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ADVANCED HEAT TRANSFER 
 

1. MODES OF HEAT TRANSFER 
 
Conduction 
 

Conduction is the mode of heat transfer through solids, which may also occur in liquids and 
gases under circumstances where bulk motion of the fluid is not possible.  It takes the form of a 
thermal wave propagated through the system by the vibration of molecules and free electrons.  
Thus, solids with a crystalline structure and rich in free electrons make the best conductors.  It 
has been deduced that in crystalline type metals, the free electron motion is responsible for most 
of the conduction.  It follows that good conductors of heat are also good conductors of 
electricity.  Due to their larger intermolecular distances, liquids and gases have a 
correspondingly lower conducting ability than solids. 
 
The ability of a material to conduct heat is called its thermal conductivity, k,  
dimensions: Wm/m2 deg C or Btu/hr deg F ft2/ft. 
 
The fundamental equation of conduction is the Fourier Rate Equation (1822) 
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Where: Q = Rate of heat transfer (W or Btu/hr) 
  k = Thermal conductivity 
  A = Cross sectional area normal to heat flow 

 T = Temperature 
 x = Distance in direction of heat flow 

 
or per unit area 
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Convection 
 

This occurs in fluids when the heat transfer by conduction across the fluid boundaries is 
augmented by motion of the fluid, which transports energy both by internal circulation of the 
fluid and its bulk motion.  The study of convection is therefore associated with the study of fluid 
mechanics.  It is most important in the study of heat flow between solid surfaces and the fluids in 
contact with them. 
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The fundamental equation of convection between a solid surface and a fluid is Newton's Rate 
Equation (1701). 
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Where h = Convective heat transfer coefficient  

      (W/m2/deg C or Btu/ft2 deg F hr) 
 
or per unit area 
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Where θ is the temperature difference 
 

The estimation of h is a very complex matter in all but the simplest cases since it is a function of 
fluid temperature, fluid motion and surface geometry.  It is performed either by scaling the 
results of model tests  by means of dimensional analysis or by the fundamental equations of fluid 
motion and heat conduction, usually with the aid of complex computer programs which are often 
compiled with the aid of existing software packages. 
 
 

Radiation 
 

This is significantly different in nature from  conduction and convection in that energy transfer is 
by means of electromagnetic waves and these can travel through free space in the absence of a 
material medium.  The rate of radiation from a substance is proportional to the fourth power of 
its absolute temperature.  A substance can not only emit radiation but can also absorb or transmit 
it from another source depending on the wavelength of the radiation received and the physical 
properties of the substance.  Thus glass is almost transparent to short wave high temperature 
emissions from the Sun but absorbs long wave low temperature emissions from the Earth.  At 
low temperatures, gases are fairly transparent and emit little radiation.  In such cases, heat 
transfer between a solid body and its surrounding environment can be accounted for by 
convective heat exchange and radiation between the body and its surroundings while ignoring 
the effect of the fluid on the radiant heat transfer.  At high temperatures, as in the case of flames, 
gases become significant emitters. 
 
The basic equation of radiation is the Stefan-Boltzmann  Law for black body radiation (1879 
Stefan by experiment,  1884 Boltzmann by theory). 
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Where σ is the Stefan-Boltzmann Constant  = 5.67x10-8 W/m2 (K)4   and K = oC+273.16  
      = 0.171x10-8Btu/ft2 hr (R)4    R =  oF+459.7 
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2. CONDUCTION 
 
The general differential equation of conduction 

 
Consider a solid of infinitesimal volume with sides of length dx, dy and dz.  In the x direction, 
the cross sectional area = dy.dz.  For heat flow into the volume in this direction we may therefore 
write equation 1 as: 
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Similarly for heat flow out in the x  
direction we may write equation 1 as: 
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Hence the net heat flow into the element in the x direction is: 
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It follows that summing up for all three directions, the total net heat flow into the element is: 
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In addition to the flow of heat through the element, heat may be generated within it though such 
processes as the flow of electricity (Joulean heating) or radioactivity.  If q' is the rate of heat 
generation per unit volume, then the heat generation within the element is: 
 
 q dx dy dz′⋅ ⋅ ⋅  
 
These processes together create a storage of heat within the element.  If the solid is of density 
ρ and specific heat capacity cp, then the rate of increase of stored heat with time in the volume is: 
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Since the term dx.dy.dz is common to all terms, we may therefore express this as: 
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Where: 
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 is known as the thermal diffusivity of the material of the element and is the 

ratio of conduction to storage qualities of the material. 
 

Equation 4 is known as the general differential equation of heat conduction and may be 
simplified for specific applications.  Thus, if there is no internal heat generation and the flow of 
heat is steady, then the first term of the LHS and the last term of the RHS are both zero.  The 
equation then becomes: 
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This is, of course the well known Laplace equation which describes all processes in which a 
driving force produces a linear displacement, such as deformation of an elastic solid, viscous 
flow of fluids and flow of electric current.  Also, terms in y and z may be removed if only one or 
two dimensional flow of heat is considered. 
 
Equation 4 is written using Cartesian coordinates.  When dealing with bodies of cylindrical 
shape such as pipes, shells, etc, it is often better to express it in cylindrical coordinates where  

cosx r θ= ⋅  and siny r θ= ⋅ .  Either by substitution or deriving from first principles, using a 
cylindrical element of volume, we get: 
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Equations 4 and 5 can generally be solved analytically for one dimensional flow problems but 
for heat flow in two or three dimensions, numerical methods are usually needed to obtain a 
solution.  For many applications, existing software is available to obtain such solutions.  
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One Dimensional Conduction with Heat Generation 
 

This is important for electrical conductors and nuclear reactors. 
 
 
In electrical conductors: Heat generated/unit volume = ρ∗i2 = R 
 

Where: ρ* = Resistivity and i = current density 
 

In Cartesian coordinates 
 

Equation 4 for one dimensional flow then can be written as: 
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which in steady state becomes: 
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and hence we get: 
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A and B are constants to be determined from known boundary conditions i.e. T or 
dx
dT

 at the 

boundaries.  Thus: for a flat plate insulated on one side, 0=
dx
dT

at that surface. 

