some internal structure (planets are
siblings of each other or not), which treating it as a straightforward
uniform-probability event space will simply ignore. More on this later.
But there is another slight complication: we want to consider X as a
condition on this space. Is this valid? Well, with a very slight extension,
yes: we can ask of any planet, as well as “Do you have a magnetic field?”,
“Does your star have a magnetic field?”. This question is clear and
unambiguous, so it is perfectly reasonable to assert that X is defined
on T as well as on S. However, in order to be strictly accurate, we
should treat this as involving an extension of both the event space and
the variable; we might refer to these as T + and X ′. In T +, we associate
with each planet not only its own properties but those of the star to
which it belongs, and X ′ is the property of the planet of belonging to
a star with or without a magnetic field. Then we should rephrase our
data about the specified universe as:

PS(X = 1) = 1
2

PT +(Y = 1|X ′ = 1) = 1
2

PT +(Y = 1|X ′ = 0) = 0
– but it also becomes clear that we need more data to specify the
probabilistic properties of this event space more fully. For example, we
may need PT +(X ′), which is not deducible from the above and which
is different from PS(X). This would then allow me to use equation 1.
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Note that we cannot do the same trick the other way around: we
cannot simply ask a star “Does your planet have a magnetic field?”,
because the question is ill-defined. we could define an S+ in a different
way, e.g. by defining a new random variable Y ′ as the proportion of the
star’s planets that have magnetic fields, and construct a probabilistic
model with this combination of event space and random variables.
As before, a simple uniform probability measure (on stars) is quite
appropriate.

We now have five event spaces: ST , S, T , S+, T +. 2 There are dif-
ferences between them, some minor, some significant. We have simple,
straightforward probability measures on each of the last four of these
spaces. We do not, however, have a probability measure of any kind
on ST . Nor is it possible to define one which (a) makes sense, and (b)
allows me to express all probabilistic aspects of the space.

Does this mean that we cannot make probabilistic statements about
ST ? Of course not. Any statement about any of the other event spaces
is also about ST . However, none of the other spaces captures all that we
might want about ST . Given that we need event spaces with probability
measures, it follows that we need more than one event space to make
probabilistic sense of ST .

Now we may return to the question with which we started this
section. Of the event spaces we have considered, the one which comes
closest to helping us with this question is S+ as defined; but this does
not quite do the trick. Answering the question would actually need
a good understanding of the full structured event space ST , and a
combination of models which explicity took this structure into account.
It simply does not make sense in T +, because in this event space,
there is no such thing as an individual star. (In fact S+ does not have
individual planets, either.)

3.1. Individuality and T +

We said above that in T + there is no such thing as an individual star.
This statement deserves further analysis.

T + consists of a set of elementary events {(t, s)} where t ∈ T is a
planet and s ∈ S is a star (together with a uniform probability measure
on these events). That is, we take each planet t and its properties, and
its associated star s and its properties, as the single event {(t, s)} which
gives us the values of our random variables. Each such event is distinct

2 It would be possible to define other event spaces in addition to these five. For
example, we could take each star and define an event space of its own planets, giving
me two more in this particular universe. We do not pursue this line for the present
example.
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as an event from every other; this is the nature of a simple event space.
So in some sense there are individual stars; the concept that is missing
from this space is that of different planets sharing an individual star.
To put it another way: if we take T + as our complete probabilistic
model, we are in effect assuming that every star has just one planet.

At least, it is clear that the model T + is consistent with such an
assumption. Furthermore, I cannot see any way of generating this model
under a weaker assumption.

3.2. Final comment

None of the above problems arise if X and Y are initially defined on the
same event space – in this case Model A and equation 1 go together
perfectly well. I believe this is the situation most theorists have in
mind when they automatically assume equation 1. I also believe this
assumption is dangerous.

In the next section, we consider the IR case.

4. Queries and documents: the cross product structure

The structure of the ST example is not uncommon, but it is not the
same as the query / document / relevance case. We now explore some
aspects of this case.

We start with the set of all queries Q. As with stars, this is the
set of all actual queries, representing information needs, not the set
of all values of some random variable. We may define one or more
random variables on this set, including (following Lafferty) the text of
the query. Similarly we have a set D of documents. Ignoring relevance
for the moment, queries and documents have at first glance no logical
relationship. What this means is that we can pair any document with
any query. The logical structure of this space (QD) is a cross product
of the two individual spaces Q and D.

