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Abstract

Uncertainty is an intrinsic part of life; most events, affairs, and questions are
uncertain. A key problem in behavioral sciences is how the mind copes with
uncertain information. Quantum probability theory offers a set of princi-
ples for inference, which align well with intuition about psychological pro-
cesses in certain cases: cases when it appears that inference is contextual,
the mental state changes as a result of previous judgments, or there is in-
terference between different possibilities. We motivate the use of quantum
theory in cognition and its key characteristics. For each of these character-
istics, we review relevant quantum cognitive models and empirical support.
The scope of quantum cognitive models encompasses fallacies in decision-
making (such as the conjunction fallacy or the disjunction effect), question
order effects, conceptual combination, evidence accumulation, perception,
over-/underdistribution effects in memory, and more. Quantum models of-
ten formalize psychological ideas previously expressed in heuristic terms,
allow unified explanations of previously disparate findings, and have led to
several surprising, novel predictions. We also cast a critical eye on quantum
models and consider some of their shortcomings and issues regarding their
further development.
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INTRODUCTION

Information in our environment is mostly uncertain, and much of cognition is about managing
this uncertainty to generate useful conclusions. For example, we worry about things like whether
it will rain tonight (a natural worry of Londoners); whether next year will be free from dangerous
viruses; and the cause of some funny spots suddenly appearing on our child’s face. What are the
foundations for our capacity for probabilistic inference? This is a question which encompasses
research related to three Nobel Prizes in Economics (awarded to Herbert Simon in 1978, Daniel
Kahneman in 2002, and Richard Thaler in 2017), a philosophical debate that goes back to antiq-
uity, and surprising implications for norms for correct reasoning.

Probabilities are used to quantify uncertainty and make inferences from uncertain premises. A
probability theory is a set of mathematical axioms for how to combine and update probabilities.
This review concerns three overarching traditions regarding the relevance of probability theory
to cognition. The first is Bayesian/classical probability theory (CPT). CPT axioms embody some
of our basic intuitions regarding how to deal with probabilities. In a famous quote by Laplace
(cited in Perfors et al. 2011, p. 313), CPT is described as “nothing but common sense reduced to
calculation.” The axioms of CPT number only four, yet they are the foundation of a mathematical
edifice which encompasses any kind of probabilistic reasoning. CPT cognitive models have clearly
attracted great interest in the last few decades (Griffiths et al. 2010, Oaksford & Chater 1994,
Tenenbaum et al. 2011). Second, there are heuristics and biases, a toolbox of rules which offer
fast and frugal accounts that describe numerous behavioral findings. Heuristics and biases have
also attracted significant interest (Gigerenzer & Todd 1999, Kahneman et al. 1982). Third, there
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is quantum probability theory (QPT), which is a newer direction and is the focus of the present
review. Like CPT, QPT is a general probability theory, thatis, a set of rules for how to combine and
update probabilities. QPT and CPT axioms are different, so we often reach different conclusions
when we employ QPT versus CPT. We can consider any of the questions above (e.g., “Will it rain
tonight?”) and compute the corresponding probabilities with either CPT or QPT.

Some readers may have come across quantum mechanics, which is a theory of physics. The pio-
neering physicists who developed quantum mechanics soon realized that CPT was not suitable for
this new physical theory—it seemed that uncertain information for microscopic particles obeyed
probability rules different from the familiar ones from CPT. So, together with a new physics the-
ory, they developed a new theory of probability as well—what we call QPT. QPT is the theory of
probability from quantum mechanics, without any of the physics. In fact, Bohr (1958), one of the
founding fathers of quantum theory, was one of the earliest to propose that principles of quan-
tum physics, such as complementarity, could be applied outside of physics to human knowledge
(for a recent example, see Lu & Busemeyer 2014). An important qualification is that the use of
QPT in cognitive science makes no assumptions regarding the nature of brain neurophysiology;
all current quantum cognitive models do not rely on a quantum brain hypothesis, which has been
heatedly contested (Hameroff 2007, Litt et al. 2006).

As with the physicists who developed quantum mechanics, some pioneering researchers in psy-
chology have asked whether there are cognitive phenomena for which CPT or heuristic explana-
tions are not sufficiently satisfactory. These researchers initiated the quantum cognition research
program (Aerts & Aerts 1995, Atmanspacher et al. 2002, Bordley 1998, Khrennikov 1999). How-
ever, the application of these ideas to empirical data started becoming more widespread after the
publication of a special issue of the Journal of Mathematical Psychology about 10 years ago (Bruza
& Gabora 2009). Overviews of the key ideas and advances are presented by Ashtiani & Azgomi
(2015), Bruza et al. (2015b), Busemeyer & Bruza (2011), and Pothos & Busemeyer (2013). Haven
& Khrennikov (2013) and Wendt (2015) describe applications beyond psychology in social sci-
ences. These references also serve as tutorials for the QPT formalism (along with Yearsley 2017
and Yearsley & Busemeyer 2016). Note that describing these contributions as the quantum cog-
nition research program has two purposes. First, it brings together models which employ broadly
similar mathematical tools and concepts, those from QPT. Second, it implies a commitment to
the specific way in which probabilities are computed, from quantum mechanics, and the asso-
ciated mathematical theorems (the Born rule, Gleason’s theorem, the Kochen—Specker and Bell
theorems, the Liiders postulate).