 
Ex Consider a wide flat plate 1.0 cm thick.  k = 380 W/m K, ρ* = 1.8x10-8ohm m, 
 i = 2000 Amp/cm2, and each surface is at 90oC.  Find the position across the plate at which the 
temperature is a maximum, the value of the maximum temperature and the rate of heat loss to the 
surroundings. 
 

6 2
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1.8 10 2000 7.2 / 3
7.2
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Boundary Conditions:   
At x = 0: 90 = -0+0+B  ∴ B = 90 
 
At x = 1: T  = -0.948+A+90 ∴ A = 0.948 
 
∴ T = 0.948x2+0.948x+90 
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Note opposite signs of heat flow due to their opposite directions.  This total, is equal to the rate 
of energy dissipated in the plate due to Joulean heating. 
 
 
Procedure for estimating the heat transfer from a surface if h = f(θ)  and the stream temperature 
Ts are known. 
 

i) Guess θ.  Hence obtain the surface temperature. 
ii) Evaluate the constants A and B. 
iii) Evaluate the temperature gradients at the surface. 
iv) Evaluate the heat transfer by conduction at the surface from: 

dT
q k

dx
= − at the surface 

v) This must be equal to the convection at the surface. i.e.  
dT

q k h
dx

θ= − = ⋅  

vi) If the conduction and convection terms are not equal, revise the estimate of θ i.e. use 
a trial and error method.  (Can be programmed). 

 
 
Flat plate with equal temperatures on both sides 

 
 
 

* 2

2
W

q h iθ ρ= ⋅ = ⋅  

 
 
 
i.e. convection from one side/unit area  =  heat generated in half the bar width. 
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Hence θ is found. 
 
 
In cylindrical coordinates 
 
In cylindrical coordinates equation 5 in steady uniform  
radial flow can be written as: 
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Circular solid conduction 

 
Maximum temperature must be at the centre: 
 

At the centre:  0

2
0 0

4 r

dT R r A
A T B

dr k r =
⋅ ⋅= − + = ∴ = ∴ =  

 
Find the value of B from T at the surface radius. 
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Two-dimensional steady state conduction 
 
The two dimensional steady state form of equation 4 is: 
 

02

2

2

2

=−=
∂
∂+

∂
∂

k
R

y
T

x
T

    without heat generation. 

 
The analytical form of the solution of this equation is of the form ),( yxfT =  
 

If this is known, then the heat flow can be estimated by solving x

T
q k
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around the boundaries of the solid shape described. 
 
Analytical solutions are possible only for simple and 
generally non-representative shapes such as a rectangular 
plate heated along one edge, as shown. 
 
 
In general, with complicated boundary conditions and shapes, numerical solutions are far more 
effective, especially now, when software is readily available to carry out such solutions. 
A Numerical Method of Solution 
 
A grid of mesh lines is placed over the system.  
The solution gives temperatures at the grid  
points only.  For ease of computation, few points  
are required.  For accuracy of solution, a fine  
grid is needed.  Generally, a medium grid gives  
sufficient accuracy without excessive computation. 
 
 
 
 
Consider a single mesh point surrounded by 4 others  
at a distance “a” from it.  Since temperature functions  
are continuous, the temperatures at points 1,2, 3 and 4  
may be expressed in terms of the temperature at 0 by  
Maclaurin’s theorem.  Thus: 
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∴ The original equation may be written as : 
 

 1 2 3 4 0
2

4
0

T T T T T R
Without heat generation

a k
+ + + − = − =    (7) 

 
2

1 2 3 4 04 0
a R

or T T T T T Without heat generation
k

+ + + − = − =    (8) 

 
There will be an equation of this type for every point on the grid.  Solution of these 
simultaneously is required and the accuracy of the result improves as the mesh is made finer.  
These calculations can be performed by hand (in very simple cases) or by a computer program. 
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Conducting Rod Analogy 
 
 

Consider the grid shown: 
 
 
    = Original Mesh Lines 
 
− − − − − − − −   = Squares of Side “a” 
   surrounding the 
   original mesh points. 
   These are squares of 
   conducting material. 
 
 
Assume heat flows only at right angles across the broken lines along the mesh lines joining the 
points.  Also, assume bc is at temperature T1 along its length and de is at temperature T0 along its 
length and that this applies to all other selected points. 

              

( )

0 1
(1 0)

1 0

( ) ( ) ( 1)
T T

Q k Area Temperature Gradient k a
a

k T T

−
−� �= − ⋅ ⋅ = − ⋅ × ×� �

� �

= ⋅ −
 

 
∴ Net heat flow to 0 along the mesh in the steady state  
 

( ) 2
1 2 3 4 04k T T T T T a R With Heat Generation= ⋅ + + + − = −     (9) 

 
0 Without Heat Generation=         (10) 

         
This is called the Conducting Rod Analogy.  As may be seen it corresponds exactly with the 
finite difference relationships derived in equations (6), (7) and (8). 
 
 

Solution of the Equations 
 
Before the widespread use of computers, the temperatures at the grid points were derived by 
hand calculation.  Initial guesstimated values were assigned to all the points and then gradually 
adjusted by a numerical procedure known as relaxation.  Relaxation methods are still valid but 
modern computer programs use more complex procedures to produce a faster convergence.  The 
method of solution is, however, best appreciated with an understanding of relaxation procedures. 
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Ex:  Determine the heat transfer to a rectangular plate heated along one edge when 
the heated edge is at 100oC and all the other edges are at 0oC. 
 
 
 
 
 
 
 
 
 
 
Trial:  Apply equation (10) to point "a" to see if it is valid: 
 
 We get: 0 + 0 + 20 + 50 - 4×15 = 10 
 
There is a residual value of 10 on the RHS.  If the temperatures were assigned correctly, then it 
would be 0. 
 
