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Content and objectives

* In addition to previously considered spatial events and spatial time
series, we consider a new type of spatio-temporal data: OD moves.

* You will learn which of the earlier studied visualisation and
analysis methods are applicable to OD moves and understand why
specific approaches are additionally required for this data type.

* You will see further applications of density-based clustering with
distance functions specific for OD moves and specific ways of spatio-
temporal aggregation of OD moves.

* You will understand the relationships between different types of
spatio-temporal data and the possibilities for transforming one type
into another.



Classes of objects (a reminder)

Venn diagram

Objects

Spatial objects
Spatial events

Trajectories

Moving events



Types of objects

based on their properties and attributes

 Generic objects

 Wine varieties, car models, plant specimens, ...

« Spatial objects
« Have locations in space = the attributes include the location

» Districts, buildings, streets, rivers, ...

« Temporal objects, a.k.a. events
 Have limited existence time = the attributes include the time of
existence
» Instant objects: have no duration; only the appearance time needs to be specified
* Tweet postings, bank transactions, ...

* Durable objects: have duration; the attributes need to include the time of
appearance + the time of disappearance or the duration

» Holidays, electoral campaigns, classes, breaks, TV shows, ...



Types of objects (continued)

spatio-temporal objects

 Spatial events

 Events that have location in space = the attributes include the spatial
location and the existence time (instance or interval)

* Lightnings, geolocated tweet postings, earthquakes, traffic jams, ...

« Moving objects

» Spatial objects whose locations change over time = the attributes include
spatial locations at different times, 1.e., time series of spatial locations,
called trajectories

* People, animals, vehicles, storms, oil spills, ...

 Trajectories can be treated as spatio-temporal objects
» Spatial location = spatial footprint
» Existence time = time from the beginning till the end of the movement

* Other properties — attributes: shape, travelled distance, mean speed



Classes of spatio-temporal data

« Spatial time series: time series referring to spatial objects or
locations

» 2 referrers: space (set of spatial objects) x time (set of time steps)

* One or more thematic attributes

» Spatial event data: contain attributes specifying spatial positions
and existence times of spatial events.

 Movement data: contain attributes specifying spatial positions of
moving objects at different times

* Origin-destination (OD) data: specify only the positions and times of trip
starts and ends; intermediate positions are not available.

* Trajectories: specify also the intermediate positions of the moving objects
at different times

» (Can be seen as time series of spatial positions



Origin-destination
movement data
(OD moves)

Introduction of a new data type



A running data example
Use of shared bikes in London

» Barclays Cycle Hire
* 569 docking stations to pick up and return bicycles

* The data are publicly available from Transport for London
(http://[www.tfl.gov.uk/info-for/open-data-users/our-feeds)

* Data describe the journeys made with the rented bikes:
* Journey ID
« Bike ID
« Start date & time
 End date & time
» Start docking station ID
* End docking station ID

» The geographic coordinates of the docking stations are known and can be joined
with the transaction data



Relation of OD moves to spatial events

« Spatial events are objects having positions in space and times of
occurrence or existence (= positions in time).
* Space and time (and space x time) can be treated as containers of events.

» Most types of synoptic tasks are concerned with the spatio-temporal distribution of
events or values of their thematic attributes.

« An OD move includes 2 instant spatial events: start and end.
* The spatio-temporal distributions of these events may be of interest in analysis.

* The general types of synoptic tasks defined for spatial events in general apply to
these events. The analysis methods suitable for spatial events can be used for the
trip start and end events.
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After applying spatial filtering and zooming in to the central part of the
territory, the differences between the spatio-temporal distribution of the
start (left) and end (right) events in this part become more vivid.

All visualisation and analysis methods applicable to point events can be

used for analysis of the trip start and end events.
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Relation of OD moves to spatial events

(continued)

« An OD move as a whole 1s a spatial event.
« It has existence time = the time of the trip.

» It has a position in space consisting of the start and end positions.

* Such discontinuous spatial positions also occur for other spatial objects, e.g., a
university.

* The spatial position of a move can be represented by a directed line segment
(vector), which 1s a spatial object.

 However, the visualisation and analysis methods designed for
spatial events may not be applicable to this kind of events.

 Most methods assume that the spatial positions of the events do not
change during the time of event existence.

* Moreover, most of them assume that the spatial positions of the events
can be represented as points in space.

 Hence, OD moves require special approaches.



Synoptic tasks for OD moves

addressing the spatio-temporal distribution

Describe the spatio-temporal distribution of the set of moves and
their thematic attributes.

