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Abstract

The paper combines a comprehensive account of a probabilistic model of retrieval
with new systematic experiments on TREC Programme material. It presents the model
from its foundations through its logical development to cover more aspects of retrieval
data and a wider range of system functions. Each step in the argument is matched by
comparative retrieval tests, to provide a single coherent account of a major line of research.
The experiments demonstrate, for a large test collection, that the probabilistic model is
effective and robust, and that it responds appropriately, with major improvements in
performance, to key features of retrieval situations.

Part 1 covers the foundations and the model development for document collection and
relevance data, along with the test apparatus. Part 2 covers the further development and
elaboration of the model, with extensive testing, and briefly considers other environment
conditions and tasks, model training, concluding with comparisons with other approaches
and an overall assessment.

Data and results tables for both parts are given in Part 1. Key results are summarised
in Part 2.

Keywords: information retrieval; retrieval theory; probabilistic model; term weighting;
experiments

1 Introduction

The probabilistic approach to retrieval was first presented in Maron and Kuhns (1960). Since
then it has been elaborated in different ways, tested and applied, especially in work by Maron
and Cooper, by van Rijsbergen and his associates, by Croft and Turtle, by Fuhr, and by
Robertson and his colleagues at City University. As implemented in the City Okapi system it



has been subjected to heavy testing in the very large evaluation programme represented by
the (D)ARPA/NIST Text REtrieval Conferences (TRECs).

The literature on the probabilistic approach, even just that due to the authors mentioned,
is by now extensive and as it is often also densely technical, it is hard to see the wood for the
trees. There is however, by now, a well-understood core theory and well-established practical
experience in exploiting this theory. Thus the probabilistic model that has been developed
and applied at City has a firm grounding and demonstrated utility. This paper is intended
to give a unified and accessible account of this particular model. It will show how the model
treats retrieval concepts and responds to retrieval situations, and how the formal analysis on
which the claim for the value of this approach to retrieval is based is supported by empirical
evidence from substantial performance tests.

It should be noted that there are now several distinct versions of the probabilistic ap-
proach, in effect several different probabilistic models of information retrieval. This paper
is primarily concerned with what we will for convenience label the City model, initially pro-
posed in Robertson and Sparck Jones (1976), and subsequently developed to accommodate
test findings and to meet an increasing range of retrieval circumstances and environments.
Hereafter in this paper we will use “the probabilistic approach” to refer to the class of models
and “the probabilistic model” to refer specifically to the City model. The presentation of the
model has some historical reference, but we have organised the paper primarily to proceed
logically from a simple starting point to a more complex reality, as follows.

We begin in Section 2, Foundations, with the basic elements of the general probabilistic
model, providing just enough apparatus to motivate its subsequent specific interpretation.
The key notions here are probability of relevance of a document to a user need, and hence of
ranking documents on this basis. In Section 3, Test collections and measures, we present the
data and performance measures used for the experiments associated with the development of
the model in subsequent sections. We begin this development in Section 4, Data, by consid-
ering the specific types of information that are available to interpret the very abstract model
introduced in Section 2. These are, naturally, facts about the occurrences of retrieval entities
of various kinds: terms, documents, etc. Thus interpreting the model implies developing for-
mulae for such purposes as term weighting. Further, as the types of data define the most basic
environment variables for a retrieval system, instantiating the model operationally requires
a choice of system parameters to cover these variables and perhaps further specialise generic
formulae. The first part of Section 4 is in Part 1 of the paper, the rest and the remaining
sections in Part 2. The material in Part 2 is treated only summarily here, and is presented in
more detail in Sparck Jones, Robertson and Walker (1998), henceforth referred to as TR446
(1998). Thus Section 5, Elaborations, and Section 6, Environment, consider the richer model
interpretation needed to exploit more productive resource possibilities, as in query expansion,
or to respond to more challenging situations. But we focus on developments that have been
fully explored and tested, leaving further discussion to TR446 (1998). In Section 7, Tasks,
we briefly consider extensions of the model to other information management tasks, and in
Section 8, Training, note contexts and modes of adaptation for the model.

The general pattern we will follow in the main sections 2, 4 and 5 is to present and motivate
the essential aspects of the model interpretations; to consider instantiation issues and choices
when implementing the model; and to summarise pertinent tests and their results. These tests
are primarily experiments with a new collection drawn from the TREC materials, detailed
in Section 3, explicitly designed to allow systematic comparisons on important points with
a large test file. We also invoke some much older tests, and refer to other experiments done



by City under the TREC Programme. Since our aim is to provide a coherent and integrated
account of work done over a long period, we will focus on its major elements and refer to
other publications for amplifying details, concentrating on City work. However as not only
the general probabilistic model but many specific ideas are shared with others, in Section 9,
Comparisons, we examine the relations between the City work and other theoretical and
experimental research, considering chiefly that adopting an explicitly probabilistic approach
but also considering other cases where what systems actually do is much like what City does.
In our final Section 10, Assessment, we conclude by summing up on the results of the series
of experiments presented in the earlier sections, ending with a final note on Open Issues.

The set of experiments covered in the paper is large, and they are referred to at many
points throughout the paper. The tables giving the individual test runs, in the style described
in Section 3, and that showing significance test results for the main series of comparisons we
make, are therefore given in the Appendix. This Appendiz is attached to Part 1, but is also
relevant to Part 2. Selected results are repeated in Part 2, including a summary table of key
results.

2 Foundations

In this section and Section 4 below, in particular, we present material that will be familiar
to many (van Rijsbergen 1979). We are including it because, as mentioned earlier, our aim is
to give a comprehensive account of our model and this material is needed to motivate later
content. At the same time, to make the formal account accessible, we are eliminating fine
detail that can be found elsewhere.

For convenience, our notation for model components and formula constituents is listed in
Table 1, Notation.

2.1 Introduction

In summarising the foundations for the general probabilistic model we talk about presenting
documents to the user as the output of searches. But it must be emphasised that while
this may suggest the routine adhoc retrieval situation, the model is extremely general and
allows for very different kinds of file items as documents, for all sorts of user needs, and for
every variety of need statement, i.e. of information request. Equally, while a retrieval system
necessarily depends on description — of documents and needs, the general probabilistic model
is in principle compatible with many possible types of initial description and of contributing
descriptive unit or term. From the model point of view, the nature of initial descriptions is
part of the system environment, and the role of the model is to lead to the best derived final
descriptions that are taken, in searching, to index documents and requests.

For the formal presentation which follows, however, we follow widespread convention and
simply refer to initial document descriptions as documents D, and to initial request descrip-
tions as queries Q. We will also say documents are relevant to (the needs underlying) queries.
Furthermore, we will assume that descriptions are decomposable into smaller units or com-
ponents. These may be thought of as terms, but at this stage we will still leave the precise
character of terms open, so they may be simple or internally complex, as long as they are seen
as identifiable units. Further, each term may simply be present or absent in the description,
or may have some associated information such as frequency of occurrence in the document.



Table 1: Notation used in this paper

General
P(x) The probability of x
P(z|y) Probability of x given y
Basic variables
D Document or document description
t; A term
A; The ith attribute used to describe documents
(e.g. term t;)
a; The value of A; for D
Q Query or request description
L Liked (i.e. relevant to query or need)
L Not liked
E Elite (see section 4.5, Part 2)
Parameters
MS(D) Matching score of document, given by some
query-document scoring function
W(A; = a;) | Weight associated with the value a; of A;
i Probability of term ¢; occurring in a document,
given that it is liked
7 Similar probability for document not liked
w; Weight associated with the presence of a term ¢
Data
N Size (number of documents in) the collection
n; Number of documents in which term 4 occurs
R Number of relevant (liked) documents
7 Number of relevant documents in which term 4 occurs
TF; Frequency of term ¢; in D
QTF, Frequency of term ¢; in Q)
Specific weighting funtions Equation
uow Unweighted terms (Quorum)
CFW Collection frequency weight (IDF) 6
RW Relevance weight 8
cw Combined weight 12 (Part 2)
ciw Combined iterative weight 13 (Part 2)
QACW | Query-adjusted combined weight 14 (Part 2)
QACIW | Query-adjusted combined iterative weight | 15 (Part 2)
ow Offer weight 16 (Part 2)
Tuning parameters
ky Effect of term frequency 9 (Part 2)
b Effect of document length 10 (Part 2)
K Combination of k1, b and document length | 11 (Part 2)




These components can be thought of as properties or attributes of the documents, in the
sense of “attribute” used for structured databases. Thus the value of a term, as a document
attribute, may be taken from the domain {present, absent} or from the domain of non-negative
integers (representing the number of times the term occurs in the document). Other domains
for this class of attribute, or other attributes with their own domains, may also be significant
in the retrieval situation. This view of terms as attributes may be compared to the view of
terms as the dimensions of a vector space in the SMART model (Salton 1975, Salton and
McGill 1983), but does not imply distance or spatial relationship.