Determine the residuals for all the remaining points: 
   b:   15 + 35 +   0 + 60 -  80      =   30 
   c:   70 + 20 + 20 +  0 – 140 =  -30 
   d:     0 +100 + 60 +15– 200 =  -25 
   e: 100 +  50 + 70 + 20–240      =     0 
   f:   60 +  60+100 + 35–280      =  -25  
 
Point e gives the correct residual but altering the surrounding points will probably upset it. 
 
Starting with the largest residual, eliminate it by adding to the temperature at that point, an 
amount equal to ¼ of the residual.  Then re-estimate each residual again, assuming the new 
relaxed value of temperature. Repeat for the next largest residual and continue till all residuals 
are close to zero, making up a table in the process. 
 

 New   Residuals at each point 
 Value a b c d e f 
Initial Values→  10 30 -30 -25 0 -25 
        
Increment ↓        
Point c – 7o 28o  23 -2   -32 
Point f – 8o 62o   -10  -8 0 
Point b + 6o 26o 16 -1 2*  -2  
Point d – 6o 44o 10   -1 -8  
Point a + 2o 17o 2 1  1   
Point e – 2o 58o  -1  -1 0 -4* 
Point f – 1o 61o +2 -1 1 -1 -1 0 

*   Increment comes from both halves due to axis of symmetry 
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Check:   a:   26 +44 –   68  =     2 
    b:   17 + 27+  58 – 104 =    -1 
   c:   52 + 61 – 112  =     1 
   d:  117 + 58 – 176 =    -1 
   e: 126 + 105 –232 =    -1 
   f: 116 + 128 -244    =    0 
 
 
Hence:  Energy flowing into the plate    = k(100-61) + 2k(100-58) + 2k(100 – 44)  
 
          = 235k /unit thickness 
 
Check:  Energy flowing out of the plate= 2k(44 – 0)+ 4k(17 – 0) +2k(26 – 0) + k(28 – 0) 
 
          = 236k /unit thickness 
 
  Units are in W/m  (or Btu/ft hr) 
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Relaxation of points adjacent to lines of symmetry 
 
1. As shown in the example, since points on either side  

of the line of symmetry have the same temperature,  
the residual of T’ is altered by twice the value of the  
alteration to the other points surrounding T’. 

 
2. T1 + T2 + T3 + T4 –4T0    =   0 

 
or     T1 + T2 + T0 + T4 –4T0    =   0 
 
i.e.    T1 + T2 + T4 –3T0             =   0 

 

Hence if the residual has value +r, increase T0 by 
3
r

. 

 
 

Application of the Conducting Rod Analogy to boundary points with convection at the 
surface 
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This method is suitable for use in computer programs.  However, when using relaxation 
methods, the following procedure is easier to implement. 
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  1 2 4 0

. . .
3 0fh a TQ h a

T T T T Without heat generation
k k k

� �∴ = + + + − ⋅ + =� �
� �
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Compare this result with equation 10, which we may write as: 
 
  T1 + T2 + T3 +T4 - 4T0  =  0 
 
If, in equation (11) we define: 
 

  3 0 1fh a T h a
T T

k k

⋅ ⋅ ⋅� �≡ + ⋅ −� �
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Then choose the dimension of "a" such that 1
h a

k
⋅ =  

 
Equation 11 becomes identical with equation 10.  This is equivalent to extending the solid 
boundary 'a' into the fluid and replacing the temperature Tf by T3 as given. The normal relaxation 
procedure can then be used as if the solid boundaries have a known temperature. 
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Transient Conduction 
 

A knowledge of the rate at which thermal equipment heats up or cools down from the steady 
state at which heat generation and cooling rates exactly balance, is of the utmost importance in 
engineering.  Such factors as how long an electric motor can run on overload, how quickly an I.C 
engine can develop full power from a cold start and whether or not an article will break due to a 
sudden cooling or heating are determined from estimates of heating and cooling rates. 
 
Two approaches are employed. 
 

i) For relatively small systems:  The system may be assumed to be at a uniform 
temperature throughout, at all times. 

ii) Where the uniform temperature assumption is not valid:  The differential equations of 
conduction must be solved wrt time. 

 
 
i) Uniform Temperature System 

 
Criterion for the validity of the approach. 
 
The thermal resistance of the body must be relatively small. 
 

 

2

4. . :
4

d
LengthVolume d

L e g for a wire L
Area of surface d Length

π

π

⋅ ×
= = =

⋅ ×
 

 

Let 
k
L

 = Thermal resistance of the body and let 
h
1

  is  its surface convective resistance 

 

Then  
h L Thermal Resistance

Biot Number
k Surface Resistance
⋅ = ≡  

 
If the value of the Biot Number is small, say < 0.1, then the assumption of uniform temperature 
is valid. 
 
 Uniform Temperature Equation 
 
Change of energy in system in time dt   = Heat flow to surroundings in time dt 
 
 ( )p sV c dT h A T T dtρ∴ − ⋅ ⋅ ⋅ = ⋅ − ⋅   Where Ts = Surrounding Temperature 
 
 Let T-Ts  = θ,   then, if Ts  = Constant,   dθ    =  dT 
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If  θ1  = initial temp difference,   

θ2  = final temp difference,  
t    = time elapsed. 
 

     T  = Time Constant  = pV c

h A

ρ ⋅ ⋅
⋅

   

The value of the time constant is indicative of the rate of response of the system to a change in 
environmental temperature. 
 
 
 Uniform Temperature System with Heat Generation 
 
Ex: to find the time required for an electric motor to reach its steady state temperature. 
 