 Thematic attributes: duration, spatial direction, displacement distance,
transportation mode, trip purpose, characteristics of the moving object, ...

Find occurrences of particular distribution patterns in space x time.

 E.g., spatio-temporal concentrations of move starts or move ends, spatio-
temporal concentrations of similar moves (with close starts and ends),
spatio-temporal co-occurrence of opposite moves, ...

Compare the spatio-temporal distributions of OD moves and their
thematic attributes in different time periods, different parts of the
space, ...

Relate the spatio-temporal distribution of OD moves and their
thematic characteristics to behaviours of other spatial, temporal,
and spatio-temporal phenomena.



®
Synoptic tasks for OD moves

addressing the distribution of the thematic attributes over the set of
moves

* Describe the distribution of values of the thematic attributes over
the set of moves (treated as generic objects)

* e.g., frequency distribution of the values and value combinations

* Find subsets of moves with particular combinations of thematic
characteristics

» Particularly, find where these subsets are in space and time.

 Compare the distributions of thematic characteristics for different
subsets of moves

» Particularly, moves that occurred in different time periods or in different
parts of the space.
* Relate the distributions
» of different thematic attributes

» of thematic attributes and the spatial and temporal positions
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OD moves as generic objects

Examples of analysing the attribute value distributions

Frequency distributions of the bike trip durations on
25/07/2012 (Wednesday; 41,380 trips) and 28/07/2012 (Saturday; 40,990 trips)
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OD moves as generic objects

Examples of analysing the attribute value distributions

Frequency distributions of the bike displacement distances on
25/07/2012 (Wednesday; 41,380 trips) and 28/07/2012 (Saturday; 40,990 trips)

Nhbars: |88 Step: 0.2 Range: 0.0000 - 138001 Height<= 3134 Mhbars: 73 Step: 0.2 Range: D.0000 - 145001  Height= 2917
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Round trips (possibly, for leisure) It makes sense to analyse them separately.

Frequency distributions of the round trip durations
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OD moves as temporal objects (events)

Analysis and comparison of temporal distributions
25/07/2012 (Wednesday; 41,380 trips) vs. 28/07/2012 (Saturday; 40,990 trips)
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Temporal distributions of the round trips

25/07/2012 (Wednesday; 1,641 trips, 4%) vs. 28/07/2012 (Saturday; 2,322 trips, 5.7%)
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Spatio-temporal distributions of the round
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OD moves as spatio-temporal objects are
hard to visualise
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OD moves with differing origins and destinations can be represented by
straight lines on a map or in a space-time cube connecting the positions of the
starts and ends. However, such a display is very often extremely cluttered
due to numerous line intersections.

Here: 39,737 bike trips from Wednesday are shown on a map with 99%
transparency.
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General approaches to dealing with large

data and display clutter

« Aggregation: divide attribute domains into bins; obtain counts of
objects and summaries of their thematic attributes for the bins;
analyse the distributions of the aggregates.

* In particular, aggregate spatio-temporal objects by areas and time steps.

 Partition-based clustering: divide objects into groups by
similarity or closeness; analyse and compare group summaries
(aggregates) and internal variations.

» In particular, cluster spatio-temporal objects by their positions in space
and time.

 PBC is efficient when a relatively small number of clusters is enough.

* Density-based clustering: find dense groups (concentrations) of
similar or close objects; analyse their relations to the remainder.

* In particular, find spatio-temporal concentrations of spatio-temporal
objects; analyse where and when they occurred.



PBC by
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DBC: what distance function to use?

 DBC requires setting a distance threshold = there should be a
meaningful notion of the distance between objects.

 The spatial distance between OD moves can be defined as the
mean of the spatial distances between the origins and between the
destinations:

* s_distance(m,,m,) = (s_distance(0,,0,) + s_distance(d,,d,)) / 2

» Analogously, the temporal distance may be defined as
* t_distance(m,,m,) = ({_distance(0,,0,) + t_distance(d,,d,)) / 2

 The spatio-temporal distance between OD moves can be defined
taking the same approach as for instant spatial events:
« Spatial distance threshold (radius) Rq + temporal distance threshold Ry

* s_t_distance = max(s_distance/Rg + t_distance/Ry)*Rg



Distance functions and analysis tasks

 DBC with different distance functions is used for answering
different questions.

» Spatial distance: What moves (in terms of the origin and
destination regions) were the most frequent throughout the whole
time?

» Further questions: What is the proportion of the frequent moves in the

whole set? How are the frequent moves distributed over time? What are
their thematic characteristics?