2.2 Probability of relevance

The probabilistic model seeks to ground retrieval in answering, for each document and each
query, the Basic Question:

e What is the probability that this document is relevant to this query?

Strictly, “this document” has to be interpreted as “document with this content representation
or description”, i.e. we are asking about the probability that a document with this description
is relevant to this query; for convenience we assume representations, and hence documents,
are unique. The Basic Question also implies some assumptions about the nature of relevance.
We do not propose to discuss these at any length here; however, they may be summarised
as follows. “Query” is shorthand for an instance of information need, its initial verbalised
presentation by the user as a request, and its expression as actually submitted for system
searching (to which the term “query” is often restricted). Relevance is, strictly speaking,
relevance to the need rather than to the query. Furthermore, relevance is assumed to be a
binary attribute (a document is either relevant to a query/need or it is not), and one that can
be attributed to a document without regard to any other documents in the system. These
last two assumptions are very clearly oversimplifications. Finally, the attribution of relevance
is normally a future event as far as the system is concerned: in other words, a strict version
of the Basic Question would ask about the probability that the document will be judged
relevant to the query/need. However, it is sufficient for our present purposes to make the
simplifications and to take the Basic Question at face-value.

For similar reasons, we can limit ourselves to one query at a time; a fuller discussion,
covering query sets and attributes, is given in Robertson, Maron and Cooper (1982). But for
each query, we have any number of documents to consider (potentially the whole collection).
We treat retrieval as a ranking process: we expect the retrieval system to rank the documents
in the collection, leaving the user to examine the ranked list from the top, as far as he or she
wants to go.

The idea of ranking the documents has a specific justification within the probabilistic
model of retrieval (as given below). But it is also a general response to a variety of observations
about the retrieval situation. For example, retrieval is inherently uncertain; some items look
more similar to the query or are more promising as candidates for presentation to a user than
others; some items may be more relevant than others; ranking gives the user control over
how much material they have to look at; a user may want a high precision search (only a few
very relevant items) or a high-recall search (anything that might be relevant) or something
in between, etc (Robertson and Belkin 1978). Full ordering is not necessarily implied: a
partial ordering (with tied ranks) is a form of ranking. It may be that there is not enough
information for full ordering, and also that there are forms of the retrieval task for which



ordering is inappropriate or insufficient but such cases should be seen as special cases or
simple extensions of the general one. Some further discussion may be found in TR446 (1998,
Section 7).

Under the probabilistic approach, ranking has a very specific justification and interpreta-
tion. The purpose of asking the Basic Question is to rank the documents in order of their prob-
ability of relevance. This follows from the Probability Ranking Principle (Robertson 1977):

P1 : If retrieved documents are ordered by decreasing probability of relevance on the data
available, then the system’s effectiveness is the best to be gotten for the data.

This Principle can be related to a plausible decision rule that a user might apply to decide
whether or not to examine a document. Van Rijsbergen (1979) develops the rule and then
relates the Principle to it. We prefer the alternative, taking the Principle as our founda-
tional starting point and drawing an account of document description and scoring for query-
document matches from it. This approach does not lead explicitly to the decision rule; but
it can easily be developed to do so, though we will not fill in the detail here. The key point
about the Principle, however, is that the probability of relevance is not an end in itself, but
a means to rank the documents for the user. Indeed we can use any suitable transforma-
tion of the probability of relevance, rather than the probability itself, provided only that the
transformation is order-preserving.

2.3 Information about documents

It is now necessary to examine what we might mean by “this document” in the Basic Question
about probability of relevance. Every document may be assumed to be individual and unique;
we can also take it that document descriptions are unique, though this naturally depends in
practice on the richness of the descriptions. Whole descriptions, as unique events, do not
provide much leverage for a probabilistic approach to a retrieval strategy, since it is difficult
to assign probabilities to unique events. But we can exploit the decomposition of descriptions
into their components or attributes. We will seek to treat individual attribute values as
predictors of relevance, and to synthesize a probability of relevance for each unique document
from its non-unique attribute values. Thus by “this document” we mean document described
in this particular way, that is by this particular combination of attribute values.

2.4 Formal model
If we have some document D and query @), we have two events:
1. L, that D is liked, i.e. is relevant to Q'

2. L, that D is not not liked, i.e. is not relevant to Q

D might be defined as the event “we consider a document with description D”, and L as the
event “the user judges document D to be relevant”. We would like to calculate the probability
P(L|D), i.e. the probability that a document is liked given that it has whatever description
it has. But in order to allow for the later expansion from D to the attributes of D, we apply
Bayes’ Theorem and express P(L|D) in terms of P(D|L):

'We use “liked” rather than “relevant” because an abbreviation R rather than L would be very inconvenient
later.



P(D|L)P(L)
P(D)

Moreover, since using this formula as it stands would require a further expansion of P(D)
beyond what we want, we simplify to avoid this by using the odds rather than the probability.
Further, for reasons which will become apparent below, we use log-odds rather than odds.
Log-odds can be derived from probability by an order-preserving transformation, and thus
satisfy the Probability Ranking Principle given above.

P(L|D) =

L PED) _ PDILP(L)
& P(L|D) & P(DIT)P(T)
. P(D|L) P(L)

We now introduce the idea of matching score, MS, as a function of descriptions, and
specifically MS(D) as the score for an individual document. In our presentation MS has a
role analogous to van Rijsbergen’s (1979) retrieval decision rule g. It will be convenient later
to give different formulae mnemonic labels with the general form MS-label, so we begin this
here with the most primitive case and define

P(DIL)
P(DIL)

MS-PRIM (D) = log

MS-PRIM is a function of the whole document description D; we plan to expand it later into
a function of the attributes of D. By equation 1,

P(LID) P(L)

PED) ~ P@)

MS-PRIM (D) = log

Since the last term is the same for all documents, a ranking of documents in MS-PRIM order
is a ranking in P(L|D) order. Thus given an estimate of MS-PRIM for each document, we
can use it to rank documents in the proper order. (We will however be making one further
order-preserving transformation before finalising on the basic document scoring formula.)

2.5 Independent attributes

The way the general model has normally been developed has been by making the very strong
Independence Assumption, 11, about the the attributes defining the system’s universe of doc-
uments:

I1 : Given relevance (likedness), the attributes are statistically independent.

That is, within each class of documents (defined by relevance, i.e. L or L), each attribute is
statistically independent of all the other attributes

This assumption is patently not justified in reality, especially in the fine grain (see e.g.
van Rijsbergen 1979). However it has three important merits. First, it makes the formal
development and expression of the model easier; second, it makes model instantiation and
system operation tractable; and third, it still permits indexing and searching strategies that



improve performance compared with the rudimentary baseline strategy, namely simple term
matching, that does not exploit the model. It has also been shown that the model can be
developed with a somewhat weaker set of assumptions (Cooper 1995). We discuss the model
without the Independence Assumption later.

Under the Assumption, we have a very simple derivation of document probability from
attribute probabilities, with

P(D|L) = HP i = a;|L)
P(D|L) = HP i = a;|L)

Here A; is the ith attribute, and a; is its value for the specific document. The product is
taken over a set of appropriate attributes: we discuss the way these are defined later. Now,
we can recast MS-PRIM as

= az|L)

MS-PRIM (D Z log D
= a;

This equation implies that (under the Independence Assumption) we could calculate a
score for each document, made up as a sum of parts, one relating to each attribute of the
description. This looks very convenient; however, we can make it more convenient still by
ensuring that “natural” zero values can be taken as zero. The formula as it stands requires an
explicit component to be included for every value of an attribute, for example for the absence
of a term as well as for its presence. It would be more straightforward to include values for
term presence only, regarding term absence as a natural zero. This can be achieved as follows.