  Let q V Rate of heat generation⋅ =�  
 
The rate of increase in system energy can be expressed as: 
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The maximum temperature is reached when the rate of heat generation is equal to the rate of 
convective heat loss from the system.  Let the value of θ when this occurs = θmax.  Then: 
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Hence the rate of temperature rise when  θ   =  0 can be written as: 
 

 max max

p p

h Aq V
V c V c

θ θ
ρ ρ

⋅ ⋅⋅ = =
⋅ ⋅ ⋅ ⋅ Τ
�

 

Thus, the appearance of the time constant on a temperature - time graph. 
 
 
ii) The Differential Equation of Transient Conduction in One Dimension  
 (Rectangular Coordinates) 
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2

1 1
2 1! 4 2!

1 1
2 1! 4 2!

in

out

T x T x
q k T

x x x

T x T x
q k T

x x x

� �∂ ∂ ∆ ∂ ∆= − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ +� �∂ ∂ ∂� �

� �∂ ∂ ∆ ∂ ∆= − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +� �∂ ∂ ∂� �

� ��

� ��

 

2

2in out

T
q q k x

x
∂∴ − = − ⋅ ∆ ⋅
∂

� �   Neglecting ∆x2 and higher order terms. 

 
     =  Rate of Energy Storage  (Zero in the steady state) 
 

            2 2

2 2

1 p

p p

T
x c

t
T k T T k

where Thermal diffusivity
t c x x c

ρ

α α
ρ ρ

∂= ∆ ⋅ ⋅ ⋅ ⋅
∂

∂ ∂ ∂∴ = ⋅ = ⋅ = =
∂ ⋅ ∂ ∂ ⋅

 

 
This equation may be solved by a finite difference procedure. 
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Method of Solution 
 
Boundary conditions must be specified  
at positions 1 and 6. 
 
 a   =   Space intervals 
 
 ∆t =   Time interval 
 
Consider points T1,0 T2,0  and T3,0  on  
mesh lines "a" apart. 
 
From the analysis of 2-dimensional steady  
state conduction, we obtained the finite  
difference relationship: 
 

                          
2

3,0 1,0 2,0
2 2

2,0

2T T TT
x a

+ − ⋅� �∂ =� �∂� �
 

 

and a finite difference relationship for  
t

TT
is

t
T

∆
−

�
�

�
�
�

�

∂
∂ 0,21,2

0,2

 

 

Hence:  2,1 2,0 3,0 1,0 2,0
2

( 2 )T T T T T

t a
α

− + − ⋅
= ⋅

∆
 

 

        3,0 1,0
2,1 2,0 1,02

2
2

T Tt
T T T

a
α +� �⋅ ∆ ⋅∴ − = ⋅ −� �

� �
 

 
This is the basis of the Schmidt graphical solution, for if we choose "a" so that  
 

  3,0 1,0
2,12

2
1 ,

2
T Tt

then it follows that T
a

α +⋅∆ ⋅ = =  

 
Hence joint T1,0  and  T3,0  by a straight line.  This cuts line 2 at T2,1. 
 
 
Ex: Consider a sheet of glass 3.6 cm thick.  Its surface temperature rises by 20oC/min. 
 

Plot  the temperature - time history over the first 5 minutes and calculate the heat 
transferred to the glass in this time. 
 
For glass, assume: α  =  0.3x10-6 m2/s, ρ  =  2700 kg/m3, cp  =   0,837 kJ/kgoC 
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Take a = 6 mm   and assume the starting temperature  = 40oC. 
 

  
2 2

6

0.006
60 sec

2 2 0.3 10
a

t s
α −∆ = = =

× ×
 

 
Position 0 mm 

(Surface)  
6 mm  12 mm 18 mm 24 mm 30 mm 36 mm 

(Surface) 
        
Time (secs)        

0 40 40 40 40 40 40 40 
1 60 40 40 40 40 40 60 
2 80 50  40 40 40 50 80 
3 100 60 45 40 45 60 100 
4 120 72.5 50 45 50 72.5 120 
5 140 85 58.75 50 58.75 85 140 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Total heat transferred to glass 2 3 3 41 22
2 2 2p p p

T T T TT T
c a c a c aρ ρ ρ+ ++� �= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅� �

� �
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2

50 58.75 58.75 85 85 140
2 2700 0.837 0.006

2 2 2

8364 /kJ m

+ + +� �= ⋅ + + × × ×� �
� �

=
 

 
 The Effect of Surface Convection: 
 
At the boundary between the solid surface and its surroundings the rate of heat conduction must 
be equal to the rate of heat convection. 
 
 

 

( )1,0 ,0
1,0

1,0 ,0

1,0

f

f

T
q k h T T

x

T TT
kx

h

∂� �∴ = − ⋅ = − ⋅ −� �∂� �

−∂� �∴ =� �∂� �

�

 

 
         =   Slope of tangent at x = 0 
 
 
Imagine that the wall is extended by k/h outwards with the wall temperature contour from the 
imaginary boundary meeting that the temperature contour at the real wall tangentially.  
Conduction then occurs from k/h outside the wall to some point inside it.  
 
If the fluid bulk temperature does not change; 
 
Tf,1  =  Tf,0   but: 

 
 
 
must always 
be straight lines 
 
 

 
 
 
Energy Stored ( )0p Average Averagea c T Tρ= ⋅ ⋅ ⋅ −�  

 

Energy Input by Convection at Surface ,1 ,0 ,1 ,0

2 2
f f w wT T T T

h t
+ +� �

= ⋅ ∆ ⋅ +� �
� �

�  

Tf,0   T1,0 
 
Tf,1   T1,1 
 
etc 
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 Numerical Methods of Solution 
 

i) Points within the “a” mesh are calculated by normal means. 
ii) We know that Tf,2 is joined to T1,2 by a straight line. 
iii) To calculate T1,2, T0,1 must be known..  Hence, T0,1 must be calculated from Tf,1 and 

T1,1 as follows: 
 
 

                    

,1 1,1 0,1 1,1

,1 1,1

0,1

2

2

2

f

f

T T T T
k a a
h

k a
a T T

hT
k a
h

− −
=

+

� �⋅ + ⋅ −� �
� �∴ =

� �+� �
� �

 

 
 
T0,1 may be regarded as an equivalent surface temperature in a purely conducting situation and 
hence it replaces Tf,1. 
 

