INM433: Session 01 Introduction to Visual Analytics and Visualisation

INM433 Visual Analytics

Visual Analytics

Human vs Computer

Human

- flexible and inventive, can deal with new situations and problems
- solve problems that are hard to formalise
- can cope with incomplete/ inconsistent information
- can recognise things that are hard to compute or formalise

Computer

- · large amounts of data
- · fast search
- fast data processing
- link to other databases/ services
- high quality graphics

Welcome to Visual Analytics!

- Taught by
 - Aidan Slingsby
 - Gennady and Natalia Andrienko
- Not much specialised Visual Analytics software
 - We'll use Andrienkos' V-Analytics
 - Tableau/Mondrian/R/Excel used in a "VA way"
- 100% coursework
 - Groupwork: literature review
 - Individual work: Analysis project

What is Visual Analytics?

- The science and practice of analytical reasoning by combining computational analysis with interactive visual interfaces.
 - Let computers do what computers are good at (summarising and searching large amounts of data)
 - Let humans do what humans are best at (interpreting, thinking, reasoning, applying expert knowledge)
- Analytical reasoning
 - Data→Information→Knowledge→Solution/decision

Why Visual Analytics?

- · Incorporate human reasoning
 - $-\operatorname{\mathsf{Too}}$ much data to simply explore ourselves
 - need a computer to reduce/filter/generalise/identify
 - ...but which parameters to use?
 - Want to be aware of potential problems in data
 - Don't know what we're looking for (yet)
 - Want to incorporate "expert knowledge"
 - Want to record and/or understand the process of reasoning

Examples from later in the module

- London Bike Hire scheme
 - Are there distinct bike hiring behaviours? What?Where? Can we manage the scheme better?
- Tweets
 - Can we detect events from tweets? Where? When?
 - Can be characterise neighbourhoods?
- Journeys
 - What are common journeys made

Example

- IBM's entry to Orange's **Data for Development** challenge
 - Participants were given 2.5 billion phone records (cell mast only) for the Ivory Coast
- Suggested bus routes based on mobile phone patterns of communication

http://www.bbc.co.uk/news/technology-22357748

Role of visualisation

Role of visualisation

- Today is about visualisation
- Present data in a way that facilitates comparison
 - Compare hundreds of numbers humans are good as seeing visual patterns
 - See distributions and uncertainties
 - Compare alternative outputs
- As an interactive interface to data:
 - Details on demand
 - Trigger/direct the computational analysis
 - Humans can act on their interpretations

(Interactive) example: Geodemographics: Purpose

- To explore a population classifier
 - What variables drive the classifier?
 - What's the spatial distribution of the variables?
 - How certain are we that the classifier is a good description?
- To look at the impact on users
 - Does it affect the way that the classifier is used?

http://openaccess.city.ac.uk/437/

A historical perspective

Statistical Graphics

- From the statistics domain
 - Scatter plots
 - histograms,
 - box plots
 - barcharts
 - Realisation that statistics may hide important things
- Exploratory data analysis (Turkey, 1977)
 - Interactive versions from 1970s onwards

Geographical Information Science (GIS)

- Geographical data storage, visualisation and analysis
 - Facility managements
 - Automated cartography
 - Layers and geographical linking
 - Data representation
 - Spatial analysis
 - (poor temporal handing)
- Recent web-based, mashup developments

Information Visualisation

- From computer graphics and human-computer interaction
- Emphasis in novelty in visual encoding and interaction
- Increasingly "spatial" and "temporal"

Visual Analytics

- Incorporation of computational analysis methods
 - particularly for large data
- Emphasis on reasoning and sensemaking in an application domain

The visualisation display

The visualisation display

- It's helpful to think of the visualisation display as a **2D space** that contains **marks**:
 - Points, lines, areas, surfaces, volumes
- See:
 - Munzner (2014): Visualization Analysis and Design. A K Peters Visualization Series, CRC Press

Visual variables not created equal

- Quantitative
 - Allowing **quantity** to be estimated
- Ordered
 - Allowing **order** to be determined
- Selective
 - Allowing particular things to be identified
- Associative
 - Allowing groups of things to be identified

Bertin, 1983

Use theory to inform design choices

- For example:
 - Position or (aligned) length is the strongest
 - implies quantity/order, so take care with categories
 - Hue and shape good for unordered categories (<8ish)
 - Lightness has a much lower resolution than position
 - can be good for ordered categories.Maps use position to show geography
 - but if geography isn't the main point, are you "wasting" this important visual variable?

Types of display

Mondrian

- Interactive visual exploration software
 - Written by Martin Theus
 - http://www.theusrus.de/Mondrian/
 - Very fast, simple and effective
 - Reads CSV/TSV files

Mondrian

- Simple individual charts... but coordinated!
 - Barchart (& weighted)
 - Histogram (& weighted)
 - Scatterplot
 - Mosiac plot
 - Parallel coordinates
 - Scatter plot matrix (SPLOM)
 - Мар

Mondrian: Data

- Standard single CSV or TSV file
 - Comma/tab-separated values
 - Rows = records; columns = attributes
 - Plus an additional .map file for choropleth maps
 - Polygons need to be specified in a particular format. Very fiddly. See example datasets and/or ask.

Mondrian: operation

- · List of attributes
 - Icon identifies type -click to change
- Select one or more (SHIFT/CTRL for multiple)
 - Can weight by something (e.g. population)
- Use the plot menu to plot simple charts
 - Coordinated: selecting items will select corresponding items
- Calculate: min/max; can also connect to R
- Selection types: see options menu

Tableau

Tableau

- Interactive data visualisation focused on business intelligence
- Perhaps less suited for exploratory visual analysis

Tableau: data

- Tabular data
 - Many types: CSV, database connection, Excel, etc
- Concept of
 - Dimensions: categorical variables for pivoting
 - Measures: quantitative (numerical) variables for mapping to colour/size/etc
- May need to reshape data
 - http://kb.tableau.com/articles/knowledgebase/ preparing-excel-files-analysis

Tableau: operation

- · Column and row shelves:
 - Broadly, x-position and y-position
- Marks: the shapes that represent data
 - Map to "visual channels": size/colour/label
- Tableau will aggregate data according to what's in the shelves and marks
 - Drag the attribute for disaggregation to marks "detail"

Wrap up

Conclusions

- Visual Analytics is:
 - analytical reasoning by combining computational analysis with interactive visual interfaces
- Visualisation has an important role:
 - Well-designed visualisation present data effectively and facilitating comparison
 - Well-design interactions act as an interface to data, particularly in multiple-linked views
- Mondrian and Tableau enable visualisations/ interactions that can facilitate Visual Analytics

Intended learning outcomes

- Know what Visual Analytics is
- Know the role of interactive visualisation in Visual Analytics
 - $-\,\mbox{\sc V}\xspace$ Visual variables and when to use
 - Types of visualisation display and when to use
 - Types of interaction
 - Coordinated linked views
- (Practical) how to use Mondrian and Tableau

Reading

- Exploratory Analysis of Spatial and Temporal Data A Systematic Approach.
 - Chapter 4.3 Visualization in a Nutshell
 - Download whole book! http://o-dx.doi.org.wam.city.ac.uk/ 10.1007/3-540-31190-4
- Munzner, T. Visualization Analysis & Design, CRC Press
 - Chapters 2 and 5.