Question 1

a) Define a fluid. [5 marks]

b) Define Newton’s Law of viscosity. [6 marks]

c) Water, whose coefficient of viscosity is 1.0×10^{-3} Ns/m2, flows over a horizontal plate 5.0m long and 3.0m wide. The velocity of the water increases, through a boundary layer, from zero at the plate surface to 0.8m/s at a distance of 12mm above the plate. Calculate the total friction force acting on the plate. [14 marks]

Question 2

a) State the principle of Archimedes. [4 marks]

b) A body of mass 100g and of specific gravity 2.0 is suspended by a thread so as to be completely immersed in a liquid of specific gravity 0.92.

i) Calculate the tension in the thread. [9 marks]

ii) If the thread is cut, calculate the initial acceleration of the body. [8 marks]

iii) Why will the acceleration not be maintained as the body falls in the liquid? [4 marks]
Question 3

a) Write down Bernoulli’s equation, describing each term and stating all assumptions.

[11 marks]

b) Figure Q3 shows a pitot-static tube connected to a U-tube manometer for the measurement of air flow speed. Show that the air speed, v_a, is given by:

$$v_a = \sqrt{\frac{2h \rho_l g}{\rho_a}}$$

[10 marks]

c) Such a tube is being used as an air speed indicator for an aircraft, and an observer records $h=0.12\text{m}$, using a manometer liquid of density, $\rho_l=8.0\times10^2 \text{ kg/m}^3$. The density of air is 1.3 kg/m^3. Calculate the speed of the aircraft.

[4 marks]

![Figure Q3](image)
Question 4

a) Write down the linear momentum equation, linking the net force, F, acting on a flowing fluid element bounded by planes 1 and 2, and the mass flow rate \dot{m}, flow velocity v, and static pressure p, at the planes 1 and 2.

[7 marks]

b) A rocket engine combustion chamber of cross-sectional area, A_1, contains a virtually incompressible gas of density ρ, at pressure p. The gas escapes through a small orifice of area A_2 to the atmosphere, where the pressure is p_a. Derive equations for:

i) The speed of efflux of the gas.

[9 marks]

ii) The thrust (net force) exerted on the rocket.

[9 marks]

Question 5

The drag force acting to decelerate a space capsule during atmospheric entry is being investigated in a sub-scale experiment. The drag force F, is theoretically expected to depend upon the atmospheric density ρ, the capsule velocity V, the capsule diameter D, the viscosity of air μ, the atmospheric pressure p, and the speed of sound in the outside air a.

a) Employ Buckingham’s π theory to identify the non-dimensional groups which must be equated to ensure dynamic similarity between full scale and the sub-scale experiment.

[19 marks]

b) What are the names of these non-dimensional groups?

[3 marks]

c) Comment on the physical meaning of these non-dimensional groups?

[3 marks]