Thus obtain values of temperatures at 
2

5
,

2
3

,
2

aaa
 etc from the wall and the wall temperatures 

by interpolation. 
 
 Special Boundary Conditions 
 

i) Varying value of h (which is a temperature function) 
 

h
k

 is no longer constant and a new  

value must be taken for each constructional  
step.  This causes the point Tf,1 to move  
both horizontally and vertically relative  
to Tf,0, as shown. 
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ii) Insulated surface 
 
Since there is no heat transfer across  
an insulated surface, the temperature  
gradient at the surface must therefore  
be zero. 
 
 
 
 
 
 
 
 
 
iii) Sudden surface temperature change 
 
A temperature discontinuity must occur between the solid surface and its surrounding fluid 
when, for example, a body is suddenly plunged into a fluid of different temperature.  A 
reasonable (but not the best) approximation is to assume the initial profile shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

  23 

2 ONE DIMENSIONAL EXTENDED SURFACES (FINS) 
 
These are used to increase the convective heat transfer at solid/fluid boundaries.  They have 
many applications, particularly in heat exchangers and air cooled internal combustion engines. 
 
Assume for a thin fin that the heat flow is one dimensional i.e. that there is no temperature 
gradient across any cross-section normal to “����
�

Consider heat flow into the element at position x: 
 

( ) ( )2

x

x dx

h s

dT
Q k L b

dx
d dT

Q k L b T dx
dx dx

Q L dx h T T neglecting b

+

= − ⋅ ⋅ ⋅

� �= − ⋅ ⋅ ⋅ +� �
� �

= ⋅ ⋅ ⋅ −

�

�

�

 

 
                 Let (T-Ts)  = θ 
 

If Ts is constant, then 
dx
d

dx
dT θ=  

 
For steady state heat transfer conditions it must follow that: 
 

 

2

2

2

2

2

2

2

2

2

x x dx hQ Q Q

d d d
kLb kLb dx hL dx

dx dx dx

d
kLb hL

dx
d h
dx kb

θ θ θ θ

θ θ

θ θ

+= +

� �
∴ − = − − + ⋅� �

� �

∴ =

∴ = ⋅

 

 

This is a second order linear differential equation of the type: θθ 2
2

2

m
dx
d =  which has a solution 

of the form: 
2mx mx h

Me Ne where m
kb

θ −= + =  

 



  

  24 

M and N are found from the boundary conditions of which there are usually two sets: 
 

i) θ =θ0  at x = 0  and  Q� = 0 at x = ���(long thin fins) 

ii) θ= θ0 at x = 0 and 
x

d
kA hA

dx
θ θ

=

� �− =� �
� �

�

�

  (end heat flow significant) 

 
 
Consider Case i) 
 
At  x = 0  θ0  = M + N       (1) 
 

At  x = �  0 . . . . 0m m

x

d
m M e m N e

dx
θ −

=

� � = ∴ − =� �
� �

� �

�

   (2) 

 
Solve for M and N.  Hence: 
 

0 0
m m

m m m m

e e
M N

e e e e
θ θ−

− −= =
+ +

� �

� � � �
 

 
Substituting in the original equation: 
 

( ) ( )

0

m x m x

m m

e e
e e

θ θ
− − −

−

� 	+= ⋅
 �+� 

� �

� �
 

 
( )

0

cosh
cosh

m x

m
θ θ

−� 	
∴ = ⋅
 �

� 

�

�
 = Temperature distribution along the fin. 

 
Now the total heat flow from the fin to the surroundings = Heat flow into the fin at x = 0 
 

Hence: 
( )

0 0
0 0

sinh
.

coshx x

m xd
Q kLb mkLb

dx m
θ θ

= =

−� 	� �= − = + 
 �� �
� � � 

�
�

�
 

 
0 tanhmkLb mθ= �         (3) 

 
In Case ii): Where the fins are relatively short, the assumption of zero heat transfer from the 

tip to the surroundings is not valid.  Hence under these conditions equation (2) 
does not apply.  The heat transfer at the tip is therefore given by: 

 

x

d
kLb hLb

dx
θ θ

=

� �− = +� �
� �

�

�

 

( )m mk mMe mNe hθ∴ − ⋅ − =� �

�
      (4) 
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By combining equations (1) and (4) it may be shown that in this case: 
 

 
( ) ( )

0

cosh sinh

cosh sinh

h
m x m x

km
h

m m
km

θ θ
� 	− + −
 �

∴ = ⋅
 �

 �+
� 

� �

� �

 

 
 

As in case i), the heat transfer from the fin is obtained by consideration of conduction into the 
fin at x = 0.  From this we get: 

  0 0
0

tanh

1 tanhx

h
mld kmQ kLb mkLb

hdx m
km

θ θ
=

� 	+
 �� �= − = + ⋅
 �� �
� � 
 �+

� 

�

�

     (5) 

 
 
 

Limit of Usefulness of a Fin 
 

Under some circumstances, the addition of fins does not improve the heat transfer.  This occurs 

when 00 =
dl
Qd �

.  Taking the more general case, where heat transfer at the tip is not negligible 

(case 2 above), then differentiating equation (5), it can be shown that the differential is zero 
when the numerator of the differential = 0 and that this occurs when:  mk = h. 

Substituting the original derivation of 
kb
h

m
2= , it therefore follows that for a straight fin to lead 

to an improvement in heat transfer from the surface from which it extends: 1
2 >
hb

k
. 

 
 

Efficiency of Fins 
 

An ideal fin of infinite thermal conductivity  
would maintain a constant temperature difference  
θ0 with its surroundings throughout its length. 
 