 Spatio-temporal distance: What similar trips occurred in close
times?
» A spatio-temporal cluster means collective movement of multiple objects
between some origin and destination regions.

* Further questions: How frequent are the occurrences of collective
movement? Based on their positions in space and time, how can they be
interpreted?
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DBC by the spatial distance (examples)
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Further observations:

 Waterloo 1s the most popular area of trip origins and destinations: 940 out of
1,618 clustered trips (68%) originate from or end in this area.

 Some spatial clusters are related to particular time periods, 1.e., either
morning or evening.
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DBC by spatial distance

Testing other parameter settings

Distance threshold R = 250 m;
minimal number of neighbours
N =10.

Result: 153 spatial clusters with
sizes from 10 to 72 include 2,707
trips (6.8%); the noise consists of
37,030 trips (93.2%).

Relaxing the notion of similarity
increased the proportion of
clustered trips.
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Clustered trips that were previously in the “noise”:
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Consistency between the clustering results
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The trip clusters outside of the Waterloo area:
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What similar trips occurred in close times?

Distance thresholds R
300 m and R, = 20
minutes; minimal number of
neighbours N = 5.

space

Result: 75 spatio-temporal
clusters with sizes from 5 to
129 include 916 trips
(2.3%).
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Analysis of OD moves using spatial clustering

Iterative clustering + visualisation+ interactive operations

* In this example, we applied the principles of visual analytics:

» Iterative application of computational methods (here clustering) with
different parameter settings.

* Visual investigation of the results, comparison between them.

* Division of data into subsets and comparison between the subsets.

* In the investigation, we used following interactive operations:
» Display linking by highlighting

Filtering by attribute values (e.g., displacement distance)

Propagation of cluster colours

Filtering by cluster selection

Spatial filtering by visited areas

* Temporal filtering

* As a result, we gained useful information from quite a large dataset
despite of initially extremely cluttered views.



What we have learned so far

High variety of trips; not many similar trips.

A large number of similar trips from Waterloo in the morning and to
Waterloo in the evening.

* These may be trips of commuters who travel to London by railway and
then get to the final destinations by bike.

Existence of opposite groups of trips.

» Some of these may be trips of people going to their work or study places
in the morning and back in the evening.

Existence of groups of similar trips occurring close in time.

* Most such groups occur in the morning or in the evening and go from or
to areas around railway stations.
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Comparison of ST behaviours in different
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Questions?

Analysis of OD movement data by means of
clustering



Analysis of OD movement
data by means of
aggregation

Involves data transformation to spatial time series



Spatio-temporal aggregation of spatio-
temporal objects (events)

* The space (territory) containing the events is divided into
compartments.

* The time span of the data is divided into intervals, usually of equal
length.

* For each pair (compartment x time interval), the relevant events are
summarized into event counts + summaries of thematic attributes
* Relevant OD moves for a pair (compartment x time interval):

moves that start in this compartment during this time interval +
moves that end in this compartment during this time interval

» The starts and ends are counted separately.

« Aggregation result: spatial time series A(S,T)
» S:the set of space compartments
* T: the set of time intervals

« A: aggregate attributes (counts + statistical summaries of thematic attributes)
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Space (territory) division possibilities

* Regular grid (rectangular or hexagonal) with a chosen cell size

» Meaningful pre-existing division (e.g., administrative units)

Irregular grid respecting the spatial distribution of the objects
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Voronoi tessellation (ax.a. Voronol diagram)

Used for building irregular grids

* The partitioning of a plane with N points into convex polygons
(cells), such that

» each polygon contains exactly one generating point

* every point in a given polygon is closer to its generating point than to any
other. ' ' ' '

 The generating points are also
called seeds.

* A Voronoi diagram is also known
as a Dirichlet tessellation.

* The cells are called Dirichlet
regions, Thiessen polytopes, or
Voronoi polygons.




How do we obtain a tessellation?

Step 1: we apply a special
algorithm for clustering of
points based on their spatial
proximity.

The main 1dea of the
algorithm: put the points
into circles with a given
maximal radius R.

We chose R = 400 m.

45




The centres of the circles
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How do we obtain a tessellation?
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The empty cells (not containing any stations) can be removed.
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The resulting irregular grid is built so that near stations tend to be included in
the same cell. This allows trips with close origins or destinations to be counted

together, e.g., trips from or to the area around Waterloo.
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Time division possibilities

* Treat the time as a directed line.

* Divide the range from the earliest to the latest time value in the data into
consecutive intervals.