The general questions which guide this review include the following: How general is the ap-
plicability of probabilistic reasoning in cognitive processing? If we see a part of cognition as a
probabilistic engine, when is the mind better described by CPT versus QPT principles? What is
the importance of context in cognition, and how can we formalize contextual influences? How can
prior decisions shape subsequent thought?

MOTIVATION FOR QUANTUM PROBABILITY THEORY
IN COGNITION

For the average psychologist, the proposal that quantum theory might have something to do with
cognition initially shades between ambitious and implausible. Early QPT models have been met
with skepticism. These early models therefore had to focus on the behavioral findings that have
proved the most persistently challenging for classical (CPT or otherwise) formalisms. In this sec-
tion, we outline some of the findings which initially motivated QPT models, reserving additional
empirical coverage for subsequent sections.
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Figure 1

A classical probability theory representation for the conjunction fallacy from Tversky & Kahneman (1983).
We consider a large set of all possible realizations for Linda that we can imagine. The red and blue ellipses
correspond to the subsets of possible Lindas consistent with the bank teller and feminist properties (other
subsets correspond to other properties). The conjunction is the intersection between these two subsets. The
“real” Linda is shown in red, representing all possible information about Linda.

CPT inference is considered to be rational (de Finetti et al. 1993). Additionally, employing
CPT forces decisions to be consistent with the basic CPT axioms. These and other powerful
arguments have been made for adopting CPT in inference (Griffiths et al. 2010). So why are there
apparent discrepancies between CPT prescription and human behavior? The key problem is that
full CPT inference can be intractably complex for many real problems; even limited situations can
require effortful computation. Limiting CPT to make processes manageable by realistic agents is
the fundamental problem of bounded rationality (Simon 1955)—and of course there is no single
answer. Moreover, there is abundant evidence that human inference is characterized by a mix of
more analytic and more intuitive inference, where the former can sometimes be associated with
more accurate approximations of CPT processes (Elqayam & Evans 2013, Fernbach & Sloman
2009, Kahneman 2001, Sloman 1996).

Despite the many successes of CPT, researchers have accumulated a large body of empirical
findings that are hard (though not impossible) to reconcile with CPT cognitive models. These
findings challenge the cognitive ubiquity of some of the most basic CPT intuitions. Consider the
conjunction fallacy (Tversky & Kahneman 1983) (see Figure 1). In one example, participants were
told of a hypothetical person, Linda, who was described as looking like a feminist but not a bank
teller. Participants were asked to rank-order the likelihood of several statements about Linda. The
critical statements were that Linda is a feminist, Linda is a bank teller, and Linda is a feminist and
a bank teller. The results indicated that

P(feminist) > P(feminist & bank teller) > P(bank teller),

where P(X) indicates the probability of event X. The conjunction fallacy refers to the finding that
the conjunction is judged more probable than the bank teller possibility alone.

Why is this result problematic for CPT? The formal foundations of CPT are essentially set
theory. To compute CPT probabilities, we calculate fractions for the outcomes of interest relative
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to all possible outcomes. This is best explained with the conjunction fallacy variant presented by
Tentori et al. (2004), which concerned Scandinavian individuals and the probabilities that they
might have blue eyes and blond hair. The key finding was

P(blond hair & blue eyes) > P(blond hair).

P(blond hair) would be computed as the fraction of blond Scandinavians relative to all Scandina-
vians. We can imagine enumerating Scandinavian individuals, selecting out the ones with blond
hair, and then from this subset selecting out the ones with blue eyes (and blond hair). It seems
clearly incorrect that there will be more Scandinavian individuals in the conjunctive set than in
the set corresponding to the individual premise, yet this is what people do—and we, erudite read-
ers, may also find it hard to avoid the intuition that the conjunction seems more probable than the
individual statements (Gilboa 2000). Tentori et al.’s (2004) formulation makes the set-theoretic
structure of the problem obvious, but the CPT situation is identical whether we employ frequen-
tist probabilities (as in Tentori et al. 2004) or probabilities as subjective degrees of belief (Tversky
& Kahneman 1983). The conjunction fallacy is an extensively replicated finding and has resisted all
kinds of disambiguation manipulations to ensure that participants correctly understand the con-
junction and individual statements as intended (as opposed to, for example, understanding ‘bank
teller’ as ‘bank teller & not feminist’; Dulany & Hilton 1991, Moro 2009).