In this case, there is a simple and fairly obvious probability measure
on the space, namely one that is uniform over pairs (q, d) ∈ Q × D.
We refer to the probabilistic event space defined by this measure over
this set of events as QD0; the cross product on its own, without a
probability measure, we denote QD on its own. In the probabilistic
event space QD0, each pair is regarded as a single event, unrelated to
any other, and every pair has the same probability.

It might be assumed that this uniform probability measure on pairs
(QD0) is in some sense equivalent to treating the two separate spaces
Q and D uniformly. However, this is not the case (or at least, such
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equivalence has severe limitations). A consequence of choosing pairs as
the basis for the probability measure in QD0 is that it loses part of the
structure of the full space QD, in the same way that T + loses part of
the structure of ST . Consider the following structural aspects:

− QD is ‘striped’ – any property that a particular query has is shared
across all pairs involving this same query with any document (and
vice-versa); QD0 has no such striped character.

− in QD every pair has one set of q-siblings (all the pairs sharing
the same query-event) and another set of d-siblings; there are no
siblings in QD0.

− the question ‘what can we say probabilistically about a query, if
we know something about two of the pairs to which it belongs?’
has meaning in QD, but none in QD0.

− the concept of an individual query or document is apparently
meaningless in QD0 (but see the following section).

4.1. Individuality of documents and queries

If we take QD0 as our complete probabilistic model of the query-
document situation, we are assuming a uniform space of unit events
which are query-document pairs. Every such event is distinct, and
there is no concept that two such events may share the same individual
query event (say). This is equivalent to assuming that every document
(individual document event) has exactly one query and every query has
exactly one document. Note that this is independent of the relevance
variable, which we have not yet introduced.

4.2. Random variables

We may define as random variables in the space of query-document
pairs the text of the query and the text of the document. However, to be
strictly accurate, we must acknowledge that (for example) the random
variable which is the text of the query, defined on the event space of all
queries, is different from the random variable which is the text of the
query, defined on the event space of all query-document pairs. Query-
siblings in QD share the same query event and therefore necessarily the
same query-text. No such relationship can exist in QD0 – two query-
document pairs may share the same query text but only accidentally.
Thus by reinterpreting the query-text variable as a random variable in
QD0, we are at the same time changing its nature significantly.
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These random variables will be denoted Q and D respectively. This
bare notation will apply to their respective natural event spaces Q and
D; when they are reinterpreted for QD0 they will be denoted Q0 and
D0 respectively.

A binary relevance variable may be defined as a random variable
on the space of individual query-document pairs (but not, clearly, on
individual documents or queries). Thus this variable naturally resides
in QD0. However, since neither the text of the query nor the text of the
document naturally reside there, we have to be careful about models
involving all three variables.

4.3. Samples

If we were to sample query-document pairs, the resulting sample would
have the characteristics ofQD0. On the other hand, if we were to sample
queries and documents separately, and then take all the resulting pairs,
we would have a space with all the above characteristics which QD0

lacks (stripes, siblings, etc.). (This is close to what we actually do in
experiments – for the very good reason that it preserves aspects of the
structure of the full space QD in which we are interested.) This is a
perfectly good form of sampling, but one which is simply not described
by the probabilistic event space QD0.

We might consider constructing a composite space for a probabilistic
model from a uniform probability distribution on queries and a separate
uniform probability distribution on documents. However, this would
not constitute a single probabilistic event space in the usual sense.
Can we define a single probabilistic event space which preserves any of
the above aspects? As with the ST example, it is not possible to find
one which preserves everything, but different spaces preserve different
things.

In the next section, we look at specific models and their apparent
assumptions about event spaces.

5. Possible event spaces for IR

5.1. The event space of the RSJ model

The RSJ model (Robertson and Sparck Jones, 1976) is formulated for
a single query. All probabilities are about documents in relation to
this single query. We can thus see the event space as the space of
documents (with a uniform prior distribution); but this event space is
reinterpreted for each query. In terms of the discussion above, we have
q-siblings as an implicit part of the model; however, the model cannot
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see d-siblings. The model thus assumes that there is just one query for
every document but not vice versa. In effect, the document collection
is reinvented for every query. This means that we can learn about the
specific query (relevance feedback in the usual sense), but not about
the specific document over successive queries.