 To aggregate: for each time value in the data, find the containing
interval.

* Treat the time as a cycle.

* Choose a relevant cycle for the data: daily, weekly, annual, domain-
specific, e.g., production cycle
* Divide the chosen cycle into intervals.

 To aggregate: for each time value in the data, determine its position in
the cycle and find the containing interval of this position.

* I.e., the absolute time value is transformed to relative w.r.t. the time cycle.
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Ml tripvstarts by times (Wed) I trip‘_starts by times (Sat)
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Example: for comparing the London bike trip data from Wednesday and
Saturday, we have transformed the time values to the positions in the daily
cycle and aggregated the data by 30-minutes intervals within the cycle.

The time graphs show the counts of the trip starts (upper row) and ends (lower
row) for the Wednesday 25/07/2012 (left) and Saturday 28/07/2012 (right).
Highlighted in black are the curves for the Waterloo area and in white for the
King’s cross area.
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Ml tripvstarts by times (Wed) - M trip_starts by times (Sat)
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Here, each time graph has its own vertical scale.
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Aggregation result: spatial time series

 Data with two referrers S x T — A, or A(s,t), wheres e S,t e T

* Sis the set of space compartments and T is the set of time intervals

* Can be viewed in two complementary ways (like projections):

* as a set of time series of attribute values Svases el
associated with the spatial compartments !
. . . . . .._éA._
* as a set of spatial situations associated with -
il

the time steps

,_LL
* A spatial situation is a distribution of attribute R A
values over the space in some time step

time=0 E ;_llill_ﬁ:l.'ll]: N trip starts hy. timés (W'ed) time=0 1 ;36:30: N trip starts hy timés q‘Wed) time=l.'l‘£ ¢ m_ 6:30; N trip starts hytimés q‘Wed)
ilburn Stratfc i lburn i lb urn

Kensal Kensal Kensal
Green . Maid Green . Maid " Green . Maid
Val Val Val



Analysis of spatial time series

» Analysis tasks address two aspects of the overall behaviour:

» Spatial distribution of the local temporal variations of the attribute
values in different compartments

 Temporal variation of the overall spatial distribution of the attribute
values in different time moments

» Supporting visual analytics techniques
include two-way partition-based clustering
* Grouping of places (compartments) by similarity of the local time series

» followed by visual exploration of the distribution of the group members over the
space

* Grouping of time steps by similarity of the spatial situations

» followed by visual exploration of the distribution of the group members over
time
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Example i clustering of the 30-minutes time intervals by the similarity of the
spatial distributions of the trip starts and ends. Upper row of the time
arranger: Wednesday, lower row: Saturday.
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Questions?

Analysis of aggregated OD movement data
referring to places (space compartments)



Trip aggregation by OD pairs

 The ST aggregation considered before loses information about the
connections between the trip origins and destinations.

* To preserve this information, we need to aggregate data differently:
by pairs of compartments and time intervals.

* From the set of the spatial compartments S, we create the set of all
possible pairs of compartments, 1.e., the Cartesian product S x S

» As previously, we divide the time (line or cycle) into a set of intervals T*

* To aggregate the trip data (OD moves):

* For each pair (s,, s;) and each time interval t, find and summarize all trips that
started in s, and ended in sy within the interval t*.

It would also be appropriate to create the set of all possible pairs of time
intervals (t;, t;), where t; < t;, and aggregate the data by the combinations
(o> Sa» ti; t;); however, the result would be too complex for the analysis. For
simplification, trips can be assigned to time intervals based on the times of

their ends or starts.



<@

Result of trip aggregation by OD pairs

Aggregated trip data have 3 referrers
:S3xSxT

« Attributes A(s,, sy, t): trip counts + statistical
summaries of the trip characteristics (e.g.,
durations)

» It is very hard to visualise and analyse data
with 3 referrers

» Approach: treat pairs (s,, s,) as a special type of i‘_;»a«.‘f. :
geographic objects, called spatial links, or flows =

Treat the aggregate attributes as usual spatial
time series referring to these spatial objects

* Visual representation of flows on a map: flow b L G R
symbols; widths and/or colours may represent rﬂ
values of thematic attributes.



Problems of flow visualisation
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Representing flows on a
map typically results in
extremely cluttered
1mages due to numerous
intersections of the flow
symbols.

The problem may be

_reduced by varying the

transparency of the flow
symbols depending on the
attribute values that are

~~ represented.
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Spatial link-referenced time series

 We transformed the complex data structure S x S x T — A into a
simpler data structure L x T' — A

« L is the set of spatial links defined as pairs (s, sy), s, € S, sq € S.