There is also a disjunction fallacy—the probability that Linda is a bank teller or a feminist is
judged to be less likely than the probability that she is a feminist alone (Bar-Hillel & Neter 1993,
Carlson & Yates 1989)—and other, related fallacies including unpacking effects (Rottenstreich &
Tversky 1997, Sloman et al. 2004), as well as more complex conjunctions (Gronchi & Strambini
2017, Winman et al. 2010). Conjunction and disjunction types of fallacies also occur in conceptual
combinations called overextensions and underextensions, respectively (Aerts et al. 2016; Hampton
1988a,b), and in memory processes (Brainerd & Reyna 2008; Brainerd et al. 1999, 2015).

Next, consider a Prisoner’s Dilemma game in which two players make a choice to defect or
cooperate and receive payoffs depending on their combined choices. Shafir & Tversky (1992) de-
signed a study using this game to test a rational axiom of decision-making called the sure-thing
principle (Savage 1954). According to this principle, if under each possible state of the world one
always prefers action A over B, then one should prefer action A over B even when the state of the
world is unknown. Shafir & Tversky (1992) tested this principle by examining three conditions:
one in which a player was informed that their opponent had already defected, another in which
the player was informed that the opponent cooperated, and a third in which the opponent’s play
remained unknown. Many players chose to defect when the opponent defected and when the op-
ponent cooperated, but then switched and decided to cooperate in the unknown case, violating the
sure-thing principle. This result, called the disjunction effect, shows a violation of the law of total
probability (Figure 2). As for conjunction fallacies, violations of the law of total probability chal-
lenge CPT intuition at a basic level. The number of times a participant cooperates splits cleanly
into the number of times the participant cooperates and the opponent cooperates or defects:

P(Cparticipant) = P(Cparticipaut & C()pponent) + P(Cparticipant & Dopponcnt)
= P(Cparﬁcipantlcopponem) . P(Copponem) + P(Cpardcipam|Dopponem) . P(Dopponent)~
This expression involving conditional probabilities corresponds to what is measured and shows
that P(Cparicipant) is bounded between P(Caricipant| Copponent) and P(Cparticipant Dopponent)-

Contrary to this prediction, the probability to cooperate in the unknown condition was 37%,
which is higher than the probabilities to cooperate both when the opponent was known to defect
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Figure 2

On the left versus right, the player decides to defect or cooperate without versus with knowledge of the
opponent’s action, respectively. The law of total probability means that the number of times the player

cooperates is cleanly split into the number of times the player cooperates and the opponent cooperates

versus defects (there is the same number of blue/red dots in both panels). C, and D, refer to the player
cooperating or defecting, and C, and D,, refer to the opponent cooperating or defecting.

(3%) and when the opponent was known to cooperate (16%) (Shafir & Tversky 1992; see also
Busemeyer et al. 2006, Croson 1999, Kvam et al. 2014, Tesaf 2020). Similar results were obtained
in other tasks, notably a two-stage gambling task (Broekaert et al. 2020, Tversky & Shafir 1992)
and a categorization—decision paradigm (Townsend et al. 2000, Wang & Busemeyer 2016).

