

Module INM433 – Visual Analytics

Practical 01

Display Interaction given by prof. Gennady Andrienko and

prof. Natalia Andrienko

Display interaction

- It is often impossible to create a picture that would be fully sufficient for a task
- Interactive operations help analysts to gain more information from a display than would be possible by only viewing
- Purposes of interactive operations:
 - Access exact data values
 - Link pieces of information from complementary displays
 - Decrease display clutter
 - Focus on data portions
 - Find particular pieces of information
 - Compare values

• ...

Map shifting

Map: further controls for zooming and shifting

Zooming and focusing: other displays

45.50

29.00

Horizontal and vertical focusers are included in many displays. They are operated by putting the mouse cursor on one of the triangles and dragging the mouse.

Focusing applied to data visualisation on a map

Access to exact data values

Display linking through highlighting

Display linking through selection

<u>To select</u>: click or drag the mouse. <u>To deselect</u>: click or drag the mouse again.

<u>To deselect all</u>: doubleclick on a mark-free location within the display.

Highlighting and selection on a map

- Is applied to the currently active layer (marked in the map legend by a red frame around the layer's name)
- Selection by mouse dragging works when the button ✓ above the map is in the sunken state: "

Highgate

• The next button

deselects all Deselect all objects selected objects of the currently active map layer.

Drag:

Select objects

Exploration of relationships between attributes using interactive selection

Classification and propagation of classes

Classification and propagation of classes Classify objects ↔ _ □ × Classification

1.80

32.40

14.20

66.10

87

4.10

30.50

0.60

19.80

×

57

Filtering by attribute values

Modification of colour scale

Visual comparison

Data transformation: before

Iris, Descartes, CommonGIS, V-Analytics 1995-2013: Data about London wards

Data transformation: after

Iris, Descartes, CommonGIS, V-Analytics 1995-2013: Data about London wards

Transformation example: z-score. Each attribute value is transformed to normalized difference from the attribute's mean.

... + a bit of focusing

Iris, Descartes, CommonGIS, V-Analytics 1995-2013: Data about London wards

Display interaction: a summary

- Main purposes (support of synoptic tasks):
 - Make data representations more expressive
 - Colour scale modification (particularly, diverging colour scale)
 - Outlier removal (by focusing)
 - Data transformations (comparison to mean and median, z-score, logarithmic transformation, ...)
 - Combine information from two or more complementary displays
 - Display linking by selection
 - Display linking by classification
 - Filtering (all displays represent the same selected data records)
- Other purposes (support of elementary tasks):
 - Access individual values
 - Find particular values
 - Compare attribute values corresponding to different references

Reading:

http://0-dx.doi.org.wam.city.ac.uk/10.1007/3-540-31190-4

Natalia and Gennady Andrienko

Exploratory Analysis of Spatial and Temporal Data A Systematic Approach

Springer-Verlag, 2005, ISBN 3-540-25994-5

Section 4.4 Display Manipulation

Questions?

Display interaction