
The	
 Matlab	
 Club;	
 City	
 Graduate	
 School	
 	
 Tutorial	
 3	

	
 Constantino	
 Carlos	
 Reyes-­‐Aldasoro	
 	

Tutorial 3: Sampling and Quantising

When we want to manipulate an image in a computer, it is necessary that this image be
digitised both in its spatial and intensity dimensions. Digitisation in the spatial coordinates
(x,y) is called image sampling and amplitude digitisation is called grey-level quantisation.

Sampling is the process of selecting regularly spaced points in time in which to record the
level of a signal. Quantisation is the process of turning a continuous or analogue signal into
one, which has discrete numerical values at each point in (for instance) time. Voice was
sampled for telephone at 8,000 samples/sec each sample quantised with 8 bits. In audio
applications, a voltage is typically quantised into a 16-bit number, that can represent 65536
different levels of voltage. The numbers are usually proportional to the input voltages, but
logarithmic relationships have also been used. It is important to note that quantisation is a
separate process from sampling; after quantisation the amplitude of the signal is still
represented continuously in time.

The previous sampling rates were selected because it allows us to reconstruct the original
signal with adequate precision. Nyquist's theorem says that if we sample a signal in which
the highest frequency we wish to reproduce correctly is f then we must sample the signal at
a minimum frequency of 2f. For this sampling rate, the frequency f is known as the Nyquist
frequency, fN.

A signal that is sampled below this minimum rate is undersampled, and the effect of doing
this is to generate spurious contributions of lower frequencies in the reconstructed signal.
This process is known as aliasing.

Analogue-to-digital conversion is the overall process of taking an analogue signal, such as
the fluctuating voltage from a microphone and turning it into a digital signal, consisting of a
stream of numbers.

 Let the original digital image I= f(x,y) have dimensions for rows and columns Nr x Nc. Let Lc
=1,2,...,Nc and Lr=1,2,...,Nr be the horizontal and vertical spatial domains, and G=1,2,...,Ng
the set of grey tones. The image I can be represented then as a function that assigns a grey
tone to each pair of co-ordinates:

�

Lr × Lc;I : Lr × Lc →G

In many cases the dimensions of the image are integer powers of two:

 Nr = 2nr, Nc = 2nc, Ng = 2ng

The number of bits required to store the image become:

 b = Nr x Nc x Ng

Since f(x,y) is already an approximation of the original image fa(x,y), the resolution required
for a "good" representation can vary according to the image itself and the quality desired
(which defines what "good" means for every application). To sample an image in Matlab,
you can use the index of the corresponding matrix to select a reduced number of entries of
the matrix. First convert image into a matrix of doubles:

>>image2=double(image2); %transform into doubles to manipulate

The	
 Matlab	
 Club;	
 City	
 Graduate	
 School	
 	
 Tutorial	
 3	

	
 Constantino	
 Carlos	
 Reyes-­‐Aldasoro	
 	

In the same way that the matrices were defined with the colon operator (lower limit :
increment : upper limit) the elements can be selected. Try:

>> imagesc (image2(1:1:end,1:1:end))
>> imagesc (image2(1:2:end,1:2:end))
>> imagesc (image2(1:3:end,1:3:end))
>> imagesc (image2(1:4:end,1:4:end))

3.1 The previous instructions should display the moon image with different resolutions.
Try this on other images.

In all cases the number of grey levels is not modified. To quantise any signal, the uencode
function can be used. The following example quantises a sine function. Figure 2 shows the
sine curve and its quantised version with (a) 2 bit = 4 levels and (b) 3 bits = 8 levels.

>> t=0:0.2:9.9;
>> x=sin(t);
>> y2=uencode(x,2);
>> y3=uencode(x,3);
>> [ax,h1,h2]=plotyy(t,x,t,y2);
>> [ax,h3,h4]=plotyy(t,x,t,y3);

 (a) (b)

Figure 2

3.2 Find out more of the functions uencode and plotyy. The plotyy returns the handles
of the two axes created in ax, and the handles of the graphics objects from each plot in h1
and h2. ax(1) is the left axes and ax(2) is the right axes.

3.3 Use help to study about handles and their properties, they are quite useful!

3.4 Use uencode to quantise any of the previous images, change the number of
quantising bits and display the quantised images. What can you observe?