Another example of a puzzling result lacking a natural classical explanation concerns order
effects in judgment. A popular example is the following. Using a Gallup opinion poll, Moore
(2002) examined the probability of “yes” responses to the pair of questions “Is Clinton honest?”
and “Is Gore honest?” presented in both possible orders. When the Clinton question was first,
Moore (2002) observed P(Clintony) = 0.50 and P(Goreys) = 0.68. When the order was re-
versed, P(Gorey.) = 0.60 and P(Clintony,) = 0.57. This is a surprising difference, both because
the putative cause, the change in ordering, appears innocuous and because of the practical im-
portance of the result: For many public debates, Gallup polls can have a substantial influence on
opinion, especially for undecided individuals. Similar order effects have been reported in assessing
evidence, for example, concerning the probability of a disease given two pieces of evidence pre-
sented in different orders, with participants who were medical professionals (Bergus et al. 1998)
and in mock jury decision situations (McKenzie et al. 2002, Trueblood & Busemeyer 2011). Order
effects also occur with similarity judgments. For example, Tversky (1977) found that judging the
similarity of Korea to China produced higher ratings than judging these two countries the other
way around. Explanations for question order effects invariably invoke ideas related to the con-
structive nature of judgment; for example, answers to earlier questions activate thoughts which
affect our perspective on later ones (Hogarth & Einhorn 1992, Schwarz 2007). These order ef-
fects can naturally be explained by the noncommutative nature of QPT. However, they are more
challenging for CPT; because conjunction in CPT is commutative, which means that order does
not matter: P(A & B) = P(B & A). Commutativity sometimes makes intuitive sense, but again we
are confronted with empirical situations which diverge from this CPT intuition.
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People are sensitive to measurements, such as asking an opinion, and taking a measurement
can change their future behavior. This is difficult for CPT theories, because when one is asked a
question (e.g., “Is Linda a feminist?”), one’s answer is based on existing (albeit not accessed) knowl-
edge and the answer does not create any new information. No Bayesian updating is required, so
the answer should not affect responses to future questions. Surprisingly, human cognition some-
times does not work like this. Asking for an opinion or making a judgment can apparently change
the relevant mental state, as evidenced by effects on subsequent behavior (Ariely & Norton 2008,
Brehm 1956, Lichtenstein & Slovic 2006, Schwarz 2007, Sharot et al. 2010). For example, in a hy-
pothetical legal case, Holyoak & Simon (1999) showed that the evaluation of arguments changed
to become more consistent with the produced verdict. Such effects can be called constructive in-
fluences, because the act of, for instance, making a decision helps construct a particular mental
state. These constructive influences naturally agree with QPT because it was originally formu-
lated by physicists to account for the fact that measurement can change and disturb the state of a
system (a cognitive system in our case).

The tension between such so-called fallacies and (especially) CPT is not insurmountable, so
these findings do not disprove the applicability of CPT. Below, we review some principled attempts
to reconcile fallacies, such as the conjunction fallacy, with CPT (Costello & Watts 2014, Tentori
etal. 2013, Zhu et al. 2020). However, for many researchers, fallacies do reveal a persistent tension
between fundamental CPT principles and human intuition. Below, we also consider psychological
accounts of the fallacies outside CPT, spanning ideas across areas as diverse as cognitive and social
psychology. These ideas are often expressed in the form of simple heuristics, which are principles
intended to explain specific aspects of cognition (Gigerenzer & Goldstein 1996, Hertwig et al.
2013, Tversky & Kahneman 1983).

There is little doubt that at least some of cognition relies on probabilistic reasoning captured
by CPT reasoning, while other parts of cognition rely on a toolbox of simple heuristics. However,
these two opposing views cannot easily be integrated in a formal way. A key idea motivating the
use of quantum theory in cognition is that it lies between CPT models (which are constrained
by strict axiomatic rules) and simple heuristics (which are free from any axiomatic constraints)
by employing axioms that are less constraining than CPT but more formal and systematic than
simple heuristics.

The consideration of QPT in behavioral modeling is appealing for three reasons. First, it pro-
vides a coherent explanation for the wide range of puzzling findings summarized above, using a
common set of principles. For example, the same QPT principles that account for probability
judgment fallacies, such as the conjunction fallacy, can also account for the disjunction effect in
decision-making. Such common explanations reveal links between findings that had not previ-
ously been considered together. Second, QPT enriches psychological theory with several novel
concepts, such as incompatibility, superposition, collapse, and entanglement, which are the foun-
dation for new hypotheses and have led to the discovery of new phenomena. Finally, in a certain
formal way, QPT represents the next step away from CPT (Sorkin 1994), if computations are re-
quired to have a more local focus. As discussed in the next section, in QPT there are compatible
and incompatible questions. For compatible questions, everything is classical; for incompatible
ones, apparent classical errors and inconsistencies arise. QPT can be considered a more local ver-
sion of CPT, where, instead of having a large space of classical questions, classical inference exists
only within smaller subsets of questions (which are compatible with one another); across subsets,
questions are incompatible (cf. Fernbach & Sloman 2009, Lewandowsky et al. 2002, Pothos et al.
2021, Trueblood et al. 2017).
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BASIC DESCRIPTION OF QUANTUM PROBABILITY THEORY

The predominance of CPT intuition has been so complete that it is hard to imagine alternatives.
To understand how QPT provides an alternative form of probabilistic intuition, we briefly con-
sider the picture of the world according to each probability theory, using Linda from the conjunc-
tion fallacy example. In each case, we have to represent our uncertain information about Linda,
formulate different questions about possible characteristics she might have, and then estimate the
probabilities of question outcomes (see also Busemeyer & Bruza 2011, Khrennikov 2014).