For every attribute which has such a natural zero, we subtract the component relating to
this zero value of this attribute from the score of every document. (Since the same quantity
is being taken from every document’s score, the transformation is order-preserving.) So we
define a new matching score, which we will call MS-BASIC, where:

A; = 0|L)

MS-BASIC(D) = MS-PRIM (D log
(D) - Sle G o

Then

MS-BASIC(D) = Z(log

i

P(Ai=alL) P4 =0]L)
P(A4; =a; L) P(4; =0|L)
_ P(A; = a;|L)P(A; = 0|L)

= 2 log P(A; = ;| L) P(4; = 0| L)

Now if we define:

B P(A; = ai|L) P(Ai =0|L)
W(Ai=a;) = log P(A; = ai|f) —log P(A; = 0|f)
B P(A; = a;|L)P(A; = 0|L)
= P4 = wlD)P(4; = 0JL) ’

it follows from equation 2 that

MS-BASIC =Y W (A; = a;) (4)



The W function now provides a weight for each value of each attribute, and the matching
score for a document is simply the sum of the appropriate weights. W (A; = 0) is always zero,
so zero values of attributes can safely be ignored. Furthermore, attributes which we have no
reason to associate with relevance can also be safely ignored. For example, for a randomly
chosen term, with no known relation to the query, we can reasonably assume that all weights
are zero.

2.6 Term presence and absence

We can exemplify the above formal model (with the Independence Assumption) very simply,
using the case where attribute A; is simply the presence or absence of a term ;. We will
denote P(t; present|L) by p; and P(t; present|L) by p;; the corresponding absence probabilities
are calculated by subtracting the presence probabilities from one. Then the formula for W
(equation 3) gives a weight for term presence:

w; = lo
’ g@(l—pz‘)

The matching score for the document is in turn just the sum of the weights of the matching
(i.e. present) terms. This version of the weighting formula will be used extensively in what
follows. Where there is no danger of confusion, the suffix ¢ will be dropped.

3 Test collections and measures

3.1 Data sets

As we progress in the next and following sections through successive interpretations of the
general model we will, as mentioned earlier, illustrate the effects of their application on re-
trieval performance. One function of this paper is to draw together important performance
data scattered over many papers or buried in reports. But we have also exploited the accumu-
lation of materials in the major TREC evaluations of the last decade (TREC 1992-1999) to
form a new large test collection and carry out completely new experiments. The full set of re-
sults reported here thus further extends our tests beyond those reported for individual TREC
cycles in e.g. City University papers in TREC, which were themselves significant advances,
with respect to collection scale, on older ones applying the model.

Along with our main new TREC collection, described below, we reproduce some older
results using the Cranfield, UKCIS and NPL collections. This is partly to maintain continuity
with our own earlier research and to allow references to comparable work done by others, e.g.
to SMART work reported in Salton and Buckley (1988, 1990); and partly to show performance
comparisons across a range of environments. The historic Cranfield collection has short initial
manual index descriptions based on the whole document, while the NPL collection has short
automatic descriptions from abstracts. Both of these have straightforward requests in the
form of natural language sentences or phrases. The UKCIS collection, in contrast, has only
titles for documents, but has requests originally constructed as boolean profiles for routing,
with many terms. The TREC collection has automatic initial descriptions in natural text
form, mainly for the full documents but in some cases for abstracts. The TREC requests
were also designed for routing, with ‘title’ and careful ‘description’ and ‘narrative’ fields, the
description defining the topic and the narrative the conditions for relevance. The Cranfield



collection is very small; UKCIS and NPL are quite large by historical standards, but the
TREC collections, representing current data size norms, dwarfs them. Comparisons across
these collections are needed, in the usual way, to check for some environment variation. But
we also need them for a more important reason. The comparison between the three older
collections on the one hand and TREC on the other is critical, for our model, in showing
how performance is affected first by the shift to full text documents, and second by scaling
up to much larger files with hundreds rather than tens of thousands of items. At the same
time, our main experiments with the new TREC collection cover a much larger range of
comparisons bearing on our concerns here than the older collections do, where we reproduce
results originally published in e.g. Sparck Jones and Webster (1980).

Table 2: Test collection data
OLD COLLECTIONS : for further details see Sparck Jones and Webster (1980)

Cranfield ‘C1400I’°
1400 documents in aeronautics with manual word indexing
225 requests, simple sentences or phrases
exhaustive relevance assessments

UKCIS ‘U27000Pb’
27361 documents in chemistry represented by titles
75 requests, terms from elaborate SDI profiles
relevance assessments on original profile output

NPL ‘N11500A°
11429 documents in electronics represented by titles and abstracts
93 requests, simple sentences or phrases
relevance assessments from original study pooled outputs

NEW COLLECTION : for further details see Harman (1993-9)

TREC ‘T741000X’
741856 documents in news, computing, official publications and energy
represented by full text (over 2/3) or abstracts;
these documents are the combined TREC Discl and Disc2 sets
150 requests, words from structured profiles with sections
title, description, narrative
‘L’ long requests = titlet+description+narrative
‘M’ medium requests = title+description
‘V’ very short requests = titles only
these requests are TREC topics 51-200
relevance assessments from TREC evaluation pooled outputs

Collections divided into training and test halves by even/odd document
numbers. Test Half, H, is odd-numbered for old collections, even for new.

Collection statistics referring to terms are after stopping and stemming
using straightforward stop lists and Porter or Porter-style stemming.
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The details given in Table 2 summarise the salient facts about the collections. The older
collections are named as in the earlier literature, for the particular versions used: C14001
for Cranfield, U27000Pb for UKCIS, and N11500A for NPL. We have named the new TREC
collection T741000X. We may, however, simply refer to ‘the’ or ‘our’ Cranfield, UKCIS, NPL
or TREC collections where there is no ambiguity. Further information about the collection
characteristics and construction (e.g. the provision of relevance assessments) is given in the
references with the Table. It should be noted here, however, that the relevance data for
the UKCIS collection is limited and biased towards the profiles so the level of performance,
even though only titles are being searched, may appear higher than it should. There are
some small variations in the basic facts (e.g. precise number of documents) given for the
underlying material or specific versions of it in different publications, but these are simply
due to minor administrative differences, cleanups, etc and do not affect the test results. We
should also note that where we use the manually indexed version of Cranfield, SMART has
used automatically processed abstracts; but this is not important in the present context. For
all our tests we take stemming (following Porter 1980), along with straightforward stop word
removal, as defining basic single term indexing.

To form our main TREC collection we combined batches of requests from separate TREC
evaluations. Thus where successive TRECs each used 50 requests (‘topics’) we have formed
a new set of 150 requests (nos 51-200). This is the largest union set with reasonably similar
construction, form and quality characteristics for which there are also relevance assessments
for a large document set (these criteria exclude the later TREC requests). It has the further
advantage that, since the requests in their initial state are elaborate and extensive, with
several components, we have been able to compare performance for them in several forms,
namely Long (L), Medium (M), and Very short (V). The Long forms cover all of the title,
description and narrative fields, the Medium forms cover the title plus description field, and
the Very short forms just the title field. > The Long forms resemble the UKCIS profiles in
careful content; the Medium ones are nearer the natural requests used for NPL and UKCIS,
but are more carefully formulated. We used the Very short requests, intended primarily as
summary headings, as the nearest we could get, for our TREC collection, to the kind of
brief and not necessarily carefully formulated requests often found in practice. As Sparck
Jones (1999b, 1999c) illustrate, TREC test performance as a whole has declined with more
‘realistic’ requests in later cycles: we consider later the challenges presented by the very
minimal requests often submitted in operational situations. The document file for our TREC
collection combines the so-called Disk 1 and Disk 2 sets, as in the largest size file used
for any TREC cycle test of retrospective searching in the main Adhoc evaluation test (the
TREC-6 Very Large Collection track used about 7.4M documents but had limited relevance
assessments). This document set is made up of several distinct subfiles with different subject
and genre characteristics, and is therefore much more heterogeneous than those for the other
test collections.

Our TREC collection, ‘T'741000X’, is thus a larger test collection, from the request point
of view, than any used hitherto in mainstream TREC, itself the largest systematic retrieval
evaluation effort so far. It is also not merely very much larger than older experimental collec-
tions: it is a more substantial data set, in important respects, than that used in Lancaster’s
historic investigation (Lancaster 1969): Lancaster’s study was impressively large in terms of

ZWe use the term “Medium” rather than ”Short” since the latter has been used in TREC to refer to requests
consisting of descriptions only, found not to be properly autonomous.
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SUMMARY STATISTICS

no

docs

C1400I 1400

H 700
U27000P 27361

H 13681
N11500A 11429

H 5715
T741000X 741856

H 370928
Ranges

max terms/doc
av
min

max terms/req
av
min

max reldocs/req
av
min

Table 2 (contd): Test collection data

no av
terms terms/
doc
2683 29.9
n/a n/a
7491 20.0
1290709% 129.9
839463
C1400I U27000P
102 n/a
29.9
5
17 86
7.9 18.3
3 1
40 554
7.2 49.9
1 1

no av no av
reqgs terms/ reldocs
req req
225 7.9 1614 7.2
780 3.5
75 18.3 3739 49.9
1902 25.4
93 7.2 2083 22.4
1061 11.4
150 L 32.6 37819  2562.1
M 10.3
vV 4.0
18927 126.1
N11500A  T741000X
105 14083
20.0 129.9
1 1
L M v
14 85 24 11
7.2 32.6 10.3 4.0
2 8 2 1
84 1141
22.4 252.1
1 14

* The number of terms in T741000X is very high but there are many
miscellaneous nonwords. 143778 terms beginning with a letter occur
in at least 5 documents.
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document and request numbers (approx 300 x 800,000); but it did not involve either text
searching, only matching on short controlled term lists, or multi-strategy comparisons.

