
	
 The	
 Matlab	
 Club;	
 City	
 Graduate	
 School	
 	
 	
 Tutorial	
 5	

	
 Constantino	
 Carlos	
 Reyes-­‐Aldasoro	
 	

Tutorial 5: Audio Signals

1. More on Sampling and Quantising
Sampling is the process of selecting regularly spaced points in time in which to record the
level of a signal. Quantisation is the process of turning a continuous or analogue signal into
one which has discrete numerical values at each point in (for instance) time. Voice was
sampled for telephone at 8,000 samples/sec each sample quantised with 8 bits. In audio
applications, a voltage is typically quantised into a 16-bit number, that can represent 65536
different levels of voltage. The numbers are usually proportional to the input voltages, but
logarithmic relationships have also been used. It is important to note that quantisation is a
separate process from sampling; after quantisation the amplitude of the signal is still
represented continuously in time.

The previous sampling rates were selected because it allows us to reconstruct the original
signal with adequate precision. Nyquist's theorem says that if we sample a signal in which
the highest frequency we wish to reproduce correctly is f then we must sample the signal at
a minimum frequency of 2f. For this sampling rate, the frequency f is known as the Nyquist
frequency, fN.

A signal which is sampled below this minimum rate is undersampled, and the effect of doing
this is to generate spurious contributions of lower frequencies in the reconstructed signal.
This process is known as aliasing.

Analogue-to-digital conversion is the overall process of taking an analogue signal, such as
the fluctuating voltage from a microphone and turning it into a digital signal, consisting of a
stream of numbers.

In the previous Laboratory Experiment you analysed sampling and quantising images.
Quantising and sampling follow the same rules for audio and images, both are considered as
signals. Now we will deal with 1-D signals.

2. Hands - on sampling and quantising.
First, we will visually see the implications of sampling and quantising. Down load the
programme aToD.m from the web page. Save it on your local directory and on the matlab
promt run:

>> aToD

A figure will appear with an Analogue to Digital conversion programme. An image of appears
in figure 1. Basically, you can select from 3 types of signals, sine wave, square wave and
triangular wave, you can modify the frequency of the signal, you can select the sampling
frequency and you can select the number of bits for quantising. With this parameters you
can convert the signal from analogue to digital and back.

• Try different signals, frequencies and number of bits. Can you see aliasing?
• How do the number of bits introduce noise?

	
 The	
 Matlab	
 Club;	
 City	
 Graduate	
 School	
 	
 	
 Tutorial	
 5	

	
 Constantino	
 Carlos	
 Reyes-­‐Aldasoro	
 	

Figure 1

3. Sampling and quantising audio signals

Matlab is useful and powerful while handling audio files. You can visualise and hear an
audio signal in the following way.

>> load handel

This loads a (tiny) bit of the Messiah by Handel, the well-known Hallelujah. (If you are
interested in this masterpiece here is some information:
http://en.wikipedia.org/wiki/Messiah_%28Handel%29). You will notice that two variables are
loaded, Fs = 8192 samples/s, the sampling rate and y a 73113 x 1 array. This looks
something like:

5.1 To play this, (provided that your computer has the proper output, some of the
computers in the MSc room do not have loud speakers, try in the undergraduate machines
or if you have your own computer with matlab do it at home), type:

>> sound(y*0.5)

5.2 The 0.5 value controls the volume, (try not to disturb other users!). You can
manipulate y as any other matrix, try for instance:

>> sound(y(end:-1:1)*0.5); % Will play the sound backwards
>> sound(y(1:2:end)*0.5); % Plays half of the samples
>> sound((y>0)*0.5); % Plays only positive part

5.3 Now let's quantise the signal. Use the uencode command for quantising. Besides you
will need to keep the values between -1 and 1:

>> y2=double(uencode(y,2))/1.5-1;

	
 The	
 Matlab	
 Club;	
 City	
 Graduate	
 School	
 	
 	
 Tutorial	
 5	

	
 Constantino	
 Carlos	
 Reyes-­‐Aldasoro	
 	

That will quantise to 2 bits, i.e. 4 levels, what quality can you expect? Try now quantising
with more bits of resolution, at which point does it sounds as the original? Would this be the
same if you would have a high fidelity equipment? Figure 3 shows the difference between
the original signal and the sampled signal.

Figure 2

Figure 3

5.4 There are several ways to reduce the number of samples, an easy one would be to
decimate (sub-sampling) the signal and then interpolate it (to keep it in the same pitch):

>> x2=interp(decimate(y,2),2); % Down sample by 2
>> x4=interp(decimate(y,4),4); % Down sample by 4

Play the signals and listen to them carefully, can you notice the degradation? Increase the
down sampling and listen. Figure 4 shows a fragment of the interpolated signal.

Figure 4

5.5 The previous instructions perform a linear interpolation, how could you interpolate using

nearest neighbours? Try it and listen the difference, which one sounds better.