CPT begins with a sample space such as that shown in Figure 1, which contains all the various
possible realizations for Linda, represented by the female characters. A possible outcome of a
question, such as whether or not Linda is a feminist, is represented by a subset of the sample
space, such as the red bounded ellipse for yes to feminism. The outcome from a pair of questions,
such as whether Linda is a feminist and bank teller, is represented by the intersection of subsets,
as in the shaded region of overlap between the red and blue ellipses. The beliefs a person has
about these questions are represented by a probability function that assigns a probability to each
subset. For example, the probability that Linda is a feminist is the probability assigned to the red
ellipse. The probabilities assigned to the union of mutually exclusive events must add. The larger
the subset for a question outcome is, the more possible Lindas we can imagine consistent with this
question outcome, and the more likely this question outcome will be—that is, the probability of
a question outcome depends on the size of the corresponding subset. Crucially, we could resolve
all possible questions about Linda and identify the “real” Linda in the sample space.

Note that the subset for ‘bank teller’ is formed by the union of the subset for ‘bank teller &
feminist’ with the subset for ‘bank teller & not feminist.” Consequently, the probability of ‘bank
teller’ equals the sum of the probabilities assigned to these two events and thus must exceed the
probability of the single ‘bank teller & feminist’ event. This illustrates why the conjunction fallacy
is so puzzling according to CPT.

QPT begins with what is essentially a vector space, such as the two-dimensional space shown
in Figure 3. A vector can be thought of as a line with a specific direction and length (e.g., arrows
in Figure 3). Such a vector space contains all possible outcomes for questions about Linda. For
example, for the question “Is Linda a bank teller?” there are two question outcomes (yes or no),
represented by two unit-length vectors at a 90° angle to each other, basically forming the x and
y axes. Specifically, in Figure 3, the outcome that Linda is a bank teller is represented by the vertical
axis and that she is not a bank teller by the horizontal axis. The answers to a different question, like
the feminist question, can be represented by a different pair of orthogonal vectors rotated by some
angle. That is, the x and y axes for different questions are related to each other through simple
rotations. A vector representing a question outcome spans a one-dimensional subspace, called a ray.
Subspaces are very important in QPT; QPT is a way to assign probabilities to subspaces, and the
key difference between QPT and CPT is that the latter involves assigning probabilities to subsets.

The set of beliefs a person has about these questions is represented by a (unit length) state
vector (Figure 3). The probability of a question outcome is obtained by projecting (i.e., laying
down) the state vector onto the subspace representing the answer, and then computing the squared
length. To compute the conjunction of two question outcomes, we typically have to employ a se-
quential projection, which corresponds to resolving one question after the other. For example,
suppose we are interested in P(F & BT). Figure 3 shows that there is no single ray correspond-
ing to both feminism and being a bank teller. Therefore, we have to compute P(F & then BT),
which involves two steps. First, we project the state vector onto the F ray. Second, we project this
previous projection onto the BT ray. P(F & then BT) is the squared length of the last projection.
Alternatively, suppose we want to compute P(BT & then F). We first project the state vector to
the BT ray and then project the resulting projection to the F ray.
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Figure 3

A quantum probability theory representation of the Linda problem in two dimensions. Particular axes (one-dimensional subspaces, also
called rays) correspond to question outcomes. Probabilities are computed as the squared length of the projection of the state vector
onto the corresponding axis. In panel 4, the projection onto feminism is the blue bar on the F line, and the probability equals the
squared length of this bar. The red bar along the BT ray illustrates P(F & then BT). To compute P(F & then BT), first project the state
vector onto the F ray, then project this previous projection onto the BT ray (follow the two red perforated lines). In panel b, the red bar
along the F ray illustrates P(BT & then F). To compute P(BT & then F), first project the state vector onto the BT ray, then project the
resulting projection to the F ray (follow the red perforated lines). Abbreviations: BT, bank teller; F, feminist; tilde (~), not.

These simple computations illustrate two key properties of QPT. First,
P(F & then BT) # P(BT & then F);

that is, a sequence of projections can be noncommutative. Unlike in CPT, order matters, and such
noncommutativity leads to interference effects (discussed in detail in the section titled Quantum
Interference, below). Second, every time we resolve a question, the state vector has to change in a
specific way. This is the QPT property of vector collapse (also considered below).

As for CPT, we might wonder what happens if we try to resolve as much uncertainty about
Linda as possible, by considering all the possible questions about Linda. First, suppose we deter-
mine that Linda is a feminist. We would then have to place the state vector along the ‘feminist’
subspace, since in this way we have maximum overlap between state vector and subspace. If we
then decide that Linda is not a bank teller, we would align the state vector with the subspace for
‘not-bank-teller.” But a state vector aligned with the ‘not-bank-teller’ subspace has partial overlap
with both the ‘feminist’ and ‘nonfeminist’ subspaces. That is, resolving the bank teller question
made us uncertain about the feminist one!