However it is also the case that much of the work to be described addresses term weighting
based on relevance feedback. Experiments on relevance feedback are a little tricky: it would
not in general be an appropriate experimental strategy to conduct a search, identify relevant
documents in the output, improve the query through relevance feedback, and then evaluate the
improved query on the same collection. (The experiments below described as ‘retrospective’
are indeed of this type, but they have limited validity except as yardsticks.)

There are various experimental approaches to this problem of evaluating relevance feed-
back, including ‘residual ranking’ and half-collection experiments. We have adopted the latter:
the collection is divided pseudo-randomly into two halves (e.g. even- and odd- numbered doc-
uments), relevance feedback is obtained from one half and the improved queries evaluated on
the other half. While this is not a very realistic procedure, it allows for easy interpretation
and for unbiased evaluation of the possible improvements to be obtained from relevance feed-
back. Residual ranking would be somewhat more realistic, but would in general provide less
rich information about performance.

Our adoption of the half-collection paradigm naturally implies that all runs are actually
on the smaller Half (H) document sets shown in Table 2 than on the full collections. Thus
for the T741000X collection we have 370928 rather than all 741856 documents for the 150
requests. But even this reduced collection is respectably large as an experimental one.

The collections described, and the TREC collection in particular, are those we refer to
under our main topics, and therefore illustrate one-off or ‘adhoc’ searches. There are, however,
topics we discuss for which this data cannot be used, for instance (obviously) retrieval for
languages other than English, or tasks like filtering, where both documents and relevance
assessments lack the necessary temporal properties. We may therefore refer under these
headings to experiments with Okapi as reported in City papers in TREC (1992-1999), as
providing ancillary but not strictly comparable performance data.

In considering the effects of strategies on performance, in the next sections, we concen-
trate on generalisations about relative strategy performance across the different collections
and, for TREC, request forms. We comment only on particular collection and collection prop-
erties where this is essential. In the later Assessment section, 10 (Part 2), we examine the
impact of collection characteristics, e.g. brief documents or very short requests, on strategy
performance. Further, since the number of possible strategy comparisons is very large, we
concentrate in the next sections on the most pertinent ones for the local context, extend-
ing the comparisons over a wider range and drawing broader conclusions in the Assessment
section.

3.2 Performance measures

The test runs given in this paper have been chosen primarily to illustrate the main points
about our model, in a clear and consistent way. Our aim is to offer an overview of what the
model delivers when it is applied and hence to indicate its demonstrated performance value.
We do not go through all the demonstration in detail. The results shown are therefore selective
in two ways. First, we have taken runs from the past just for the most straightforward and
simple values for environment variables, e.g. without separating highly from partially rele-
vant documents, and with well-attested, general-purpose instantiations for the model without
tailoring for specific collection conditions. In some cases, therefore, the runs drawn from older
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research are not necessarily those delivering the absolutely best performance. Second, for the
new work, the results are selective in the sense that we have done runs only to fill in the test
grid so cross-collection comparisons can be made within the same straightforward framework,
without seeking best parameter choices. The model instantiation for the TREC collection has
required some parameter setting. Trials showed that it was not possible to find good values
applicable across all request versions (thus reducing test variation); but the same values were
used for L and M, slightly different for V. So while there has been some collection tuning,
this has been of a modest kind essentially reflecting limited sampling.

Thus while the test runs given here are a selected few, the selection is the reverse of
pernicious. By giving the tests as a single series we can show whether our model is robust
and reliable, able to deliver respectable performance in very different environments and under
some realistic conditions as far as file and request properties are concerned. Our initial baseline
performance is that given by simple term coordination, which can be viewed as applying
the simplest plausible retrieval model. Then in developing the model we address internal
performance improvement and comparisons.

For the same reasons as motivate our choice of runs, we have confined ourselves here to
a limited set of performance measures. We follow convention, and maintain the connection
between older and newer results by referring to Precision at standard Recall levels. But we
do this only in restricted fashion. We believe that these widely used figures are both opaque
and misleading: the former because they obscure the actual numbers of documents, perhaps
thousands, needed to get beyond low recall; the latter because assuming the entire collection
is ranked may be inappropriate if negative matching scores imply the user should not be
given output, or if there is a large mass of undifferentiated documents at some natural 0
score. Thus we give only Precision at Recall = 30%, which we may abbreviate to ‘Rec30’.
For the TREC runs this is drawn from levels computed in the normal SMART/TREC style
(Harman 1997); for the older collections the computation followed then-SMART precedent,
so in the fine-grain the procedure used, e.g. in interpolation, may not be absolutely consistent
throughout (or indeed identical with that applied in other cited tests). We also give Average
Precision, ‘AveP’, as a widely invoked, though limited, global measure; this is computed in
the normal TREC manner for our main collection, but by crude approximation by averaging
over the recall levels for the older ones (or in some cases is guestimated using the range of
performance data actually available). 3

We prefer, however, to focus on what we believe are more meaningful performance indica-
tors, and have therefore used Precision at Document Cutoffs = 5,10,15,20,30,100, in the style
established for the TREC Programme evaluations. This measure shows retrieval performance
in a more directly comprehensible way than the recall levels one, and is also easily related
to the ‘pages-worth’ output of Web search engines. More particularly, we select Precision at
Document Cutoff 30, abbreviated as ‘Doc30’, as a key value for discussion purposes: this is
also used for the range of TREC performance comparisons across participating teams sum-
marised in Sparck Jones (1999b, 1999¢). We give Recall at rank 1000, and also Precision
at the query rank where the number of retrieved documents is the same as the number of
relevant to retrieve (RPrec), primarily as information about the collection. We use the doc-
ument cutoff measure for all of our main experiments and comparisons with the T741000X
collection, and we also give it, for a smaller set of values, for the NPL collection, though we
unfortunately cannot give it for all the older collections.

*Ranking was computationally expensive for large collections in the seventies.
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In relation to the older collections, the performance figures given here are drawn from a
very much larger set to be found in the various cited references. Our aim in using them has
been to focus on key comparisons, across collections, in as simple and straightforward a way
as possible and taking a broad view of what the results as a whole show about performance
for our model. From this point of view small historical discontinuities, or crudities like the
use of truncation rather than rounding in older figures, are not an issue: we believe that
the figures for our measures have enough common grounding to support the required robust
general conclusions. The much larger set of TREC-collection based results can, on the other
hand, be related to the many other TREC evaluation results based on the model reported
in the City papers in TREC (1992-1999), and through these to work done elsewhere, as
discussed in Section 9, Part 2.

We have applied obvious statistical significance tests to the TREC results, but with some
reservations about their real propriety and value; and they are in any case relatively weak.
Thus we have used the ¢ test, Wilcoxon, and sign test, at 2.5% and 1% levels. The latter
two non-parametric tests involve query-based pairwise comparisons: that is, for each pair of
runs being compared, the two results for each query are compared first, and the comparisons
are accumulated over queries. The ¢ test is also used in a query-based pairwise fashion, that
is on the distribution of per-query differences in parameter values. As it is not completely
clear that the strongest of these three, the ¢ test, is justified for the retrieval case, we have
concentrated on Wilcoxon, with supporting evidence from the sign test. Thus we consider the
Wilcoxon test results for all of our particular comparisons, referring to the weaker sign test
only when Wilcoxon does not show a statistically significant difference. We have applied the
tests to our Doc30 and Rec30 figures, and also to AveP, the latter primarily for compatibility
with others. As the default we accept differences that are significant at the 2.5% level, though
it should be noted that many of our differences are significant at the 1% level. Further, we are
primarily interested in whether performance differences we informally characterise as at least
noticeable are also statistically significant: we are not especially interested in the possibility
that differences we do not see as even noticeable are nevertheless statistically so.

