
1

Use of graphics

Table of Contents
Create a reference ... 1
Create a sphere ... 2
Create a mouth ... 3
Create eyes .. 4
Create pupils .. 5
Create tongue ... 5
Create figure .. 6
Rotate around the figure ... 11

To demonstrate the powerful graphics that can be created with Matlab, I will create a simple figure; a funny character
with eyes, mouth and an tongue which resembles a small phagocyte, that is, a white blood cell whose task is to ingest
foreign elements that invade multicellular organisms (if you are curious about these cells, the impact in human health
and TONS of Matlab code, visit http://www.phagosight.org)

Create a reference
The first step in many problems is to have a reference, in this case, we will create a coordinate system in
X and Y with the function meshgrid like this

[xx,yy]=meshgrid(1:64,(1:64)');

This command creates two matrices, 'xx' and 'yy' which have different orientations and vary from 1 to 64
linearly. We can look at the elements of each matrix like this, first 'xx':

xx(1:8,1:8)

ans =

 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8

Now 'yy':

yy(1:8,1:8)

ans =

 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2
 3 3 3 3 3 3 3 3

http://www.phagosight.org

Use of graphics

2

 4 4 4 4 4 4 4 4
 5 5 5 5 5 5 5 5
 6 6 6 6 6 6 6 6
 7 7 7 7 7 7 7 7
 8 8 8 8 8 8 8 8

Another way to look at the data is to display it. We can use 'imagesc' to show the data, we can display each
matrix separately or we can concatenate it in a single matrix to see both matrices at once:

imagesc([xx yy])

Create a sphere
With the coordinate reference we can proceed to create the initial figures of our project. First we will create
a three-dimensional matrix that will serve as a container for our example:

data= zeros(64,64,64);

The first object that we will create will be a sphere for which we will define a radius:

radius1= 15;

There are several ways to handle the vertical (z) dimension. A simple one is to loop over this dimension for
every slice of a volume. To do this we will use a 'for' loop. Then, for every level we will use the value of
the level (k) as a parameter to define the data at that particular level. We then use the equation of a sphere
to define the values that will increase from the centroid. Later on, we will use thresholds to define surfaces:

Use of graphics

3

for k=1:64
 data_level = sqrt((k-33).^2+(xx-33).^2+(yy-33).^2);
 data2_level = sqrt((k-21).^2+(xx-49).^2+(yy-33).^2);
 data2_level = 13-data2_level+min(data2_level(:));
 data(:,:,k) = data_level-data2_level/4;
end

We can visualise the data so far by displaying one slice of the data:

imagesc(data(:,:,23))

Create a mouth
Since a plain sphere would be rather boring, we can create what will become a 'mouth' by modifying the
values. In this case, we can create a horizontal cylinder that will hollow the sphere:

mouth= zeros(64,64,64);
for k=1:64
 mouth_level = sqrt((k-25).^2.1+(xx-45).^2);
 mouth(:,:,k) = (mouth_level);
end

Again we can visualise one slice of the data of what will create the mouth:

imagesc(mouth(:,:,30))

Use of graphics

4

Create eyes
The eyes will be formed by two smaller spheres. Same procedure, equation of a sphere with different
centroids.

eyes1 = zeros(64,64,64);
eyes2 = zeros(64,64,64);
for k=1:64
 eyes_level1 = sqrt((k-40).^2+(xx-43).^2+(yy-33+8).^2);
 eyes_level2 = sqrt((k-40).^2+(xx-43).^2+(yy-33-8).^2);
 eyes1(:,:,k) = (eyes_level1);
 eyes2(:,:,k) = (eyes_level2);
end

Again we can visualise one slice of the data of what will create the eyes:

imagesc(eyes1(:,:,41))

Use of graphics

5

Create pupils
The pupils are again small spheres:

pupils1 = zeros(64,64,64);
pupils2 = zeros(64,64,64);
for k=1:64
 pupils_level1 = sqrt((k-40).^2+(xx-45).^2+(yy-33+8.3).^2);
 pupils_level2 = sqrt((k-40).^2+(xx-45).^2+(yy-33-8.3).^2);
 pupils1(:,:,k) = (pupils_level1);
 pupils2(:,:,k) = (pupils_level2);
end

Create tongue
Our figure would not be complete without a tongue! So that is created with the equation of an ellipse:

tongue= 50*ones(64,64,64);
for k=12:26
 tongue_level = sqrt((k-21).^2+(xx-40-(9-k/3)).^4+(yy-33).^2);
 tongue(:,:,k) = (tongue_level);
end

Use of graphics

6

Create figure
The data is complete now, however nothing has been displayed. To create our figure we will use two very
important commands that are used to create surfaces. The first one is 'isosurface' which finds surfaces
around data, and to do this, it finds regions of equal value. You can think of this as the contours that appear
in topographical maps which move along positions of constant altitude. The second command is 'patch' that
creates the patches that will form the surfaces. Read the help pages of this commands for more information.

Let's now create the figure, first we clear the figure that we last used and display the first surface, which
will correspond to the body. Notice how we combine the data of the first sphere and the mouth.

clf
p1=patch(isosurface(data+29.282*(mouth<6),13));

Let's arrange the way that the surface is displayed by changing the colours the lighting. Experiment by
adding these commands one by one or changing its values.

set(p1,'FaceColor','b','EdgeColor','none');
lighting phong
camlight
view(0,0)

Use of graphics

7

Now let's add all the other elements

p2=patch(isosurface(eyes1,4.2));
p3=patch(isosurface(eyes2,4.2));
set(p2,'FaceColor','w','EdgeColor','none');
set(p3,'FaceColor','w','EdgeColor','none');

Use of graphics

8

p4=patch(isosurface(pupils1,3));
p5=patch(isosurface(pupils2,3));
set(p4,'FaceColor','k','EdgeColor','none');
set(p5,'FaceColor','k','EdgeColor','none');

Use of graphics

9

p6=patch(isosurface(tongue,6));
set(p6,'FaceColor','r','EdgeColor','none');

Use of graphics

10

view(25,12)
camlight left

Use of graphics

11

Rotate around the figure
for k=25:10:500
 view(k,12)
 drawnow;
 pause(0.1)
end

Use of graphics

12

You can now experiment with position, cameras, lights, etc. Open the camera toolbar, under the menu
VIEW > CAMERA TOOLBAR. Play with the settings and then create your own graphics!

Published with MATLAB® R2013b

	Table of Contents
	Create a reference
	Create a sphere
	Create a mouth
	Create eyes
	Create pupils
	Create tongue
	Create figure
	Rotate around the figure