In general, in QPT, it is often impossible to resolve all questions concurrently, and certainty
about one question introduces uncertainty about others; that is, there are uncertainty relations.
The impossibility of complete knowledge contrasts sharply with CPT intuition. Psychologically,
at a broad level, these ideas resonate with a view of cognition as strongly context and perspective
dependent (Fodor 1983). Answers to questions like whether Linda is a bank teller and a feminist
in Figure 3, for which there are uncertainty relations, are called incompatible and are unique
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to QPT. Two questions are incompatible if the presence of one question alters our perspective
for the other (that is, if the questions are contextual) or if the questions are such that answering
one question disturbs the relevant system for the other one. For example, we might want to ask
a teenager the pair of questions “How well is the revision of your paper going?” and “What will
you do this Friday night?” We can imagine that the first question makes the teenager anxious,
so that he understands the second question differently than if we had asked the second question
individually. Other pairs of answers can be compatible, such as whether Linda is a feminist or not
and whether she has black hair or not (i.e., it seems unlikely that, for these questions, answering
one changes our perspective for the other). For compatible questions, the probabilities add up just
like in CPT. Therefore, when we contrast QPT with CPT below, we focus mostly on incompatible
questions.

In Figure 3, the sequential probability P(F & then BT) is greater than the direct probability
P(BT); that is, even with this simple representation, we have an example where P(F & then BT) >
P(BT). Such an approach, suitably generalized, could therefore be a cognitive model for the con-
junction fallacy (Busemeyer et al. 2011). An interesting question is: Why would someone ever
think to use this approach to model the conjunction fallacy? There are three parts to the answer.
First, CPT does not appear to offer a natural approach to understanding the conjunction fallacy
(but note that there are more elaborate CPT models, which we consider below). Second, heuristic
explanations developed for the original conjunction fallacy, based on, for instance, the similarity
between Linda and her various possible characteristics (Tversky & Kahneman 1983), are intuitive,
but vague and with limited predictive value. Third, since the conjunction fallacy problem is about
probabilistic judgment, we might be biased to develop a model for the conjunction fallacy based
on some kind of probability theory. What is a probability theory, not constrained in the same way
as CPT, which is consistent with the intuitions expressed in the heuristic, similarity-based models
for the conjunction fallacy? The most immediate answer is QPT.

One of the important points of this review is that QPT provides a notion of probabilistic
correctness that is an alternative to CPT. Classically, the conjunction fallacy appears blatantly
incorrect, in the same way that 1 4+ 1 = 3 appears incorrect (Figure 1). Yet if we accept the QPT
axioms, a conjunction fallacy can seem reasonable. Moreover, QPT inference can be said to be
rational on exactly the same basis as CPT. A hallmark of rationality in probabilistic inference is
the Dutch book theorem. Suppose you have to assign probabilities to a combination of bets. The
Dutch book theorem states that, if probabilities obey a small set of requirements, then you are
guaranteed to be protected from a certain loss (otherwise, there may be combinations of bets
such that, whatever happens, you will suffer a net loss). CPT is consistent with the Dutch book
theorem requirements (Oaksford & Chater 2007), but, interestingly, so is QPT (Pothos et al.
2017). How can a decision like the conjunction fallacy be both correct and incorrect, both rational
and irrational? This boils down to whether the corresponding questions can be assumed to be
compatible or incompatible. If the latter, then QPT is the appropriate theory of inference; if the
former, then CPT is (in which case QPT agrees with CPT). So, QPT will be the correct and
rational way to approach certain questions.

In the case of an imaginary Linda, a person’s understanding of what is meant by ‘bank teller’
in the context of questions about feminism might be different from the understanding emerging
without that context, in which case the conjunction fallacy is not unreasonable. However, some-
times naive observers represent questions as incompatible, when it seems clear that they are not.
In the case of a Scandinavian person, we can easily check whether or not a person has blue eyes
and blond hair, so these questions should be treated as compatible. We may conclude that the con-
junction fallacy in this case is a mental error of representing as incompatible questions which are
not so. Why might this occur? There is evidence that lack of familiarity or reduced effort increases
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the likelihood of incompatible representations (Nilsson et al. 2013, Trueblood et al. 2017). So, we
can provisionally assume that QP T representations are less demanding than CPT ones and offer a
more default option under reflexive versus reflective modes of reasoning (Kahneman 2001). These
issues are not without practical importance. For example, in medical or legal decision-making, the
rational status of an inference can be paramount (Wojciechowski & Pothos 2018).

In the following sections, we consider in more detail key QPT features that distinguish QPT
from CPT and offer novel directions for behavioral research. In doing so, we describe some of the
main QPT cognitive models and how they account for the puzzling findings reviewed above.