The details of the comparisons to which we have applied significance tests are given in
Table 8 in the Appendix. For the Wilcoxon test results shown there the numerical values
2.33 and 1.96 correspond respectively to 1% and 2.5% significance levels on a one-tail test.
To avoid overloading the text, the simple statement ‘this difference is (or these differences
are) statistically significant’ should be read as meaning significant at the 2.5% level. We
elaborate only where this is particularly appropriate. Thus it should also be noted that in
these statements we cover all three request versions, and AveP as well as Doc30 and Rec30.

The significance tests apply only to the TREC results. For the older, smaller collections
the data for significance testing is no longer available: this implies that for these collections
even apparently large performance differences have to be treated with caution.

At the same time, since we are especially concerned in this paper with strategy compar-
isons that hold across a range of collection conditions, it is impossible to avoid informality in
summary comments. We will therefore make some use, to encourage consistency, of earlier
terminology for degrees of performance difference, namely whether this is Noticeable (A > B),
Material (A >> B), Striking (A >>> B), or Dramatic (A >>>> B), which we apply here to
precision differences at Rec30 or Doc30 of at least 2,4,6,8 .., full points. Thus if we say that
strategy A is Materially better than strategy B, this implies that there is at least 4 points Pre-
cision difference for all the collections in question. We also may refer, even more informally,
to “modest”, “good” etc performance, and in seeking to characterise performance across a
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range of situations for different collections or request forms may refer to “large” performance
differences as ones which are at least Noticeable and typically greater than this. However
we support these informal characterisations with notes of significance test values. Note that
in line with our emphasis on broad, solid performance differences, we simply truncate run
performance values to two figures.

Our starting point for retrieval performance is therefore the baseline unweighted UW
performance figures given in the Appendix, in Table 6 for the TREC data and Table 7 for
the old collections. These show, very clearly, how low absolute performance for such a naive
approach is in the TREC full text case, regardless of the differences across the request forms
and whether measured by Rec30 or Doc30: given the large number of relevant documents
typically to be found, 4 relevant documents on average by rank 30 is uninspired. The contrast,
for Rec30, with the older collections is rather marked: the performance levels are higher for
these, but can be attributed to the more favourable properties of the data, whether small
collection (Cranfield), concentrated searching on abstracts (NPL), or exceptionally elaborate
requests to compensate for searching titles (UKCIS). It is also noticeable (in TREC) that the
longer the query, the worse the performance.

4 Data

Interpreting the general probabilistic model outlined in the previous section means using the
specific kinds of distributional information that are available for terms and documents. It
is also necessary to be explicit about the status of the search query, which was not directly
mentioned in the last section. Thus we referred to some unspecified set of “appropriate”
vocabulary terms present in a document as the basis for estimating relevance to the user, and
hence deciding to retrieve, without explicitly considering their relation to the terms present
in the query, even though the query is taken to represent the user’s need. But while it is not
necessary to assume that a query is a wholly adequate representation of a user’s need, it is
both natural and reasonable to take the current query as given and to concentrate specifically
on the presence of query terms in documents. Query terms are the proper starting points
for estimating relevance, so we should begin by considering the evidence their presence (or
absence) supplies.

But before doing this it is worth noting that focussing on the query terms is not merely
rational in the obvious sense just indicated. It is a larger point drawing out implications
of the notion of ‘this document’ introduced in Section 2.3. Thus one implication is that
as in retrieval documents are what users make of them, document indexing should not be
presumptive of the user. This is familiar as the postcoordinate philosophy that underpins
modern retrieval systems, where document descriptions are initially open and are then closed
as and how they match each query. However in early automated systems, postcoordination
was still associated with initial document characterisation by assigned or selected keywords
or descriptors: thus a significant document indexing step occurred at file time. The general
movement since to the less presumptive and more open initial descriptions represented by
documents’ actual words has constituted a further shift towards search time indexing as a
logical and not just practical matter. In general, especially with large files, it is useful to
delay work on a document until it is needed (e.g. it is worth waiting to see whether a text
has something in common with a query before parsing it). But much more importantly as a
second implication, in search time indexing a document’s description is influenced by (even
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if it does not wholly depend on) the state of the file at that moment, i.e. index variables
have different values at different times. This is a key difference between conventional Boolean
and modern weighted searching. Search time indexing thus means more than just the use of
postcoordination, and when it refers explicitly to the state of the file is dealing with the idea
of evidence for document relevance which is central to the whole probabilistic model.

We can now consider what information about documents (directly or indirectly bearing
on queries) is available to interpret the general model. We will continue for the present to
assume unit terms as description elements, and as a concrete example take these to be single
word stems of the sort that have been established as generally useful and are widely used.
However the model still leaves open the methods by which these have been produced to form
initial descriptions: they could be manually assigned or automatically extracted, and could
be based on document surrogates (like abstracts) or on entire full texts.

4.1 Term incidence

Clearly the first and most obvious data are simply the facts about term presence, i.e. incidence
in documents. We thus have to determine the contribution that the presence of a term in
some specific document makes to that document’s probability of relevance from the term’s
overall incidence. That is, the term’s contribution will depend on the relation between the
number of documents in which it occurs and the number of documents in the file. Further,
the fact that the number of relevant documents for a query is normally low by comparison
with file size suggests that the presence of a less common query term in a document may be
a better predictor of relevance than that of a more common one. In these circumstances, a
plausible weighting function for query terms is

N
CFW =log — (6)
ni
where N is the size (number of documents in) the collection
and n; is the number of documents containing query term 4

and the matching score (equation 4) becomes
N
MS-CFW =) log—,
Zie

summed over query terms.

This weight is the familiar collection frequency weight (CFW)* introduced in Sparck Jones
(1971) Tt was then justified on the basis only of the implications of incidence frequency just
mentioned, without any reference to the probabilistic model, and subsequently on the basis
of substantial experimental evidence. In fact, the formula (or something very similar) can be
derived from equation 5 through explicit assumptions about p; and p;, as will be seen below.

Instantiating the model for such a simple form of weight presents no problems and practical
implementation is quite straightforward. Table 3% shows the results of applying these CFWs,
using Rec30 for all the Half test collections and Doc30 as well for Half T741000X. As others
have also found, CFWs can generally be expected to give a modest (statistically significant)

“alias inverse document frequency (IDF) weight
’This and subsequent tables in the text are extracts of selected results from the main Table 6, located in
the Appendix to this part of the paper
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performance improvement over the baseline. Thus while there is an exception in the Cranfield
case, and the older figures are only informal estimates, for our TREC collection for all the
request forms it is at least the case that CFW > UW and the gain is often greater. Table 8
shows that the difference is also statistically significant. However these figures also illustrate
the point that quite large percentage improvements e.g. doubling the number of relevant
retrieved at rank 30 from 1 to 2, as with the TREC L requests, may not be very useful in
real terms, and that absolute performance even with a device generally found to be helpful
can still be very low.

Table 3: Extract from Table 6

Doc30 Rec30 AveP
L M '} L M ') L M '}
uw .04 .09 .15 .01 .05 .13 .01 .04 .09
CFW .07 .15 .17 .04 .10 .17 .03 .07 .12

4.2 Relevance information

Information about term file incidence, though of some utility, is thus clearly only a very
weak basis for estimating probability of relevance. The presumption is that as soon as more
discriminating information about terms is available, and in particular any information about
whether the documents in which a term is present are already actually known to be relevant or
non-relevant, this will allow more accurate estimation. Thus for a more refined interpretation
of the model we start (as in Robertson and Sparck Jones 1976) with the term incidence
contingency table:

Relevant | Non-relevant
Containing the term T n—r n
Not containing the teem | R—r | N—n—R+r | N —n
R N —-R N

where R is the number of relevant (liked) documents for this query
and 7 is the number of these containing the term.

(For simplicity, the suffix 7 has been ignored;

r =r; and n = n; are term-specific.)

Now, neglecting for the moment the question of whether our knowledge of the relevant

documents for a query is complete, with the information just given we can estimate p; and
Pi, namely (ignoring the suffix)

and
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We can then rewrite the term presence weighting function 5 as:

r(N—n—R+r)
(R—r)(n—r)

w = log (7)
Different starting assumptions might lead to a slightly different formula (see e.g. Robertson
and Sparck Jones 1976).

The relation between this weight and CFW is as follows. In the absence of relevance
information, we may estimate P from the proportion of items in the collection that contain
the term, that is n/N. The assumption here is that, in the context of the entire collection
(N), the number of relevant documents (R) is likely to be small. For p, however, we have no
evidence, and the simplest assumption would be that p = constant. This pair of assumptions
leads (Croft and Harper 1979) to a weight which is very similar to the collection frequency
weight above, but not quite identical. While it is clear that the assumption that p = constant
is a very crude one, and almost certainly not generally true, it seems to be (both intuitively
and experimentally) a reasonable starting point. A slight modification of the assumptions
(Robertson and Walker 1997), in which p is not constant and which avoids some anomalies
of the Croft/Harper model, leads to exactly the formula 6 above.