 
Assuming the fin to be thin (ignoring edge effects),  
this would permit a heat flow  = 02 L h θ⋅ ⋅ ⋅ ⋅�  
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If we define fin efficiency fη  as the ratio of heat flow/ideal heat flow through the fin, we get: 
 

Neglecting End Heat Transfer     Including End Heat Transfer 
 

0

0

tanh
2

tanh

f

m k L b m
L h

m
m

θη
θ

⋅ ⋅ ⋅ ⋅ ⋅=
⋅ ⋅ ⋅ ⋅

=

�

�

�

�
 

 
 
 

Effectiveness of a Finned Surface 
 

 
Let  As  =  Fin Surface Area/unit  

Area of Primary Surface 
 
The primary surface at θ0 is 100%  
efficient but the fin surface at θ is not. 
 
Let ηf As be a surface that is 100% efficient. 
 
∴The equivalent 100% efficient surface  = 1+ηf As 

 

But  1+As   =  Total surface area 
 

1

1
f s

fe
s

A
Effectiveness of a Finned Surface

A

η
η

+
∴ = =

+
 

 

0

0

tanh

2 1 tanh

tanh

tanh

f

h
mm k L b km

hL h m
km

h
m

km
h

m m
k

θη
θ

+⋅ ⋅ ⋅ ⋅= ⋅
⋅ ⋅ ⋅ ⋅ + ⋅

+
=

+ ⋅

�

�
�

�

�
� �
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 Overall Heat Transfer Coefficient of a Finned Surface 
 
 
 
Consider the tube surface in a heat exchanger. 
 
 
Internal Convection: 
 

( )[ ] ( ) tubeoflengthunitperTThArQ aaasfe −⋅+−= 11 12 ηπ  

 
 
The term ( )[ ]sfe A+1η  is the total inside surface at temperature T1/unit area of bare tube surface. 
 
This could be replaced by ( )1 f s a

A n b where n number of fins of thickness bη+ ⋅ − ⋅ = . 

 
Conduction: 
 

( )12

1

2ln

2
TT

r
r

k
Q −⋅−= π

 

 
External Convection: 
 

( )[ ] ( ) tubeoflengthunitperTThArQ bbbsfe 22 12 −⋅+−= ηπ  

 
Since ( )abL TTUQ −=  
 

( ) ( )

2

1

1 2

1

ln
1 1

22 1 2 1

L

fe s a fe s ba b

U
r
r
kr A h r A hππ η π η

∴ =

+ +
� 	 � 	+ ⋅ + ⋅�  � 

 

 
  
 



  

  28 

Numerical Solution of Steady State Conduction in Fins 
 
For increment m: 
 
Conduction into the element  = Conduction out + Convection from the edges 
 

( ) ( ) ( ) ( )1 11 1
. . 2 1m m m m

m m

k b k b
i e h

n
n n

θ θ θ θ
θ− +− ⋅ ⋅ − − ⋅ ⋅ −

= − ⋅ ⋅ ⋅�

� �
 

( )2

1 1

2
2 0

m m

m m m

hn
kb

θ
θ θ θ− +∴ + − + =

�

 

( )2

1 1

2
2 0

m

m m m

hn
kb

θ θ θ− +

� 	

 �∴ + + − =
 �

 �� 

�

 

 
 
For the end increment at �n: 

 
 
With Convection out of the end face    No Convection out of the end face 
(Short Fin Boundary Condition)    (Long Fin Boundary Condition) 
 
 

( ) ( ) ( )

( )

( ) ( )

1

2

1

2

1

1
2 1

2

2
1 0

n n
n n n n

n n n n
n n

n
n n

k b
h b h

n
n

h b hn
kb kb

n h hn
nkb k

θ θ
θ θ

θ θ
θ θ

θ θ

−

−

−

⋅ − � �= − ⋅ ⋅ − ⋅� �
� �

∴ − = − −

� 	
∴ + + − =
 �


 �� 

�

�

�

�
�

  

 

( )( ) ( )

( )

1

2

1

1
2

2
1 0

n n
n

n

n n

k b
hn

n

hn
kb

θ θ

θ θ

−

−

− ⋅ −
= −

� �
� �∴ + − =� �
� �
� �

�

�

�
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CITY UNIVERSITY, LONDON 
SCHOOL OF ENGINEERING 

 
PART 3 HEAT TRANSFER 

 
Steady State Conduction – 1 

 
 

Starting from the Fourier rate equation, show that for a hollow sphere with uniform 
temperature distribution:  the rate of heat transfer by conduction through it may be 
expressed as: 

 

 ( )4 o i
i o

o i

k r r
Q T T

r r
π⋅ ⋅ ⋅ ⋅= ⋅ −

−
 

 
Where:  suffix i relates to the inner radius 

       suffix o relates to the outer radius 
 

The thermal conductivity of a solid is given by the equation: 
22 3ok k b T c T= + ⋅ ⋅ + ⋅ ⋅ where ko is the thermal conductivity at T = 0. 

 
Show that the steady heat flow through a plane wall of this solid of thickness �x with 
surface temperatures T1 and T2 may be expressed as: 
 

 ( ) ( )2 2 2 1
0 2 1 2 2 1 1

T T
Q k b T T c T T T T A

x
−� 	= − + ⋅ + + ⋅ + ⋅ + ⋅ ⋅�  ∆

 

 
A pipe having an external diameter of 80 mm is covered with two layers of insulating 

material, each 30 mm thick.  The thermal conductivity of one layer is four times that of 
the other.  Show that the combined conductivity of the two layers is 30.65% more when 
the better insulating material is on the outside than when it is on the inside. 
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SCHOOL OF ENGINEERING 
 

PART 3 HEAT TRANSFER 
 

Steady State Conduction – 2 
 

1. A square hollow duct with thick walls has surface temperatures as shown in the 
figures.  Using (a) 9 mm mesh and (b) 6 mm mesh find by relaxation the temperatures 
within the cross-section using the initial guessed values given.  The material has a 
thermal conductivity of 120 W/m K.  Determine the heat transfer per metre length in 
both cases. 