QUANTUM INTERFERENCE

Quantum interference is a unique property which concerns a breakdown of the law of total prob-
ability. Suppose we give the decision maker some preliminary information and then compare two
conditions. In the first condition, we simply measure event B alone; in the second condition, we
first measure event A and then measure event B. What we expect from the CPT law of total
probability is the following:

P(B) = P(A & B) + P(~A & B). 1.

Now let us see how this works with QPT. After being given the preliminary information, the de-
cision maker is in a state represented by state vector . A positive outcome from the measurement
of B is represented by a projector P (a matrix). It projects the state vector onto the subspace rep-
resenting B by the matrix product P - ¢ (above, we have considered one-dimensional subspaces,
but a subspace can have any dimensionality). The probability of a positive outcome to question B
then equals the squared length || P; - ¥ ||> (where the double vertical bars indicate length). Consider
another projector, Py, which is used to project onto a positive outcome for question A, and define
I — Py as the orthogonal projector that projects onto the negative outcome for A. Then we can
rewrite the projector for B as the sum of two products: By = Py Py + P3(I — Py). The probability
of B can be broken down as follows:

IPs - WIP = |PePy- ¥ + B = P) - ¥ | = 1BPy- v + ||B—P)-v|* +4, 2.

where A is the sum of cross products produced by squaring the sum. The first term on the right
of Equation 2, ||PPy - ¥||?, is P(A & B), and the second term, ||Ps(I — Py) - ¥|1%, is P(~ A & B).
The last term, A, is called the interference term, which can be positive, negative, or zero. If the
measures are compatible, then A is zero and QPT satisfies the CPT law of total probability; but
if the measures are incompatible, then A can be negative or positive and the CPT law of total
probability is violated. To emphasize the importance of the order, we usually write P(A & then B)
for P(A & B), when A is measured first. Next, we show how this simple property of interference
accounts for a variety of the puzzling findings mentioned above.

Probability Judgments

CPT assumes that we can resolve any combination of questions concurrently, so that we can assign
a probability for any combination of question outcomes. In fact, this is required because of a
property called closure—this is why CPT calculations are intractable for bounded rational agents
(CPT theorists are aware of this problem and incorporate it in their modeling; e.g., Lake et al.
2015, Tenenbaum et al. 2011). By contrast, in QPT, uncertainty relations preclude the concurrent
resolution of incompatible questions. Pairs of questions have to be evaluated in a sequential way,
one question outcome at a time. For example, for the conjunction fallacy, we cannot evaluate
P(F & BT); instead, we have to commit to an order and evaluate, for instance, P(F & then BT).
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Busemeyer et al. (2011, 2015) and Franco (2009) (see also Aerts 2009, Gronchi &
Strambini 2017, Miyadera & Phillips 2012) showed how QPT can account for not only the con-
junction fallacy but also the disjunction fallacy, unpacking effects, and more complex conjunc-
tions. Figure 3 illustrates a toy version of their model; however, Busemeyer et al. (2011) used a
more general model, based on subspaces of arbitrary dimensionality. In Equation 2, we assume
that vector ¥ is determined by the Linda story; we use a projector Pgr to represent a positive
answer to the bank teller question and a projector Py to represent a positive answer to the femi-
nism question. We assume that the bank teller and feminist questions are incompatible so that the
interference term A # 0. A conjunction fallacy in the observed direction is produced by having
A < —||Br(I — B) - ¥|1%, a requirement which can be justified from the way different question
outcomes about Linda are expected to correlate. A similar argument can be used for the dis-
junction fallacy. This is a simple illustration of how, in QP it can be entirely correct to have a
(sequential) conjunction as more probable than an individual statement. Psychologically, partici-
pants may find it hard to imagine Linda as a bank teller from the initial perspective of the story.
But once they accept that Linda is a feminist, they might think that bank teller may not be such an
unlikely profession for feminists. QPT sequential processes are like successive abstractions; with
each question evaluated, some of the original information is lost, but new insights and perspectives
may be acquired.

The same principles, and interference effects, have been used to account for over- and under-
extensions of membership judgments that occur with conceptual combinations (e.g., Hampton
1988a, Osherson & Smith 1981). An overextension effect occurs when the membership of an item
is stronger for a conjunction of two concepts than for either concept individually. A classic example
is a goldfish, which is rated as a better example of the combined concept ‘pet fish’ than either con-
cept ‘pet’ or ‘fish’ individually. An underextension effect occurs when the strength of membership
of an item is weaker for a disjunction of two concepts in comparison to the individual concepts.
For example, an ashtray is considered a better example of ‘home furnishings’ in comparison to
‘home furnishings or furniture.” These and related findings were modeled with QPT models by
Aerts and colleagues (Aerts 2009, Aerts & Gabora 2005, Aerts et al. 2016). Such models have been
intended to cover overextension and underextension effects in conceptual combination (Hampton
1988a,b), as well as noncompositionality.