The problem of estimating p and p given some (small or large quantity of) relevance
information is a general one which we need to develop. Any instantiation of the model
for practical application requires further consideration of the estimation problem and of the
information on which estimates may be based. Thus in practice we would normally be in the
situation where, even if we know of some relevant documents, we wish to continue searching:
i.e. we are assuming that we have not found all the relevant documents that would meet our
need. The values in the central cells of the contingency table therefore cannot be taken as
absolute and our estimates of document relevance when considering new items have to allow
for uncertainty.

Estimation considerations give rise to a simple modification of formula 7 (Robertson and
Sparck Jones 1976), namely to add 0.5 to all the central cells. We can then derive a specific
term relevance weighting formula RW,

(r+0.5) (N —n—R+r+0.5)
(R—r+0.5)(n—r+0.5)

RW =log (8)

with associated matching score

ri +0.5)(N — n; — R+1; + 0.5)
(R -1+ 0.5) (’I’LZ -7+ 0.5)

MS-RW = Zlog (

These estimation considerations were not initially based on a Bayesian argument, as the form
of the equation might suggest, but on minimising bias in the estimate of log-odds (Cox 1970).

This formula gives relatively higher weight to query terms that have a high relevant
document incidence and low additional nonrelevant document incidence. It is well-behaved
in extreme cases, unlike 7 which would be infinite under some conditions.

Table 4 illustrates the value of RW as a predictor of document relevance, compared
with CFW , using the standard experimental method of computing weights from one half of
a collection and applying them to the other, i.e. using all the relevant documents in one
half to compute weights for searching the other. Comparing the runs labelled ‘pred all’ for
these RW's with CFW's, and using Rec30 for all the collections, shows that the performance
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gain is typically very large, indeed often more than Dramatic, with the TREC V requests a
somewhat surprising exception in showing no more than a Noticeable improvement. Overall,
however, the performance difference is at least RW pred all > CFW. The Doc30 results
for the T741000X collection resemble the Rec30 ones, and all (including V) are statistically
significant. But the amount of relevance information available in such tests may be quite
large, and certainly larger than could normally be expected in the case where a user is online
and is inspecting output from which information may be gathered to revise the query by
modifying its term weights. So it is necessary to consider the effects of different amounts
of relevance information, and useful to have reasonable grounds for believing that estimates
based on rather little information, if this is of the right sort, may still be adequate, and hence
that even where the incidence data is limited RW's can improve performance.

Table 4: Extract from Table 6

Doc30 Rec30 AveP
L M ' L M ') L M \Y
CFW .07 .15 .17 .04 .10 .17 .03 .07 .12
RW pred all .29 .26 .19 .26 .24 .20 A7 0 .17 .13
RW pred top 3 .16 .21 .18 .13 .18 .18 .08 .12 .12
RW pred rel in 10 .21 .23 .18 .17 .20 .18 .12 .14 .12

In the earlier experiments reported in Sparck Jones (1979a), the amount of relevance infor-
mation was systematically increased, reassuringly showing that performance correspondingly
improved but also that relatively little information could still be of some value. Sparck Jones
(1979b) also reported experiments comparing the use of only a few, randomly chosen relevant
documents for prediction as against the full set. These tests also suggested that even a few
relevant documents could be helpful, but all of these early tests used older and probably
flattering methods of performance representation. The results shown under the label ‘top 3’
in Table 4, and for the older collections (just ‘top 2’ for Cranfield) in Table 7 also illustrate
performance when only a few relevant documents are available but these are quality ones,
namely the best matching ones.

Unfortunately, it is not sensible to define best matching in the same way for both older and
new collections: for the older ones it was simply defined via the number of matching terms.
For the T741000X collection, as the poor UW performance considered earlier implies, a more
sophisticated as well as convenient means of identifying best matching documents is justified,
and we therefore used the (up to) 3 relevant documents found in the top 100 ranks when
searching with the combined weights defined in Section 4.7, Part 2. The figures for Rec30 for
all the collections show that while predictive performance is poorer with only top 3 than with
all relevant as a base for computing weights, it is also the case that top 3 performance is at
least Noticeably better, and often more, than for CFW ,i.e. RW predtop3 > CFW or more,
except for the V form TREC requests. The same holds for Doc30 with the TREC collection,
and the differences for TREC (even for the V requests) are statistically significant. It is worth
also exploring the effect of alternative prediction bases for relevance weighting: thus as well
as taking the top 3 relevant documents as a base, we have tested taking whatever relevant
documents are found in the best matching 10 documents. The runs in Table 6 labelled ‘rel
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in 10’ can be taken as an informal simulation of the widespread page-based output display
common in Web systems. The results show performance for RW rel in 10 similar to that
for RW top 3 relative to CFW, though here the difference for V requests is not statistically
significant.

Altogether, these runs show that even where only a few relevant documents are known the
effects can be beneficial, while performance naturally improves as more information becomes
available. This is also borne out by the more elaborate experiments we present in Section 4.9,
Part 2, where the use of relevance data is combined with other information for weighting, and
also by the TREC routing experiments examined in TR446 (1998).

Note that in all the experiments using small amounts of relevance information, e.g. those
with top 3, we assume that all the documents not known to be relevant are non-relevant,
and so contribute to the non-relevance probability. This is consistent with the argument in
Croft and Harper (1979) but is not implied by it. One can also approach this point in a more
sophisticated way — see Robertson and Walker (1997).

4.3 Retrospective relevance weights

As getting performance improvement in parallel with increasing relevance information sug-
gests, we can relate this whole model interpretation very directly to the Probability Ranking
Principle, and also very usefully for retrieval research purposes. Thus if we compute RW from
the complete relevance information for a test collection and then apply the weighted queries
retrospectively to the set of documents from which they were derived, the output ordering
we get is in some sense the best that can be obtained for the given term sets of queries and
documents. That is, we have optimised the descriptions. The utility of this retrospective
application of RW's is thus in supplying a realistic upper performance bound, or yardstick
(Sparck Jones 1975), against which actual performance based on prediction can be set.

The weight computation may be done either in absolute style directly exploiting the
contingency table, as in Robertson and Sparck Jones (1976); or it may be done with the
modified table using 0.5 as for predictive weighting. It can be argued that the former is
more principled, and that the 0.5s introduced into the RW formula for estimation reasons
are not appropriate for retrospective use; however they may still give the most appropri-
ate upper-bound performance against which to compare other predictive methods. Table 5
shows retrieval performance when the same Half collection is used to compute and apply
weights, using both absolute and qualified ‘retro’ formulae for older collections but only the
qualified one for the T7410000X runs. The absolute formula is flagged by *. The data for
the old collections for this version of the formula is however somewhat limited, so it can
only be interpreted with caution as implying, not surprisingly, a higher level of attainable
performance than the modified formula does. But more importantly, when performance for
the modified formula is considered, on the values for Rec30 across all the collections, there
is a great difference between the older collections and T741000X. For the older collections,
yardstick performance is at least Strikingly better than predictive even when all the relevant
documents are used, i.e. RW retro >>> RW pred all; the difference is therefore even larger
when the comparison is made with prediction only from the best few. But with the TREC
collection, regardless of request form, retrospective and predictive performance is the same,
i.e. RW retro = RW pred all and for Doc30 as well as Rec30. This is not, however, at all
surprising since with the older collections there are fewer relevant documents, while for TREC
there are many in this specific comparison, so convergence between retrospective and predic-
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tive is rational. This is emphasised by comparing retrospective with predictive but from the
small top 3 base: while for the V form requests we only have RW retro > RW pred top 3,
for the others the difference is larger. The differences in Table 8 are again statistically signif-
icant. RW retro versus RW pred rel @n 10 is similar, with statistically significant differences
throughout, though informally there is no difference for the V form requests.

Table 5: Extract from Table 6

Doc30 Rec30 AveP
L M ' L M ') L M v
RW retro .30 .26 .19 .26 .24 .20 .18 .17 .13
RW pred all .29 .26 .19 .26 .24 .20 A7 0 .17 .13
RW pred top 3 .16 .21 .18 .13 .18 .18 .08 .12 .12
RW pred rel in 10 .21 .23 .18 .17 .20 .18 120 .14 .12

Of course where the test collection relevance judgements are not exhaustive, performance
will not be strictly optimal. The technique is also limited to statements about queries with
any given composition: it does not provide any guidance on how the term composition of a
query might be modified to advantage. It can nevertheless provide a very useful picture of
a collection’s potential performance space, in the way that applying the Cluster Hypothesis
to exhibit the separation of relevant and non-relevant documents (van Rijsbergen and Sparck
Jones 1973) can also provide a background for assessing performance. We make further use
of the yardstick to calibrate performance for the strategies described in the next sections.