 

 
 

(106,000 W/m)    
 

2. By the “conducting rod analogy” it can be shown that in two-dimensional steady state 
conduction at a point is related to values at the surrounding points by the equation   

1 2 3 04 0t t t t+ + − = .  By similar reasoning establish the equations given for the 
following boundary points. 

 
a. Point on an insulated surface. 

 
 
 
 

b) Convection at the surface, with energy  
generation in the material. 

 
2

2 4
1 0 2

2 2
fh a tt t h a a R

t t
k k k

⋅ ⋅+ ⋅ −� �+ + − + =� �
� �

  

  
b. Exterior corner, with convection. 

0 4
3 02 0

2
t t

t t
+ + − =
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1 2
0 1 0

2
fh a tt t h a

t
k k

⋅ ⋅+ ⋅� �+ − + =� �
� �

 

3. Establish the temperatures at the mesh points on the cross-section of the rectangular 
bar carrying a current of 4472 amps/cm2. 

For the material of the bar:  k = 200 W/m K,  � = 4x10-8 ohm metre.  Surface 
temperatures are as shown.  Mesh size is 0.5 cm. 
 
Calculate the heat transfer from the bar: 
i) from the total heat generation 
ii) from conduction along mesh lines at the boundary 

 

 
 
 

(  i) 480 W/cm ii)  296 W/cm) 
 
 

4. Show that in one-dimensional radial conduction with internal heat generation q’ per 
unit volume, the temperature distribution is governed by the differential equation: 

2

2

1d t dt q
dr r dr k

′
+ = −  

 

and hence: 2 ln
4
q

t r A r B
k
′

= − + +  

where A and B are constants of integration to be determined from the boundary 
conditions. 
 
An internally cooled copper conductor of 4 cm outer diameter and 1.5 cm inner diameter 

carries a current density of 5000 amp/cm2.  The temperature of the inner surface is 70oC and 
the external surface is insulated.  Determine the equation for the temperature distribution 
through the copper.  Hence find the maximum temperature for the copper, the radius at which 
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it occurs and the internal heat transfer rate.  Check that this last answer is equal to the total 
energy generation in the bar. 

For copper:  k = 380 W/m K   ���= 2x10-8 ohm metre. 
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CITY UNIVERSITY, LONDON 
SCHOOL OF ENGINEERING 

 
PART 3 HEAT TRANSFER 

 
Transient Conduction 

 
 

A bare copper cable 2.5 cm in diameter is situated in still air at 15oC.  A current of 750 Amps 
is passed along the cable.  Heat is transferred from the cable to its surroundings by 
natural convection for which the heat transfer coefficient may be expressed as 2.95 �0.25 
W/m2 K.  Determine whether or not it may be assumed that the temperature across the 
copper cross section is uniform and what the equilibrium temperature of the cable surface 
will be. 

 
If the current is stopped, estimate the time for the copper to cool to a temperature of 
18oC. 
 
Assume the following for copper:  density � = 8950 kg/m3

,  

specific heat capacity cp = 380 J/kg K,  electrical resistivity �* = 17x10-9
 � m,  

thermal conductivity k = 400 W/m K. 
 

 (49.65oC,  2.783 hrs) 

Given the differential equation 
2

2

T T
x

α
τ

� �∂ ∂� � = � �� �∂ ∂� � � �
 for unsteady conduction in a "one 

dimensional" wall show that the temperature Tn,p+1 at some section n and time instant p+1 
can be calculated approximately from: 

, 1 1, 1, ,

1
2n p n p n p n pT F T T T

F+ + −
� 	� �= + + −� �
 �

� �� 
 

The temperatures in the right-hand bracket  are values at equidistant  sections (n-1), n, 

(n+1), preceding (p+1) by a finite time interval �� and 2F
x

α τ∆=
∆

 is the Fourier Number. 

 
A steel slab 2.54 cm thick is initially at a uniform temperature of 650oC.  It is cooled by 

quenching in water, which may be assumed to reduce the surface temperature suddenly to 
93.5oC.  Derive a numerical method to deal with this case by dividing the slide into eight 
slices.  The heat flow may be assumed to be normal to the sides of the slab.  Use the 
method to determine the time required to reduce the centre temperature to 450oC. 

 
For steel take the thermal diffusivity = 1.16x10-5 m/s 
 
(3.48 secs) 
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CITY UNIVERSITY, LONDON 
SCHOOL OF ENGINEERING 

 
PART 3 HEAT TRANSFER 

 
Extended Surfaces 

A vertical surface is at a temperature of  50oC in an atmosphere at 15oC.  The surface 
convection coefficient is h = 1.31� 1/3 W/(m2 K) where � is the temperature difference in 
oC.  Heat transfer from the surface is to be increased by 40% by adding vertical fins, 0.65 
cm thick.  Assume the surface temperature is unchanged by the addition of the fins , that 
there is a new convection coefficient of h = 1.1� 1/3 W/(m2 K) over the whole surface*, 
and that there is no heat transfer from the tips of the fins.  Determine the height of the fins 
(i.e. distance from root to tip), if they are to be spaced 15 cm apart.  The thermal 
conductivity k for the fin and wall is 260 W/(m K). 