Question Order Effects

According to QPT, both the conjunction fallacy and question order effects arise from the same
principle: interference, which results from incompatibility. The co-occurrence of the two ef-
fects is an important a priori prediction from QPT models, which was confirmed by Yearsley &
Trueblood (2018) (see also Gavanski & Roskos-Ewoldsen 1991; Stolarz-Fantino et al. 2003, exper-
iment 2). Yearsley & Trueblood (2018) additionally showed that the extent of conjunction fallacies
was within the bounds predicted by QPT.

For order effects, QP'T models go a step further. QPT makes an a priori, quantitative predic-
tion regarding order effects, called the QQ equality (Wang etal. 2014). Consider a typical question
order experiment in which two binary-valued questions are asked back to back, but in different
orders. The basic model in this case is very simple: The probability for a pair of answers to ques-
tions A and then B is computed from the product of projectors PyPy12, and the probability for
the opposite order of questions is based on the reverse product Py Psy*. Despite its simplicity, this
model makes the following prediction for any dimensionality and any pair of projectors:

QQ= [P(AyeS & then Bm) + P(A110 & then Byes)]
— [P(Byes & then A,,) 4+ P(Byo & then Aye)] = 0. 3.

yes
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The QQ equality has been considered one of the most important a priori predictions from QPT.
Wang et al. (2014) examined question order effects across 70 national surveys in the USA, with
the number of participants varying between 651 and 3,006, and reported good consistency with
the QQ equality.

A related experimental direction concerns the ABA paradigm, whereby participants see one
question followed by a different one followed, finally, by the original one. With such a paradigm, a
QPT approach predicts thatif the A and B questions are incompatible, then the second instance of
A (measure A, then B, then A again) might produce responses different from the first instance be-
cause of interference, but not (or less so) if the questions are compatible (Khrennikov et al. 2014).
Examining corresponding predictions is complicated by response biases from simply remember-
ing the first question. Nevertheless, Busemeyer & Wang (2017) obtained results supporting the
QPT predictions.

Decision-Making

We now turn to the disjunction effect, as observed in, for instance, the Prisoner’s Dilemma (Shafir
& Tversky 1992; see also Busemeyer et al. 2006, Croson 1999, Kvam et al. 2014, Tesar 2020). Recall
that the main finding is that the probability to cooperate in the unknown condition is much higher
than in both known conditions, violating the CPT law of total probability (Equation 1). Pothos &
Busemeyer (2009) applied Equation 2 to account for the disjunction effect, using a projector Pop
to project the state vector onto the subspace for the player deciding to defect and using another
incompatible projector Pop for the opponent’s decision to defect. Pothos & Busemeyer (2009)
went a step further, using the payoffs from the game and a cognitive dissonance principle from
social psychology (Festinger 1957) to build the projectors Pop and Pop; they then quantitatively
predicted the sign and magnitude of the interference term A required to account for the disjunc-
tion effect. More recent research by Broekaert et al. (2020) used a model very similar to the one
used by Pothos & Busemeyer (2009) to account for the disjunction effect obtained with a two-stage
gambling task (T'versky & Shafir 1992). Other QPT accounts of the disjunction effect for the Pris-
oner’s Dilemma are presented by Asano et al. (2011), Denolf et al. (2017), and Martinez-Martinez
& Sénchez-Burillo (2016); other QPT accounts of the disjunction effect for the two-stage gam-
bling task include those by Khrennikov & Haven (2009) and Yukalov & Sornette (2011).

QPT interference was also the basis for Wang & Busemeyer’s (2016) model for the disjunction
effect (see also Busemeyer et al. 2009) in the categorization—decision paradigm (Townsend et al.
2000). Wang & Busemeyer (2016) built the corresponding projectors, employing payoffs in the
task and the same cognitive dissonance principles as above to predict the sign and magnitude of
the interference term A. An interesting alternative approach for the computation of interference
terms in this paradigm is that presented by Moreira & Wichert (2017), who used a quantum-like
network (Tucci 1995) to associate interference terms with image similarities.

Memory Recognition

In one paradigm, Brainerd, Reyna, and colleagues (Brainerd & Reyna 2008, Brainerd et al. 2015)
asked participants to encode a set of memory targets, for example, a word list. Participants were
presented with the targets, related distractors that were semantically related to the targets, and
unrelated distractors. The test probes included “Is it is a target?”, “Is it a related distractor?”, and