4.4 Realism

The general question of what relevance information might be available in particular circum-
stances and how it might be used is only touched on here. For example, the effects studied
in the older predictive tests described in Sparck Jones (1979a) were purely quantitative, i.e.
they considered only the numbers of known relevant documents; and the experiments with
the best matching 3 relevant documents described earlier are as much quantitative as qualita-
tive. The older tests did not mimic the online searching case where the information available
is biased (for good or ill) to documents that rank high in the proffered output. The tests
with top 3 were somewhat nearer to real searching, in using best matching documents, but in
taking a fixed number disregarded how many documents would have to be inspected to reach
this. In all of these tests there was also only a single search iteration, where in reality there
might be several. It is unfortunately extremely difficult to carry out proper tests to establish
the value of iterative reweighting. With small test collections there are liable to be too few
relevant documents left after the first cycle for performance effects from query reweighting
to show. With larger collections and a good supply of relevance data this problem does not
arise, but tests are unrealistic because they do not capture the effects of online interaction
on user judgements. At the same time, iterative searching with real users does not deliver
all the judgements needed for comparative purposes. We return to iterative searching later,
along with other retrieval tasks where learning is involved.

Even with laboratory simulation, however, it is possible to be more realistic than the top 3
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case allows: we examine some alternatives later in the context of additional indexing devices.
Thus for the present we simply note that predictive relevance weighting with RW, i.e. in the
basic form introduced in Robertson and Sparck Jones (1976), is of some value.

In Part 2 we continue with the treatment of basic retrieval data, and then proceed to
elaborate the model. Appendiz 1 to this part also includes results for the tests in Part 2.
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Appendix: Detailed retrieval results and significance test data

Table 6 shows first, the run output for the TREC T741000X collection, i.e. the odd-numbered
Half collection. Predictive relevance weights are computed from the even-numbered half,
retrospective from the odd-numbered half. The TREC runs cover first the Long version
requests, then Medium, then Very short.

Performance is given as Average Precision, labelled AveP; Precision at Document Cutoffs
5, 10, 15, 20, 30, 100, labelled P5, P10, etc; RPrec — i.e. Precision at rank corresponding to
the number of relevant per query; Precision at Recall 30, labelled P30R; and Recall at rank
1000. Values for Document Cutoff at 30, labelled P30, are called Doc30 in the body of the
paper; Precision at Recall 30, P30R, is called Rec30. The figures are simply truncated.

Table 7 shows corresponding figures, where available, for the old Cranfield C1400I, UKCIS
U27000P and NPL NPL11500A collections; these are followed by alternative figures based on
microaveraging.

Table 8 gives significance results for the TREC collection using the Wilcoxon signed ranks
test, applied to Average Precision, Precision at Document Cutoff 30, and Precision at Recall
30, for all three versions of the requests. It also shows, for comparison, the value of the
informal rating of performance differences using Precision at Document Cutoff 30.
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Table 6: Retrieval run results
T741000X H collection, L, M and V requests

Long requests
AveP Doc5 Docl10 Docl15 Doc20 Doc30 Doc100 RPrec Rec30 R1000

UW - term coord .011 .069 .046 .041 .037 .035 .029 .026 .014 .164

CFW - coll freq wts .031 .079 .076 .072 .068 .070 .059 .065 .044 .259
QACFW - query adj .086  .120 .133 .141 .138 .145 .126 .124 .123 .442

RW - rel wts :

retro .181 .317  .326 .321 .313 .299 .237 .238 .253 .614
pred all .174 .297 .313 .309 .302 .287 .230 .230 .245 .609
pred top 3 .084 .167 .165 .168 .164 .159 .133 .129 .126 .436
pred rel in 10 .116 .213 .221 .218 .216 .213 .170 .163 .168 .494
CW - comb wts .225 .539 .505 .475 .449 .412 .282 277 .316  .600
QACW - query adj .320 .637 .585 .b69 .534 .497 .356 .363 .440 .722
best pass .329 .635 .583 .bb62 .528 .496 .357 .363 .443 .743

QACIW - comb iter wts, adj

retro * .354 .676 .639 .612 .584 .543 .383 .387 .491 .750
retro .354 .675 .637 .613 .583 .544 .383 .387 .490 .750
pred all .346 .6561 .626 .600 .576 .536 .379 .380 .481 .746
retro rel in 10 .338 .700 .633 .591 .5b68 .518 .364 .363 .460 .727
pred rel in 10 .334 .647 .614 .587 .568 .518 .365 .365 .462 .727

best pass .350 .659 .603 .584 .565 .b524 .372 379 .472 754
retro top 3 .337 .705 .636 .596 .563 .516 .364 .368 .458 .728
pred top 3 .332 .6656 .615 .5682 .557 .511 .364 .364 .457 .725
pred random 3 .330 .639 .607 .588 .5b62 .b611 .365 .364 .458 .733
pred blind 10 .322 .628 .593 .564 .539 .496 .356 .363 .442 717

QACIW + E - comb iter, adj, exp :
retro rel in 10

exp 32 -390 .800 .715 .668 .626 .576 .395 .400 .521 .753
pred rel in 10

exp 72 .374 .733 .667 .640 .610 .569 .395 .394 .514 .754

exp 48 .374 .713 .663 .633 .612 .573 .395 .398 .512 .755

exp 40 .372 .723 .665 .636 .611 .571 .395 .395 .509 .756

exp 32 .370 .703 .654 .629 .608 .570 .394 .395 .506 .754

best pass .389 .708 .675 .636 .609 .575 .400 .407 .515 .777

qterm emph 20/19 .365 .691 .646 .629 .603 .565 .393 .394 .503 .753

exp 24 .367 .696 .655 .630 .609 .564 .392 .393 .509 .747

exp 16 .355 .676 .644 .617 .594 .551 .383 .387 .496 .732
retro top 3

exp 32 .388 .829 .725 .667 .626 .576 .393 .401 .521 .750
pred top 3

exp 32 .351 .687 .638 .610 .579 .B638 .377 .379 .478 .736

qterm emph 20/19 .349 .695 .650 .617 .584 .540 .378 .382 .482 .743
retro blind 10

exp 32 .352 .648 .610 .587 .564 .523 .380 377 .467 .753
pred blind 10

exp 32 .345 .633 .602 .580 .556 .526 .378 .368 .474 .743



Table 6 (contd): Retrieval run results

Medium requests
AveP Doc5 Docl1l0 Docl15 Doc20 Doc30 Doc100 RPrec Rec30 R1000

UW - term coord .036 .116 .110 .101 .097 .093 .071 .065 .048 .284

CFW - coll freq wts .074 .163 .157 .162 .149 .146 .113 112 .104 .382
QACFW - query adj 117 .180 .185 .191 .190 .187 .159 .163 .169 .485

RW - rel wts :

retro .174 .293 .289 .272 .266 .264 .211 .220 .242 .600
pred all .168 .275  .271  .263 .268 .265 .205 .211 .236 .595
pred top 3 .124 .209 .226 .226 .223 .213 .171 177 .184  .501
pred rel in 10 .139 .208 .223 .233 .233 .227 .182 .187 .201 .522
CW - comb wts .226 .513 .481 .459 .437 .397 .273 .281 .320 .598
QACW - query adj .269 .536 .524 .509 .486 .442 .310 .320 .374 .651
best pass .282 .5637 .513 .493 .473 .445 .314 .326 .385 .671

QACIW - comb iter wts, adj :
retro * .300 .603 .567 .547 .525 .484 .338 .348 .427 .684

retro .300 .601 .564 .547 .525 .484 .339 .348 .427 .685
pred all .296 .592 .59 .39 .522 .483 .335 .345 .421 .681
retro rel in 10 .287 .615 .563 .b35 .505 .466 .325  .333 .402 .659
pred rel in 10 .282  .580 .b41 .523 .497 .456 .324 .332 .399 .659

best pass .300 .565 .538 .521 .501 .469 .329 .341 .412 .684
retro top 3 .283 .615 .561 .532 .505 .464 .320 .331 .396 .658
pred top 3 .276  .566 .529 .14 .494 .455 .319  .327 .389 .655
pred random 3 .283 .76 .538 .b16 .496 .457 .323 .335 .402 .666
pred blind 10 .277  .549 .523 .510 .491 .450 .318 .327 .393 .654