5.2. The event space of the simple language model

This is a little more difficult to see. Since the language model expresses
a probability of a query given a document, it is tempting to see it as
the dual of the RSJ model. This would mean that the event space was
the space of queries, considered only in relation to this document. This
would be consistent with the discussion in Robertson et al. (1982), and
would make the language model equivalent to the original probabilistic
IR model of Maron and Kuhns (1960).

However, it is clear that this is not the interpretation placed on
the language model by its proponents. The language model is com-
monly used to derive a score by which documents are ranked for a
given query, in the usual fashion. But this requires that the scores for
different documents, but for the same query, are directly comparable.
Under the above interpretation of the event space, the scores cannot be
comparable, since they come from probability distributions in different
event spaces.

It is unclear to me what should be taken as the event space for
the simple language model. Possible solutions would be QD0 or that
proposed by Lafferty and Zhai. Either of these would imply that the
simple language model is not capable of supporting per-query-event
relevance feedback (that is, relevance feedback in the usual sense),
though it would support relevance feedback across all queries (from
different users) sharing the same text.

5.3. The Lafferty/Zhai model

The model proposed by Lafferty and Zhai (2003) starts from a further
simplification of QD0. They consider first the cross-product of values
of Q and D (i.e. the texts as above), not of individual events, with
a uniform probability distribution on the pairs in this cross-product.
However, they now need to avoid the assumption that relevance is
completely determined by the texts of the query and the document (this
would imply that any two people who ask the same question and see
the same document will make the same relevance judgement). To avoid
this assumption, they need to introduce the binary relevance value as a
component of the event space. Now the full event space consists of the
set {(q, d, r)} of triples of values of the random variables Q0, D0, R.
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But the probability distribution is no longer uniform over these triples;
instead, it is subject to the constraint that, when marginalised over R,
it is uniform over the resulting space of {(q, d)} pairs.

One consequence of this choice of space is that replicated queries
(multiple query-events with the same text) are regarded as having the
same probability, irrespective of their frequency of replication. This
probably is of no importance, for the same reason that the RSJ ap-
proach is reasonable: all comparisons which the model is intended to
allow are between documents for the same query. However, it would be
important for inter-query-event feedback.

Despite these qualifications, in many respects the Lafferty/Zhai model
seems to be similar to QD0. The event space refers to no individual
events (either query-events or document-events). In this space, it is not
possible to distinguish between query-document pairs which share the
same query text because they share the same query-event, and those
which share the same query text by accident (because a sampling or
generation process has happened to throw up the same value). The
space cannot therefore have any of the structural characteristics of QD
discussed in section 4 above (striping, siblings etc.). Thus it seems to
assume implicitly with QD0 that for every document-event there is
exactly one query-event and vice versa. The assumption is implicit be-
cause it is not possible to express either this assumption or its negation
in terms of the event space, but it is required because of the absence
of structural characteristics.

The assumption of a one-to-one relationship between document and
query events is even stronger than the assumption attributed to the
simple language model earlier, that each query has only one relevant
document.

The version of RSJ which Lafferty and Zhai derive from their model
is a special case of RSJ, since the assumption that each query has just
one document is not necessary for RSJ. Therefore the conclusion that
RSJ and the simple language model are equivalent is not a valid general
inference from this model.

6. Conclusions

The discussion of Model A and equation 1 showed that it is necessary
to consider the structure of the event space when constructing a proba-
bilistic model. Although equation 1 is valid for a simple event space, it
may not be valid for one with a non-trivial structure. In fact an event
space may be of such structural complexity that a single probabilistic
model (based on a single event space with a single probability measure)
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would be unable to capture all important statistical knowledge about
it.

The information retrieval case involving queries, documents and
relevance judgements is a case in point. Properties of queries (such
as their texts) belong with queries; properties of documents belong
with documents; and relevance belongs in the space of query-document
pairs. Important elements of this structure are lost if we consider only
the space of query-document pairs.

In this context, the traditional probabilistic model of IR, as rep-
resented by RSJ, is seen to have peculiarities and limitations. But it
cannot be adequately represented in terms of a simple event space of
query-document pairs, and is not equivalent to the simple language
model. It is difficult to see what should be an appropriate event space
for the language modelling approach to IR. Furthermore, the event
space issue is at the heart of comparisons of different probabilistic
approaches to IR; if two different models have different assumptions
about event spaces, it may not be possible to define a single event
space in which they both fit and within which they could be compared.
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