 Hence, we obtained “normal” space-referenced time series, in which
attribute values refer to spatial objects (specifically, the spatial
links) and time steps.

— We can apply the same visual analytics techniques as for usual
time series

* ... but we need to deal with the difficulties in the visual representation of
the spatial links in a map

® This 1s a visualisation problem that is not completely solved yet.



View (projection) 1

Set of time series associated with the links
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View (projection) 2
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Investigating the distribution of the

t 1 beh . th t f link
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i IE ' . = A LV
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with the links, we divide st 1770

1: 2658 objects (16.4%)
2: 2203 objects (13.6%)

the links according to the i _

I. . objects (5. )]
L

|

temporal profiles of their
use over the two days.

4:1044 objects (6.4%)
5: 886 ohjects (5.5%)
6: 1445 objects (5.9%)
£ B 7: 7091 objects (43.7%)

% . =¥ ]

PR - st e I Rl

The map shows only the links that were used at least 5 times during the two days.
The widths of the flow symbols are proportional to the total counts of the moves.
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2658 objects (16.4% 0 .
e iaee On Wednesday, the temporal behaviours of the move counts on the links

1
3 814 objects 5.6%) substantially differed. The links of clusters 1, 3, and 5 were predominantly
4

[

- 1044 objects (6.4%) . . . .
ssonects 5o US€d 1N the morning and the links of clusters 2, 4, and 7 in the afternoon.

5 14450njects 8.9%  These clusters may be related to the trips of the bike users to and from their
— places of work or study.
The links of cluster 4 were more intensively used in the evening. Since they
were also intensively used on Saturday, we can conjecture that they may be
related to leisure bike trips.
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Investigating the variation of the spatial
situations over time
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Partition-based clustering has been applied to the combinations of the move
count values for the links corresponding to the different time intervals of the
Wednesday. Only the links with the total move counts > 3 were used (4,897 of
16,241, or 30.2%). The clustering does not produce meaningful groups but just

1solates certain intervals. B



Interactive manual partitioning of the set
Of tlme StepS based on background knowledge or previous results
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Questions?

Aggregation of OD movement data by OD pairs
and analysis of flows



Types of spatio-temporal data

and transformations between them

Spatial events

integrate aggregate
disintegrate,
extract
OD moves —
aggregate

Spatial time
series
(place-based)

Spatial time
series

(link-based)

Local time
series

projections (views)

Spatial
situations



I trip starts by times (Wed)
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In a similar way, other time series features can be extracted . .
and treated as spatial events.
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There were 2 time periods of
peaks in the numbers of the
trip starts and ends: morning
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Where to read more:

http://dx.do1.org/10.1109/TVCG.2011.153

Gennady Andrienko, Natalia Andrienko,
Martin Mladenov, Michael Mock, Christian Politz

Identifying Place Histories from Activity Traces with an
Eye to Parameter Impact

IEEFE Transactions on Visualisation and Computer Graphics,
2012, v.18 (5), pp.675-688


http://dx.doi.org/10.1109/TVCG.2011.153
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Types of spatio-temporal data

and transformations between them

Spatial events

integrate aggregate extract
Local time
. Spatial time series
disintegrate, :
series -
Rgc (place-based)
OD moves > projections (views)
Rettecace Spatial time
— series .
(link-based) Spatial

situations



Purposes of data transformations

« Aggregation

* Supports abstraction, gaining an overall view of characteristics and
behaviour

* Reduces large data

» Simplifies complex data

« Extraction of events, etc.
» Selects a portion of data relevant to a task, enables focusing

» Allows dealing with complex data portion-wise

 Integration, disintegration, projection
» Adapts data to analysis tasks
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Analysis of spatial events and OD moves

Complementarity of DBC and spatio-temporal aggregation

» Task: analyse the spatio-temporal distribution of events/moves

* Space and time are treated as containers of the events/moves

« Spatio-temporal aggregation:
* Creates a data structure (spatial time series) that appropriately
represents the distribution:

» Space and time become referrers; attributes express containment of objects by
spatio-temporal bins

 However, it may conceal important features in the ST distribution

» particularly, spatio-temporal concentrations of events and spatio-temporal
coincidences of moves with close origins and/or destinations

* Possible reasons:
» Large bins: features become concealed by averaging
* Small bins: features become dispersed over multiple bins

—=ST aggregation need to be complemented by ST density-based
clustering, which reveals concentrations and coincidences.



Questions?

Types of spatio-temporal data and
transformations between them