QACIW + E - comb iter, adj, exp :
retro rel in 10

exp 24 .364 .787 .683 .639 .595 .540 .365 .380 .492 .708
pred rel in 10

exp 32 .335 .656 .617 .587 .562 .518 .358 .364 .469 .714

exp 24 .336 .648 .616 .586 .560 .517 .362 .368 .471 .713

best pass .353 .645 .617 .594 .570 .522 .370 .378 .476 .737

qterm emph 20/19 .337 .651 .613 .587 .566 .526 .365 .367 .467 .720

exp 16 .335 .640 .607 .587 .563 .522 .364 .369 .469 .715
retro top 3

exp 24 .360 .819 .703 .646 .608 .550 .366 .382 .483 .709
pred top 3

exp 24 .324 .667 .623 .585 .5565 .514 .350 .359 .447 .704

qterm emph 20/19 .328 .669 .629 .589 .566 .519 .354 .361 .458 .711
retro blind 10

exp 24 .317 .575 .549 .521 .502 .473 .348 .363 .434 .710
pred blind 10

exp 24 .318 .5689 .b571 .b5b61 .527 .494 .352 .363 .452 .714



Table 6 (contd): Retrieval run results

Very short requests
AveP Doc5 Docl10 Doc1b5 Doc20 Doc30 Docl100 RPrec Rec30 R1000

UW - term coord .087 .165 .159 .160 .158 .154 .125 .126  .131 .404
CFW - coll freq wts .116 JA7r o .167 170 .173  .174  .154 .167 .167 .475

RW - rel wts :

retro .134 .189 .183 .185 .186 .193 .171 .173 .196 .532
pred all .132 .183 .180 .180 .182 .189 .169 173  .196 .528
pred top 3 .121 179,169 .176 .179 .179 .162 .163 .178 .491
pred rel in 10 .124 .180 .169 .176 .178 .180 .164 .164 .183 .500
CW - comb wts .244 .501 .473 .451 .431 .403 .283 .291 .343 .602
QACW - query adj .244 .501 .473 .451 .431 .403 .283 .291 .343 .602

best pass .248 .485 .466 .452 .430 .399 .283 .288 .335 .609

QACIW - comb iter wts, adj :
retro * .269 .569 .528 .500 .474 .436 .309 .310 .376 .642

retro .269 .b5bb .528 .501 .475 .436 .309 .310 .376 .642
pred all .2656  .545 .529 .494 .470 .433 .306 .305 .372 .641
retro rel in 10 .263 .35 .505 .472 .452 .418 .293 .296 .357 .609
pred rel in 10 .262  .b27 .499 .470 .449 .418 .291 .297 .356 .608

best pass .259 .509 .498 .479 .453 .418 .292 .300 .353 .618
retro top 3 .263 .39 .513 .478 .454 .420 .292 .297 .3b5 .611
pred top 3 .248 .515 .489 .468 .448 .416 .289 .294 .352 .607
pred random 3 .267 .29 .507 .474 .456 .426 .296 .298 .363 .623
pred blind 7 .243  .492 .475 .452 .430 .403 .284 .289 .343 .591

QACIW + E - comb iter, adj, exp :
retro rel in 10

exp 16 .307 .715 .622 .577 .b541 .488 .321 .331 .434 .611
pred rel in 10

exp 24 .265 .b75 .b632 .509 .484 .436 .296 .300 .368 .608

exp 16 .260 .547 .516 .495 .471 .433 .295 .294 .360 .602

best pass .273 .5663 .519 .496 .479 .435 .302 .303 .368 .624

qterm emph 20/19 .266 .5667 .521 .499 .476 .441 .298 .299 .366 .609
retro top 3

exp 16 .294 .769 .653 .587 .539 .482 .314 .329 .397 .620
pred top 3
exp 16 .262 .87 .535 .498 .476 .431 .291 .208 .346 .604

qterm emph 20/10 .264 .591 .546 .502 .481 .442 .301 .310 .361 .621
retro blind 7

exp 16 .241 L487 .461 .443 .421 .394 .282 .279 .338 .588
pred blind 7

exp 16 .241 .495 .469 .449 .426 .395 .279 .278 .336 .579



Table 7: Retrieval run results, old collections
C1400T H, U27000P H, N11500A H collections (e = guestimated).

AveP Doc5 Docl1l0 Doc20 Doc30 Doc100 Rec30 R1000

C1400

uw .29 .39

CFW .30 .40

RW retro * .b3 .68
retro .43 .56
pred all .35 .47
pred top 2 .34 .43

U27000Pb

uw .30 .42

CFW .32e .45e

RW retro * .bbe .75e
retro .42 .60
pred all .37 .54
pred top 3 .36 .51

N11500A

uw .20 .27 .24 .18 .07 .29

CFW .22e .33e

RW retro * .44 .46 .37 .27 .09 .59
retro .37 .44 .36 .27 .09 .54
pred all .31 .39 .32 .23 .09 .45

pred top 3 .27 .36 .29 .21 .08 .40



Table 8: Significance test results, selected runs, T741000X H collection

Wilcoxon signed ranks test: - means < 1.96, . means 1.96 - 2.33, + means > 2.33
1.96 and 2.33 correspond to 2.5% and 1, significance levels on one-tail test
All request versions: group of three tests is for AveP, Doc30, Rec30
Run labels: r/10 = rel in 10; el6, 32 etc = exp by 16, 32 etc
q em = qterm emph; b pa = best passage
nV, L etc = except V, L request form in informal comparison

Infml L M v
CFW vs UW > + 4+ 4+ 4+
RW pred all CFW > + + + + + + + 4+ +
RW pred top 3 CFW > nV + 4+ + 4+ + o+ L+
RW pred r/10 CFW S>>V + + + 4+ + + - +
RW retro RW pred all > e T
RW retro RW pred top 3 > + + + + + + + + +
RW retro RW pred r/10 >> V. + + + + + + + + +
Cw CFW 55> +++ o+ ++ o+ + o+
CW RW retro >>> + 4+ + F 4+ O+t +
QACW CW >> ¥V  + + + + + + - - -
QACIW retro RW retro 355> 4+ 4+ o+ + + o+ + o+
QACIW pred all RW pred all +>>>> + + + + + + + + +
QACIW pred top 3 RW pred top 3 +>>>> + + + + + + + + +
QACIW pred r/10 RW pred r/10 D>+ A+ + F 4
QACIW retro * QACIW retro = - - - - - - - -
QACIW pred all QACW > + 4+ 4+ 4+
QACIW pred top 3 QACW = + .+ + - - 4 -
QACIW pred r/10 QACW = T T T
QACIW pred blind QACW = - - - T,
QACIW retro QACW > e T A
QACIW retro QACIW pred all = +++ -+ o+ - -
QACIW retro QACIW pred top 3 > O T S S S
QACIW pred all QACIW pred top 3 > + 4+ +  + 4+ + o+ 4+
QACIW pred all QACIW pred r/10 > + + + + + + + + +
QACIW pred all QACIW pred rand 3 + + + + + + + - +
QACIW retro top 3 QACIW pred top 3 = + - - P + - -
QACIW retro r/10 QACIW pred r/10 = + - = + 4+ - - - -
QACIW+E pred top 3 QACIW pred top 3 > nV + + - + 4+ 4+ - - -
QACIW+E pred r/10 QACIW pred r/10 > aV +++ ++ e+ - - -
QACIW+E pred blind QACW > nV + + + + + + - - -
QACIW+E pred blind QACIW pred blind > nV B T S S
QACIW+E retro top 3 QACIW retro top 3 > + + + + + + + + -
QACIW+E retro r/10 QACIW retro r/10 > O T S S S e
QACIW+E retro top 3 QACIW+E pred top 3 >> + + + + + + + + 4+
QACIW+E retro r/10 QACIW+E pred r/10 > nL - - - -+ 4+
V QACIW+E pred r/10 e24 QACIW+E pred r/10 el6 = - - .
M QACIW+E pred r/10 e32 QACIW+E pred r/10 el6 = - - -
L QACIW+E pred r/10 e48 QACIW+E pred r/10 el6 > + + +
L QACIW+E pred r/10 e72 QACIW+E pred r/10 el6 = ++ +
QACIW+E pred top 3 q em QACIW+E pred top 3 = - - -+ -+ o+ + 0+
QACIW+E pred r/10 q em QACIW+E pred r/10 = - - - - - =4
QACIW+E pred r/10 QACIW+E pred blind > + o+ + o+, - + -
QACIW pred r/10 b pa QACIW pred r/10 = e .-
QACIW+E pred r/10 b pa  QACIW+E pred r/10 = + - = 4+ - = 4 - -