*   where � is the root to atmosphere temperature difference.           (5.35. cm) 
 
A steel pipe of 3 cm bore and 0.5 cm wall thickness has eight axial fins on its exterior 

surface, which are 0.3 cm thick and 2 cm high.  The pipe carries a fluid at 150oC and is in 
an exterior environment of 30oC.  Interior and exterior convection coefficients are 400 
W/(m2

 K) and 50 W/(m2 K).  Determine 

i) the efficiency of the fins.                                                      (90.2%) 

ii) an overall heat transfer coefficient between the interior and exterior fluids per length 
of pipe.                                                                (13.17 W/m K) 

iii) the rate of heat transfer between the fluids.                          (1572 W/m) 
 

A transistor heat sink is a 10 cm length of an aluminium section, as shown.  
It may be regarded as a horizontal plate 70 mm x 100 mm on which 12 fins, 1 mm thick 
by 25 mm high, are mounted.  Assuming the horizontal plate is everywhere at 45oC 
above the temperature of the surroundings, determine the percentage of the total heat 
transfer from the sink that occurs from the surfaces of the fins.  Neglect heat transfer 
from the edges of the plate and fins. 

k = 150 W/m K and h = 30 W/(m2 K)                                (81.3%) 
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Ex. 1 Consider a wide flat plate 1.0 cm thick.  k = 380 W/m K, ρ* = 1.8x10-8ohm m, 
 i = 2000 Amp/cm2, and each surface is at 90oC.  Find the position across the plate at which the 
temperature is a maximum, the value of the maximum temperature and the rate of heat loss to the 
surroundings. 
 

6 2

2

1.8 10 2000 7.2 / 3
7.2

0.948 /
2 2 3.8

o

R x x W cm

R
C cm

k x

−= =

= =
 

 
Boundary Conditions:   
At x = 0: 90 = -0+0+B  ∴ B = 90 
 
At x = 1: T  = -0.948+A+90 ∴ A = 0.948 
 
∴ T = 0.948x2+0.948x+90 
 

237.9090474.0237.0:5.0

max.5.0
896.1
948.0

max0948.0896.1

=++−==∴

==∴

=+−=∴

TxAt

platetheofmiddletheatisimumeicmx

etemperaturimumofpositionatx
dx
dT

 

 

2
10

2
11

2
00

/2.76.36.3

/6.3948.08.3/948.0)(

/6.3948.08.3/948.0)(

cmWqqq

cmWxqcmC
dx
dT

cmWxqcmC
dx
dT

xx

x
o

x

x
o

x

−=−−=−=∴

+=−−=∴−=

−=−=∴=

==

==

==

 

 
Note opposite signs of heat flow due to their opposite directions.  This total, is equal to the rate 
of energy dissipated in the plate due to Joulean heating. 
 



  

  36 

Ex. 2  Determine the heat transfer to a rectangular plate heated along one edge when 
the heated edge is at 100oC and all the other edges are at 0oC. 
 
 
 
 
 
 
 
 
 
 
Trial:  Apply equation (10) to point "a" to see if it is valid: 
 
 We get: 0 + 0 + 20 + 50 - 4×15 = 10 
 
There is a residual value of 10 on the RHS.  If the temperatures were assigned correctly, then it 
would be 0. 
 
Determine the residuals for all the remaining points: 
   b:   15 + 35 +   0 + 60 -  80      =   30 
   c:   70 + 20 + 20 +  0 – 140 =  -30 
   d:     0 +100 + 60 +15– 200 =  -25 
   e: 100 +  50 + 70 + 20–240      =     0 
   f:   60 +  60+100 + 35–280      =  -25  
 
Point e gives the correct residual but altering the surrounding points will probably upset it. 
 
Starting with the largest residual, eliminate it by adding to the temperature at that point, an 
amount equal to ¼ of the residual.  Then re-estimate each residual again, assuming the new 
relaxed value of temperature. Repeat for the next largest residual and continue till all residuals 
are close to zero, making up a table in the process. 
 

 New   Residuals at each point 
 Value a b c d e f 
Initial Values→  10 30 -30 -25 0 -25 
        
Increment ↓        
Point c – 7o 28o  23 -2   -32 
Point f – 8o 62o   -10  -8 0 
Point b + 6o 26o 16 -1 2*  -2  
Point d – 6o 44o 10   -1 -8  
Point a + 2o 17o 2 1  1   
Point e – 2o 58o  -1  -1 0 -4* 
Point f – 1o 61o +2 -1 1 -1 -1 0 

*   Increment comes from both halves due to axis of symmetry 
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Check:   a:   26 +44 –   68  =     2 
    b:   17 + 27+  58 – 104 =    -1 
   c:   52 + 61 – 112  =     1 
   d:  117 + 58 – 176 =    -1 
   e: 126 + 105 –232 =    -1 
   f: 116 + 128 -244    =    0 
 
 
Hence:  Energy flowing into the plate    = k(100-61) + 2k(100-58) + 2k(100 – 44)  
 
          = 235k /unit thickness 
 
Check:  Energy flowing out of the plate= 2k(44 – 0)+ 4k(17 – 0) +2k(26 – 0) + k(28 – 0) 
 
          = 236k /unit thickness 
 
  Units are in W/m  (or Btu/ft hr) 
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Ex. 3 Consider a sheet of glass 3.6 cm thick.  Its surface temperature rises by 20oC/min. 
 

Plot  the temperature - time history over the first 5 minutes and calculate the heat 
transferred to the glass in this time. 
 
For glass, assume: α  =  0.3x10-6 m2/s, ρ  =  2700 kg/m3, cp  =   0,837 kJ/kgoC 
 
Take a = 6 mm   and assume the starting temperature  = 40oC. 
 

  

2 2

6

0.006
60 sec

2 2 0.3 10
a

t s
α −∆ = = =

× ×  
 
Position 0 mm 

(Surface)  
6 mm  12 mm 18 mm 24 mm 30 mm 36 mm 

(Surface) 
        
Time (mins)        

0 40 40 40 40 40 40 40 
1 60 40 40 40 40 40 60 
2 80 50  40 40 40 50 80 
3 100 60 45 40 45 60 100 
4 120 72.5 50 45 50 72.5 120 
5 140 85 58.75 50 58.75 85 140 
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Total heat transferred to glass
2 3 3 41 22

2 2 2p p p

T T T TT T
c a c a c aρ ρ ρ+ ++� �= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅� �

� �  

                                                
2

50 58.75 58.75 85 85 140
2 2700 0.837 0.006

2 2 2

8364 /kJ m

+ + +� �= ⋅ + + × × ×� �
� �

=  
 


